
Simulink® Design Optimization™
User's Guide

R2020b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Design Optimization™ User's Guide
© COPYRIGHT 1993–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2009 Online only New for Version 1 (Release 2009a)
September 2009 Online only Revised for Version 1.1 (Release 2009b)
March 2010 Online only Revised for Version 1.1.1 (Release 2010a)
September 2010 Online only Revised for Version 1.2 (Release 2010b)
April 2011 Online only Revised for Version 1.2.1 (Release 2011a)
September 2011 Online only Revised for Version 2.0 (Release 2011b)
March 2012 Online only Revised for Version 2.1 (Release 2012a)
September 2012 Online only Revised for Version 2.2 (Release 2012b)
March 2013 Online only Revised for Version 2.3 (Release 2013a)
September 2013 Online only Revised for Version 2.4 (Release 2013b)
March 2014 Online only Revised for Version 2.5 (Release 2014a)
October 2014 Online only Revised for Version 2.6 (Release 2014b)
March 2015 Online only Revised for Version 2.7 (Release 2015a)
September 2015 Online only Revised for Version 2.8 (Release 2015b)
March 2016 Online only Revised for Version 3.0 (Release 2016a)
September 2016 Online only Revised for Version 3.1 (Release 2016b)
March 2017 Online only Revised for Version 3.2 (Release 2017a)
September 2017 Online only Revised for Version 3.3 (Release 2017b)
March 2018 Online only Revised for Version 3.4 (Release 2018a)
September 2018 Online only Revised for Version 3.5 (Release 2018b)
March 2019 Online only Revised for Version 3.6 (Release 2019a)
September 2019 Online only Revised for Version 3.7 (Release 2019b)
March 2020 Online only Revised for Version 3.8 (Release 2020a)
September 2020 Online only Revised for Version 3.9 (Release 2020b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Data Analysis and Processing
1

Model Requirements for Importing Data . 1-2
Select Input Signals . 1-2
Select Output Signals . 1-3

Import Data for Parameter Estimation . 1-5
Create Experiment . 1-5
Time-Domain Data . 1-6
Time-Series Data . 1-9
Complex Data . 1-9

Plot and Analyze Data . 1-11
Why Plot the Data Before Parameter Estimation 1-11
Plot Data . 1-11

Preprocess Data . 1-13
Ways to Preprocess Data . 1-13
Remove Offset . 1-13
Scale Data . 1-14
Extract Data . 1-14
Filter Data . 1-15
Resample Data . 1-15
Replace Data . 1-16

Parameter Estimation
2

What Is an Experiment? . 2-3

Specify Estimation Data . 2-4
Create Experiment . 2-4
Edit Experiment Data . 2-5

Specify Parameters for Estimation . 2-7
Choosing Which Parameters to Estimate First . 2-7
Add Model Parameters as Variables for Estimation 2-7
Specify Parameters for Estimation . 2-9

Specify Known Initial States . 2-14
When to Specify Initial States Versus Estimate Initial States 2-14
Specify Model Initial States . 2-14

iii

Contents

Specify Estimation Options . 2-17

Estimate Parameters and States . 2-19

Validate Estimation Results . 2-25
Configure and Perform Validation . 2-25
Compare Measured and Simulated Responses . 2-27

Speed Up Parameter Estimation Using Parallel Computing 2-30
When to Use Parallel Computing for Parameter Estimation 2-30
How Parallel Computing Speeds Up Estimation 2-30

Use Parallel Computing for Parameter Estimation 2-33
Configure Your System for Parallel Computing . 2-33
Model Dependencies . 2-33
Estimate Parameters Using Parallel Computing in the Parameter Estimator

App . 2-34
Estimate Parameters Using Parallel Computing (Code) 2-35
Troubleshooting . 2-36

Estimating Initial Conditions for Blocks with External Initial Conditions
. 2-38

Save and Load Estimation Sessions . 2-39
Structure of an Estimation Session . 2-39
Save Parameter Estimator App Sessions . 2-39
Load Parameter Estimator App Sessions . 2-39
Load Legacy Projects . 2-39

How the Software Formulates Parameter Estimation as an Optimization
Problem . 2-41

Overview of Parameter Estimation as an Optimization Problem 2-41
Cost Function . 2-41
Bounds and Constraints . 2-42
Optimization Methods and Problem Formulations 2-43

Specify Steady-State Operating Point for Parameter Estimation 2-47
What is a Steady-State Operating Point? . 2-47
Setting up a Steady-State Operating Point . 2-47

Write a Cost Function . 2-49
Anatomy of a Cost Function . 2-49
Specify Inputs of the Cost Function . 2-50
Compute Requirements . 2-51
Specify Outputs of the Cost Function . 2-52
Convenience Objects as Additional Inputs . 2-54

Gradient Computations . 2-57

Estimate Model Parameter Values (Code) . 2-58

Estimate Model Parameters and Initial States (Code) 2-67

Estimate Model Parameters Using Multiple Experiments (Code) 2-76

iv Contents

Estimate Model Parameters Per Experiment (Code) 2-86

Set Model to Steady-State When Estimating Parameters (Code) 2-97

Parameter Estimation for Power Plant Excitation System Starting at
Steady-State (GUI) . 2-106

Set Model to Steady-State When Estimating Parameters (GUI) 2-117

Estimate Model Parameters with Parameter Constraints (Code) 2-124

Importing and Preprocessing Experiment Data (GUI) 2-132

Estimate Model Parameter Values (GUI) . 2-143

Estimate Model Parameters Per Experiment (GUI) 2-154

Estimate Model Parameters and Initial States (GUI) 2-168

Generate MATLAB Code for Parameter Estimation Problems (GUI) . . 2-178

Improving Optimization Performance Using Fast Restart (GUI) 2-181

Improving Optimization Performance Using Fast Restart (Code) 2-187

Deployed Application of Parameter Estimation 2-191

Muscle Reflex Parameter Estimation . 2-198

DC Servo Motor Parameter Estimation . 2-205

Engine Speed Model Parameter Estimation . 2-212

Clutch Friction Coefficient Estimation . 2-214

Inverted Pendulum Parameter Estimation . 2-220

Simplified Alternator Parameter Estimation . 2-229

Response Optimization
3

How the Optimization Algorithm Formulates Minimization Problems . . . 3-3
Feasibility Problem and Constraint Formulation . 3-3
Tracking Problem . 3-5
Gradient Descent Method Problem Formulations 3-6
Simplex Search Method Problem Formulations . 3-7
Pattern Search Method Problem Formulations . 3-7
Gradient Computations . 3-8

Specify Signals to Log . 3-10

v

Specify Custom Requirements in the App . 3-11

Move Constraints . 3-14
Move Constraints Graphically . 3-14
Position Constraints Exactly . 3-15

Specify Time-Domain Design Requirements in the App 3-16
Specify Piecewise-Linear Lower and Upper Bounds 3-16
Specify Signal Property Requirements . 3-17
Specify Step Response Characteristics . 3-19
Track Reference Signals . 3-21
Impose Elliptic Bound on Phase Plane Trajectory of Two Signals 3-22
Specify Custom Requirements . 3-24
Edit Design Requirements . 3-26

Edit Design Requirements . 3-29
Edit Design Requirement Dialog Box Parameters 3-29

Specify Variable Requirements in the App . 3-31
Impose Monotonic Constraint Requirement on Variable 3-31
Impose Upper Bound on Gradient Magnitude of Variable 3-33
Specify Linear or Quadratic Function Matching Constraint 3-36
Specify Requirement on a Vector Property . 3-39
Impose Relational Constraint Between Two Variables 3-41

Specify Frequency-Domain Design Requirements in the App 3-43
Specify Lower Bounds on Gain and Phase Margin 3-43
Specify Piecewise-Linear Lower and Upper Bounds on Frequency Response

. 3-44
Specify Bound on Closed-Loop Peak Gain . 3-45
Specify Lower Bound on Damping Ratio . 3-47
Specify Upper and Lower Bounds on Natural Frequency 3-48
Specify Upper Bound on Approximate Settling Time 3-49
Specify Piecewise-Linear Upper and Lower Bounds on Singular Values . . 3-51
Specify Step Response Characteristics . 3-52
Specify Custom Requirements . 3-53

Specify Design Variables . 3-56
Add Model Parameters as Variables for Optimization 3-56
Specify Design Variables . 3-58

Update Model with Design Variables Set . 3-60

Specify Optimization Options . 3-62

Create Linearization I/O Sets . 3-64

Interact with Plots . 3-67
Response Plots . 3-67
Spider Plots . 3-68
Iteration Plots . 3-69

Compare Requirements and Design Variables Using Spider Plot 3-71

Save Design Variable Values for Specific Iteration 3-74

vi Contents

Design Optimization to Meet Time- and Frequency-Domain Requirements
(GUI) . 3-76

Design Optimization Tuning Parameters in Referenced Models (GUI) . 3-88

Design Optimization Tuning Parameters in Referenced Models (Code)
. 3-95

Specify Steady-State Operating Point for Response Optimization 3-101
What is a Steady-State Operating Point? . 3-101
Setting up a Steady-State Operating Point . 3-101

Design Optimization to Meet a Custom Objective (GUI) 3-103

Design Optimization to Meet a Custom Objective (Code) 3-118

Design Optimization to Meet Custom Signal Requirements (GUI) 3-125

Design Optimization to Meet Frequency-Domain Requirements (GUI) 3-129

Specify Custom Signal Objective with Uncertain Variable (GUI) 3-143

Design Optimization with Uncertain Variables (Code) 3-152

Generate MATLAB Code for Design Optimization Problems (GUI) 3-160

Skip Model Simulation Based on Parameter Constraint Violation (GUI)
. 3-163

Optimizing Parameters for Robustness . 3-170
What Is Robustness? . 3-170
Sampling Methods for Uncertain Parameters . 3-170
Optimize Parameters for Robustness (GUI) . 3-172

Use Accelerator Mode During Simulations . 3-179
About Accelerating Optimization . 3-179
Limitations . 3-179
Setting Accelerator Mode . 3-179

Speed Up Response Optimization Using Parallel Computing 3-180
When to Use Parallel Computing for Response Optimization 3-180
How Parallel Computing Speeds Up Optimization 3-180

Use Parallel Computing for Response Optimization 3-183
Configure Your System for Parallel Computing 3-183
Model Dependencies . 3-183
Optimize Design Using Parallel Computing (GUI) 3-184
Optimize Design Using Parallel Computing (Code) 3-186
Troubleshooting . 3-187

Use Fast Restart Mode During Response Optimization 3-189
Response Optimizer App Workflow for Fast Restart 3-189
Command-Line Workflow for Fast Restart . 3-189
Troubleshooting . 3-190

vii

Optimization Does Not Make Progress . 3-191
Should I worry about the scale of my responses and how constraints and

design requirements are discretized? . 3-191
Why don't the responses and parameter values change at all? 3-191
Why does the optimization stall? . 3-191

Optimization Convergence . 3-192
What to do if the optimization does not get close to an acceptable solution?

. 3-192
Why does the optimization terminate before exceeding the maximum

number of iterations, with a solution that does not satisfy all the
constraints or design requirements? . 3-192

What to do if the optimization takes a long time to converge even though it
is close to a solution? . 3-193

What to do if the response becomes unstable and does not recover? . . . 3-193

Optimization Speed and Parallel Computing . 3-194
How can I speed up the optimization? . 3-194
Why are the optimization results with and without using parallel computing
different? . 3-194

Why do I not see the optimization speedup I expected using parallel
computing? . 3-194

Why does the optimization using parallel computing not make any progress?
. 3-195

Why does the optimization using parallel computing not stop when I click
the Stop optimization button? . 3-195

Undesirable Parameter Values . 3-196
What to do if the optimization drives the tuned compensator elements and

parameters to undesirable values? . 3-196
What to do if the optimization violates bounds on parameter values? . . 3-196

Reverting to Initial Parameter Values . 3-198
How do I quit an optimization and revert to my initial parameter values?

. 3-198

Save and Load Optimization Sessions . 3-199
Structure of an Optimization Session . 3-199
Save a Session . 3-199
Load a Session . 3-199

Improving Optimization Performance Using Parallel Computing 3-200

Optimizing Time-Domain Response of Simulink® Models Using Parallel
Computing . 3-209

Design Optimization to Meet Frequency-Domain Requirements (Code)
. 3-216

PID Tuning with Actuator Constraints . 3-222

PID Tuning with Reference Tracking and Plant Uncertainty 3-227

Engine Design and Cost Tradeoffs . 3-232

viii Contents

Magnetic Levitation Controller Tuning . 3-240

LQG Controller Tuning . 3-248

Inverted Pendulum Controller Tuning . 3-252

Pitch Rate Controller Tuning . 3-256

Tuning of Airframe Autopilot Gains . 3-260

Distillation Controller Tuning . 3-264

Heat Exchanger Controller Tuning . 3-268

Power Converter Tuning . 3-272

Servomechanism Tuning . 3-276

Stewart Platform Controller Tuning . 3-280

Phase Lock Loop Tuning . 3-284

Sensitivity Analysis
4

What is Sensitivity Analysis? . 4-2

Specify Parameters for Design Exploration . 4-4
Add Model Parameters as Variables . 4-4
Select Parameters for Design Exploration . 4-6

Generate Parameter Samples for Sensitivity Analysis 4-8
Generate Random Parameter Values . 4-8
Generate Gridded Parameter Values . 4-16

Specify Time-Domain Requirements . 4-21
Match Model Outputs to Measured Signals . 4-21
Specify Piecewise-Linear Lower and Upper Bounds 4-24
Specify Signal Property Requirements . 4-26
Specify Step Response Characteristics . 4-27
Track Reference Signals . 4-29
Impose Elliptic Bound on Phase Plane Trajectory of Two Signals 4-31
Specify Custom Requirements . 4-33

Specify Parameters Requirements . 4-36
Impose Monotonic Constraint Requirement on Variable 4-36
Impose Upper Bound on Gradient Magnitude of Variable 4-38
Specify Linear or Quadratic Function Matching Constraint 4-41
Specify Requirement on a Vector Property . 4-43
Impose Relational Constraint Between Two Variables 4-45

ix

Specify Frequency-Domain Requirements . 4-48
Specify Lower Bounds on Gain and Phase Margin 4-48
Specify Piecewise-Linear Lower and Upper Bounds on Frequency Response

. 4-50
Specify Bound on Closed-Loop Peak Gain . 4-51
Specify Lower Bound on Damping Ratio . 4-52
Specify Upper and Lower Bounds on Natural Frequency 4-53
Specify Upper Bound on Approximate Settling Time 4-54
Specify Piecewise-Linear Upper and Lower Bounds on Singular Values . . 4-54
Specify Step Response Characteristics . 4-56
Specify Custom Requirements . 4-57

Evaluate Design Requirements . 4-60

Analyze Relation Between Parameters and Design Requirements 4-67
Visual Analysis . 4-67
Statistical Analysis . 4-68

Use Sensitivity Analysis to Configure Estimation and Optimization 4-74
Export Sensitivity Analysis Results . 4-76

Interact with Plots in the Sensitivity Analyzer . 4-79
Parameter Set Plots . 4-79
Requirement Plots . 4-84
Evaluated Result Scatter Plots . 4-86
Evaluated Result Contour Plots . 4-92
Statistical Analysis Tornado Plots . 4-93

Validate Sensitivity Analysis . 4-96
Inspect the Generated Parameter Set . 4-96
Check Evaluation Results . 4-97
Perform Sensitivity Analysis with Different Parameter Set 4-99

Store Intermediate Data in the App . 4-100

Specify Steady-State Operating Point for Sensitivity Analysis 4-102
What is a Steady-State Operating Point? . 4-102
Setting up a Steady-State Operating Point . 4-102

Use Parallel Computing for Sensitivity Analysis 4-104
Configure Your System for Parallel Computing 4-104
Model Dependencies . 4-104
Perform Sensitivity Analysis Using Parallel Computing (GUI) 4-104
Perform Sensitivity Analysis Using Parallel Computing (Code) 4-107
Troubleshooting . 4-108

Use Fast Restart Mode During Sensitivity Analysis 4-109
Sensitivity Analyzer Workflow for Fast Restart 4-109
Command-Line Workflow for Fast Restart . 4-109
Troubleshooting . 4-110

Design Exploration Using Parameter Sampling (GUI) 4-112

Identify Key Parameters for Estimation (GUI) . 4-131

x Contents

Explore Design Reliability Using Parameter Sampling (GUI) 4-145

Design Exploration Using Parameter Sampling (Code) 4-157

Identify Key Parameters for Estimation (Code) 4-169

Generate MATLAB Code for Sensitivity Analysis Statistics to Identify Key
Parameters (GUI) . 4-179

Generate MATLAB Code for Sensitivity Analysis for Design Space
Exploration and Evaluation (GUI) . 4-183

Optimization-Based Control Design
5

Time-Domain Design Requirements in Simulink . 5-2
Specify Piecewise-Linear Lower and Upper Bounds 5-2
Specify Step Response Characteristics . 5-3
Track Reference Signals . 5-4
Specify Custom Requirements . 5-6
Edit Design Requirements . 5-7

Frequency-Domain Design Requirements in Simulink 5-9
Specify Lower Bounds on Gain and Phase Margin 5-9
Specify Piecewise-Linear Lower and Upper Bounds on Frequency Response

. 5-10
Specify Bound on Closed-Loop Peak Gain . 5-11
Specify Lower Bound on Damping Ratio . 5-13
Specify Upper and Lower Bounds on Natural Frequency 5-14
Specify Upper Bound on Approximate Settling Time 5-15
Specify Piecewise-Linear Upper and Lower Bounds on Singular Values . . 5-17
Specify Step Response Characteristics . 5-18
Specify Custom Requirements . 5-19

Time- and Frequency-Domain Requirements in Control System Designer
App . 5-22

Root Locus Diagrams . 5-22
Open-Loop and Prefilter Bode Diagrams . 5-23
Open-Loop Nichols Plots . 5-23
Step/Impulse Response Plots . 5-24

Time-Domain Simulations in Control System Designer App 5-25

Design Optimization-Based Controllers for LTI Systems 5-26

Optimize LTI System to Meet Frequency-Domain Requirements 5-27
Design Requirements . 5-27
Create an LTI Plant Model . 5-27
Open the Control System Designer App . 5-28
Open Optimization Based Tuning Method . 5-31
Select Tunable Compensator Elements . 5-33
Add Design Requirements . 5-34

xi

Optimize the System Response . 5-42
Create and Display the Closed-Loop System . 5-43

Design Linear Controllers for Simulink Models . 5-46

Enforcing Time and Frequency Requirements on a Single-Loop Controller
Design . 5-48

Airframe Controller Tuning . 5-63

DC Motor Controller Tuning . 5-65

Hydraulic Piston Regulator Tuning . 5-67

Lookup Tables
6

What are Adaptive Lookup Tables? . 6-2
Lookup Tables . 6-2
Adaptive Lookup Tables . 6-2

How to Estimate Lookup Table Values . 6-4

Estimate Constrained Values of a Lookup Table . 6-5
Objectives . 6-5
About the Data . 6-5
Lookup Table Output . 6-5
Estimate the Monotonically Increasing Table Values Using Default Settings

. 6-6
Validate the Estimation Results . 6-12

Estimate Lookup Table Values from Data . 6-17
Objectives . 6-17
About the Data . 6-17
Open a Parameter Estimation Session . 6-17
Estimate the Table Values Using Default Settings 6-18
Validate the Estimation Results . 6-24

Building Models Using Adaptive Lookup Table Blocks 6-28

Selecting an Adaptation Method . 6-31
Sample Mean . 6-31
Sample Mean with Forgetting . 6-31

Model Engine Using n-D Adaptive Lookup Table 6-33
Objectives . 6-33
About the Data . 6-33
Building a Model Using Adaptive Lookup Table Blocks 6-33
Adapting the Lookup Table Values Using Time-Varying I/O Data 6-40

Using Adaptive Lookup Tables in Real-Time Environment 6-43

xii Contents

Design Optimization Using Lookup Table Requirements for Gain
Scheduling (Code) . 6-44

Design Optimization Using Lookup Table Requirements for Gain
Scheduling (GUI) . 6-59

2-D Adaptive Lookup Table Generation . 6-70

Engine Volumetric Efficiency Surface Matching 6-71

xiii

Data Analysis and Processing

• “Model Requirements for Importing Data” on page 1-2
• “Import Data for Parameter Estimation” on page 1-5
• “Plot and Analyze Data” on page 1-11
• “Preprocess Data” on page 1-13

1

Model Requirements for Importing Data
Before you can analyze and preprocess the estimation data, you must assign the data to the model
ports or signals. In order to assign the data, the Simulink model must contain one of the following
elements:

• Root-level model Inport block

Note You do not need an Inport block if your model already contains a fixed input block, such as a
Step block.

• Root-level model Outport block
• Logged signal, which can be a root-level signal in the model or a signal in a model subsystem

To enable signal logging for a signal, in the Simulink Editor, select the signal, click the

Simulation Data Inspector button arrow and click Log Selected Signals. For more
information, see “Export Signal Data Using Signal Logging”.

When you create an experiment, as described in “Create Experiment” on page 2-4, the top level
input and output ports as well as logged signals are selected by default. You can add or remove the
input and output signals using the experiment editor on page 2-5. In the experiment editor, the
rows in the Inputs panel correspond to the model's root-level Inport blocks.

Similarly, the rows in the Outputs panel correspond to either the root-level Outport blocks or logged
signals in the model.

Select Input Signals
You can add the Inport block in the experiment editor by clicking the Select Inputs button in the
Inputs panel to launch the Select Inputs dialog box. You can select the Inport block you want by
selecting the check box corresponding to it and clicking OK. There is only one Inport block for the
engine_idle_speed model.

1 Data Analysis and Processing

1-2

Using the dialog box, you can import the input data by typing, for example, [time,iodata(:,1)] in
the Inputs panel. To learn more about importing data, see Import Data on page 1-5.

Select Output Signals
You can add the Output block in the experiment editor by clicking Select Measured Output Signals
in the Outputs panel to launch the Select Outputs dialog box. You can select the Outport block you
want by clicking the check box corresponding to it, and clicking OK. There is only one Outport block
for the engine_idle_speed model.

Using the dialog box, you can import the output data by typing, for example, [time,iodata(:,2)]
in the Inputs panel. To learn more about importing data, see Import Data on page 1-5.

 Model Requirements for Importing Data

1-3

See Also

Related Examples
• “Import Data for Parameter Estimation” on page 1-5

More About
• “What Is an Experiment?” on page 2-3

1 Data Analysis and Processing

1-4

Import Data for Parameter Estimation

Create Experiment
Before you begin data import, create an experiment. Simulink Design Optimization software provides
an app for setting up the estimation session.

To create an estimation session:

1 At the MATLAB® prompt, open the nonlinear idle speed model of an automotive engine by
typing :

engine_idle_speed

The model contains the Inport block BPAV and Outport block Engine Speed for importing input
and output data, respectively. To learn more, see “Model Requirements for Importing Data” on
page 1-2.

2 In the Simulink model window, open the Parameter Estimator by selecting Analysis >
Parameter Estimation.

 Import Data for Parameter Estimation

1-5

Parameter Estimator

You can organize the estimation and validation tasks inside Experiments under Data Browser
panel on the left. You can assign each experiment to an estimation task or validation task.

To create an experiment, click the New Experiment button.

This creates an experiment called Exp under Experiments. To change the name of the
experiment, right-click and select Rename. Call it NewData.

Note The Simulink model must remain open to perform parameter estimation tasks.

Time-Domain Data
Experiments are collections of signal data, specifically input and output signal data. After you create
an experiment, as described in “Create Experiment” on page 1-5, you can import data into your
experiment from various sources including MATLAB® variables, MAT-files, Excel® files, or comma-
separated-value files.

To import data into your experiment right-click and select Edit.... This will launch the experiment
editor. In the experiment editor, you can define the signals contained in the experiment.

1 Data Analysis and Processing

1-6

For example, the rows in the Inputs panel of the editor correspond to Inport block BPAV in the
engine_idle_speed model.

The rows in the Outputs panel correspond to Outport block Engine Speed. You can import signal
data from files or MATLAB workspace.

Note The Simulink model must contain an Inport or Outport block or logged signals to enable
importing data. For more information, see “Model Requirements for Importing Data” on page 1-2. To
select more output signals to specify data for, click Select Measured Output Signals in the
Outputs panel.

The idle-speed model of an automotive engine contains the measured data stored in the iodata array
in the workspace. The array contains two columns: the first for input data, and the second for output
data. The time data is in the time array in the workspace. You can import the input data by typing
[time,iodata(:,1)] in the Inputs panel.

You can import the output data by typing [time,iodata(:,2)] in the Outputs panel. You can view

the data by clicking . The input data should look like this:

 Import Data for Parameter Estimation

1-7

Output data should look like this:

After importing the data for NewData experiment, the experiment editor looks like this:

1 Data Analysis and Processing

1-8

To import data from a file, click the button.

To learn more about the Edit Experiment: dialog box, see “Edit Experiment Data” on page 2-5.

Time-Series Data
Time-series data is stored in time-series objects. For more information, see “Time Series Objects and
Collections”.

When you import input data from a time-series object, t, for parameter estimation, you must specify
the time vector and data as [t.time,t.inputdata] in the Inport signal dialog box. Similarly, to
import output data, you must specify the time vector and data as [t.time,t.outputdata] in the
Outport signal dialog box. For more information on how to import data into the experiment, see
“Time-Domain Data” on page 1-6.

Complex Data
Complex-valued data is data whose value is a complex number. For example, a signal with the value
1+2j is complex. You can use complex data to estimate parameters of electrical systems, such as the
magnitude and phase.

Note You must sample the real and imaginary parts of the data as a function of the same time vector.

 Import Data for Parameter Estimation

1-9

To use complex data for parameter estimation:

1 Split the data into two data sets that contain the real and imaginary parts. To split the data, use
the MATLAB functions real, and imag.

2 Create two signals, one for the real part and one for the imaginary part for the Inport or Outport
block.

3 Select both signals in the experiment editor.
4 Import the data to the corresponding signal as described in “Time-Domain Data” on page 1-6.

See Also

Related Examples
• “Plot and Analyze Data” on page 1-11
• “Preprocess Data” on page 1-13

More About
• “Model Requirements for Importing Data” on page 1-2

1 Data Analysis and Processing

1-10

Plot and Analyze Data

Why Plot the Data Before Parameter Estimation
After you import the estimation data as described in “Import Data for Parameter Estimation” on page
1-5, you can remove outliers, smooth, detrend, or otherwise treat the data to prepare for analysis and
estimation. To view and analyze data characteristics, plot the data on a time plot.

Plot Data
Use an experiment plot to visualize experiment data. First, create an experiment and import data as
described in “Import Data for Parameter Estimation” on page 1-5. To create an experiment plot, in
the Parameter Estimator, on the Parameter Estimation tab, click Add Plot, and select NewData
under Experiment Plots.

This creates plots of the input signal for the Inport block BPAV and output signal for the Outport
block Engine Speed for the engine_idle_speed model (see “Create Experiment” on page 1-5).

 Plot and Analyze Data

1-11

You can also plot the experiment data by right-clicking NewData and selecting Plot measured
experiment data from the list.

Using the time plot, you can examine the data characteristics such as noise, outliers and portions of
the data to use for estimating parameters. After you analyze the data, you can preprocess it as
described in “Preprocess Data” on page 1-13.

See Also

Related Examples
• “Import Data for Parameter Estimation” on page 1-5
• “Preprocess Data” on page 1-13

More About
• “Model Requirements for Importing Data” on page 1-2

1 Data Analysis and Processing

1-12

Preprocess Data

Ways to Preprocess Data
In the Parameter Estimator and Sensitivity Analyzer, you can preprocess imported data before
you use it for estimation or evaluation. After plotting the measured data, you have access to the
Experiment Plot tab where you can preprocess the data.

For information about how to plot the imported data in the Parameter Estimator, see “Plot and
Analyze Data” on page 1-11. For information about how to import and plot the data in the Sensitivity
Analyzer, see “Match Model Outputs to Measured Signals” on page 4-21.

You can perform the following preprocessing operations:

• “Remove Offset” on page 1-13 — Remove mean values, a constant value, or an initial value from
the data.

• “Scale Data” on page 1-14 — Scale data by a constant value, signal maximum value, or signal
initial value.

• “Extract Data” on page 1-14 — Select a subset of the data to use in the estimation or evaluation.
You can graphically select the data to extract, or enter start and end times in the text boxes.

• “Filter Data” on page 1-15 — Process data using a low-pass, high-pass, or band-pass filter.
• “Resample Data” on page 1-15 –– Resample data using zero-order hold or linear interpolation.
• “Replace Data” on page 1-16 –– Replace data with a constant value, region initial value, region
final value, or a line. You can use this functionality to replace outliers.

You can perform as many preprocessing operations on your data as are required for your application.
For instance, you can both filter the data and remove an offset.

Remove Offset
On the Experiment Plot tab, click Remove Offset.

It is important for good estimation results to remove data offsets. In the Remove Offset tab, you can
remove offset from all signals at once or select a particular signal using the Remove offset from
signal drop down list. Specify the value to remove using the Offset to remove drop down list. The
options are:

 Preprocess Data

1-13

• A constant value. Enter the value in the box. (Default: 0)
• Mean of the data, to create zero-mean data.
• Signal initial value.

As you change the offset value, the modified data is shown in preview in the plot.

After making choices, update the existing data with the preprocessed data by clicking .

Or, to save the modified data values in a new experiment (in the Parameter Estimator) or

requirement (in the Sensitivity Analyzer), click and select Save As: Create a new
experiment from the modified data.

Scale Data
On the Experiment Plot tab, click Scale Data.

In the Scale Data tab, you can choose to scale all signals or specify a signal to scale. Select the
scaling value from the Scale to use drop-down list. The options are:

• A constant value. Enter the value in the box. (Default: 1)
• Signal maximum value.
• Signal initial value.

As you change the scaling, the modified data is shown in preview in the plot.

After making choices, update the existing data with the preprocessed data by clicking .

Or, to save the modified data values in a new experiment (in the Parameter Estimator) or

requirement (in the Sensitivity Analyzer), click and select Save As: Create a new
experiment from the modified data.

Extract Data
To extract a portion of your data to use in the estimation or evaluation process, on the Experiment
Plot tab, click Extract Data.

1 Data Analysis and Processing

1-14

Select a subset of data to use in Extract Data tab. You can extract data graphically or by specifying
start time and end time. To extract data graphically, click and drag the vertical bars to select a region
of the data to use.

After you choose the data to extract, you can save it in a new experiment (in the Parameter
Estimator) or requirement (in the Sensitivity Analyzer) by clicking Save As.

Filter Data
You can filter your data using a low-pass, high-pass, or band-pass filter. A low-pass filter blocks high
frequency signals, a high-pass filter blocks low frequency signals, and a band-pass filter combines the
properties of both low- and high-pass filters. On the Experiment Plot tab click one of the Low-Pass
Filter, High-Pass Filter, or Band-Pass Filter to open a new tab. For example, the low-pass filter
tab appears as shown:

On the Low-Pass Filter, High-Pass Filter, or Band-Pass Filter tab, you can choose to filter all
signals or specify a particular signal. For the low-pass and high-pass filtering, you can specify the
normalized cutoff frequency of the signal. Where, a normalized frequency of 1 corresponds to half the
sampling rate. For the band-pass filter, you can specify the normalized start and end frequencies.
Specify the frequencies by either entering the value in the associated field on the tab. Alternatively,
you can specify filter frequencies graphically, by dragging the vertical bars in the frequency-domain
plot of your data.

Click Options to specify the filter order, and select zero-phase shift filter.

After making choices, update the existing data with the preprocessed data by clicking .

Or, to save the modified data values in a new experiment (in the Parameter Estimator) or

requirement (in the Sensitivity Analyzer), click and select Save As: Create a new
experiment from the modified data.

Resample Data
On the Experiment Plot tab, click the Resample Data button.

 Preprocess Data

1-15

In the Resample Data tab, specify the sampling period using the Resample with sample period:
field. You can resample your data using one of the following interpolation methods:

• Zero-order hold — Fill the missing data sample with the data value immediately preceding it.
• Linear interpolation — Fill the missing data using a line that connects the two data points.

By default, the resampling method is set to zero-order hold. You can select the linear
interpolation method from the Resample Using drop-down list.

The modified data is shown in preview in the plot.

After making choices, update the existing data with the preprocessed data by clicking .

Or, to save the modified data values in a new experiment (in the Parameter Estimator) or

requirement (in the Sensitivity Analyzer), click and select Save As: Create a new
experiment from the modified data.

Replace Data
On the Experiment Plot tab click the Replace Data button.

In the Replace Data tab, select data to replace by dragging across a region in the plot. Once you
select data, choose how to replace it using the Replace selected data drop-down list. You can
replace the data you select with one of these options:

• A constant value
• Region initial value
• Region final value
• A line

The replaced preview data changes color and the replacement data appears on the plot. At any time
before updating, click Clear preview to clear the data you replaced and start over.

After making choices, update the existing data with the preprocessed data by clicking .

1 Data Analysis and Processing

1-16

Or, to save the modified data values in a new experiment (in the Parameter Estimator) or

requirement (in the Sensitivity Analyzer), click and select Save As: Create a new
experiment from the modified data.

Replace Data can be useful, for example, to replace outliers. Outliers can be defined as data values
that deviate from the mean by more than three standard deviations. When estimating parameters
from data containing outliers, the results may not be accurate. Hence, you might choose to replace
the outliers in the data before you estimate the parameters.

See Also

More About
• “Import Data for Parameter Estimation” on page 1-5
• “Match Model Outputs to Measured Signals” on page 4-21

 Preprocess Data

1-17

Parameter Estimation

• “What Is an Experiment?” on page 2-3
• “Specify Estimation Data” on page 2-4
• “Specify Parameters for Estimation” on page 2-7
• “Specify Known Initial States” on page 2-14
• “Specify Estimation Options” on page 2-17
• “Estimate Parameters and States” on page 2-19
• “Validate Estimation Results” on page 2-25
• “Speed Up Parameter Estimation Using Parallel Computing” on page 2-30
• “Use Parallel Computing for Parameter Estimation” on page 2-33
• “Estimating Initial Conditions for Blocks with External Initial Conditions” on page 2-38
• “Save and Load Estimation Sessions” on page 2-39
• “How the Software Formulates Parameter Estimation as an Optimization Problem” on page 2-41
• “Specify Steady-State Operating Point for Parameter Estimation” on page 2-47
• “Write a Cost Function” on page 2-49
• “Gradient Computations” on page 2-57
• “Estimate Model Parameter Values (Code)” on page 2-58
• “Estimate Model Parameters and Initial States (Code)” on page 2-67
• “Estimate Model Parameters Using Multiple Experiments (Code)” on page 2-76
• “Estimate Model Parameters Per Experiment (Code)” on page 2-86
• “Set Model to Steady-State When Estimating Parameters (Code)” on page 2-97
• “Parameter Estimation for Power Plant Excitation System Starting at Steady-State (GUI)”

on page 2-106
• “Set Model to Steady-State When Estimating Parameters (GUI)” on page 2-117
• “Estimate Model Parameters with Parameter Constraints (Code)” on page 2-124
• “Importing and Preprocessing Experiment Data (GUI)” on page 2-132
• “Estimate Model Parameter Values (GUI)” on page 2-143
• “Estimate Model Parameters Per Experiment (GUI)” on page 2-154
• “Estimate Model Parameters and Initial States (GUI)” on page 2-168
• “Generate MATLAB Code for Parameter Estimation Problems (GUI)” on page 2-178
• “Improving Optimization Performance Using Fast Restart (GUI)” on page 2-181
• “Improving Optimization Performance Using Fast Restart (Code)” on page 2-187
• “Deployed Application of Parameter Estimation” on page 2-191
• “Muscle Reflex Parameter Estimation” on page 2-198
• “DC Servo Motor Parameter Estimation” on page 2-205
• “Engine Speed Model Parameter Estimation” on page 2-212

2

• “Clutch Friction Coefficient Estimation” on page 2-214
• “Inverted Pendulum Parameter Estimation” on page 2-220
• “Simplified Alternator Parameter Estimation” on page 2-229

2 Parameter Estimation

2-2

What Is an Experiment?
To estimate unknown parameter values of a Simulink model, first create an experiment. An
experiment specifies measured input and output data. During estimation, the experiment input data is
used to simulate the model and the model output is compared with the measured experiment output
data. For more information about creating experiments and importing data, see “Specify Estimation
Data” on page 2-4.

In an experiment, you can specify initial-state values. To do so, specify the model initial states for
each experiment. You can optionally specify an initial guess for the initial state values for any
experiment. For more information, see “Specify Known Initial States” on page 2-14.

To estimate a model parameter on a per-experiment basis, specify the model parameter for each
experiment. You can specify the initial values and limits for the parameter value for any of the
experiments. Alternatively, you can specify a parameter value as a known quantity, not to be
estimated. For more information, see “Specify Parameters for Estimation” on page 2-7. You can
choose to update experiments with estimated model initial states and parameter values, or save the
results in a new experiment. For more information, see “Specify Estimation Options” on page 2-17.

To use experiments for validating the estimated parameter values, see “Validate Estimation Results”
on page 2-25.

See Also

Related Examples
• “Specify Estimation Data” on page 2-4
• “Specify Parameters for Estimation” on page 2-7
• “Specify Known Initial States” on page 2-14
• “Estimate Parameters and States” on page 2-19

More About
• “Edit Experiment Data” on page 2-5

 What Is an Experiment?

2-3

Specify Estimation Data
This topic shows how to specify estimation data for parameter estimation.

Create Experiment
Before you specify estimation data, create an experiment. At the MATLAB prompt, open the nonlinear
idle speed model of an automotive engine by typing

engine_idle_speed

In the Simulink model window, open the Parameter Estimator by selecting Analysis > Parameter
Estimation.

In the Parameter Estimator, on the Parameter Estimation tab, click New Experiment.

This action creates an experiment called Exp in the Experiments list in the Data Browser panel and
opens the experiment editor. To change the name of the experiment, right-click Exp and select
Rename. If you rename it NewData, the Experiments list now looks like this:

2 Parameter Estimation

2-4

Edit Experiment Data
After creating an experiment, launch the experiment editor by right-clicking on the experiment name
and selecting Edit... from the list. The experiment editor resembles the following figure.

The experiment editor has four panels. You select output signals on page 1-3 and import output data
on page 1-5 in the Outputs panel. You select input signals on page 1-2 and import input data on page
1-5 in the Inputs panel. You can specify model initial states on page 2-14 in the Initial States
panel. You can specify parameters to estimate on page 2-11 in the Parameters panel.

The rows in the Inputs panel of the editor correspond to Inport block BPAV in the
engine_idle_speed model. See “Import Data for Parameter Estimation” on page 1-5.

The rows in the Outputs panel correspond to Outport block Engine Speed. You can import signal
data from files or MATLAB workspace.

 Specify Estimation Data

2-5

The idle-speed model of an automotive engine contains the measured data stored in the iodata array
in the workspace. The array contains two columns: the first for input data, and the second for output
data. The time data is in the time array in the workspace. Import the input data by typing
[time,iodata(:,1)] in the dialog box in the Inputs panel.

Import the output data by typing [time,iodata(:,2)] in the dialog box in the Outputs panel.

Note You can have more than one input or output signal, but you can have only one data set for a
signal. If you have multiple data sets, create multiple experiments.

See Also

Related Examples
• “Model Requirements for Importing Data” on page 1-2
• “Specify Parameters for Estimation” on page 2-7
• “Specify Known Initial States” on page 2-14
• “Estimate Parameters and States” on page 2-19

More About
• “What Is an Experiment?” on page 2-3

2 Parameter Estimation

2-6

Specify Parameters for Estimation

Choosing Which Parameters to Estimate First
Simulink Design Optimization software lets you estimate scalar, vector, and matrix parameters. You
can take an iterative approach to estimating model parameters. For example, if you have a large
number of parameters to estimate, start by estimating those that most influence the output. After you
estimate a subset of parameters and validate the estimated parameters, you can select the remaining
parameters for estimation.

You can also first use sensitivity analysis to identify the parameters that most influence the
estimation, and then specify these parameters for estimation. To open the Sensitivity Analyzer, in

the Parameter Estimation tab, click Sensitivity Analysis. In the Sensitivity Analyzer, you can
identify the model parameters that most influence the estimation problem and compute initial values
for the estimation parameters.

Add Model Parameters as Variables for Estimation
The software can only estimate variables that are in use by the model. Create variables for estimation
in the MATLAB or model workspace, and specify your Simulink model or block parameters using
these variables.

In this figure, the Numerator coefficients parameter of a Transfer Fcn block is specified as a
numerical value.

To estimate the Numerator coefficients parameter, specify it as variable gain1:

1 Create the variable gain1 in one of the following ways:

• Add the variables to the model workspace, and specify initial values.

 Specify Parameters for Estimation

2-7

• Write initialization code in the PreloadFcn callback of the model. For more information, see
“Model Callbacks”.

gain1 = 100
2 Specify the block parameter as variable gain1 in the Transfer Fcn block dialog box.

You can now select gain1 for estimation. See, “Specify Parameters for Estimation” on page 2-9.

Specify Independent Parameters for Estimation

You can also specify independent parameters that do not appear explicitly in the model as variables
for estimation. However, you cannot use this workflow with Simulink fast restart.

Suppose that a model parameter Kint is related to independent parameters x and y such that Kint
= x+y. To estimate x and y instead of Kint:

• Create the independent variables x and y by adding them to the model workspace and specifying
initial values.

• The software only allows tuning of variables that are used by model blocks. To ensure that the
software detects x and y for tuning, add a Constant block to your model, and specify the
Constant value of the block as [x y]. Connect the block to a Display block.

2 Parameter Estimation

2-8

• Write code in the InitFcn callback of the model that defines the relationship between Kint, x,
and y. You must first use the get_param function to get the variables x and y from the model
workspace before you can use them to define Kint.

wks = get_param(gcs,'ModelWorkspace')
x = evalin(wks,'x')
y = evalin(wks,'y')
Kint = x+y;

You can now select x and y for estimation. Do not estimate the independent and dependent
parameters simultaneously. Doing so can lead to incorrect results. For example, do not estimate
Kint, x and y together.

Specify Parameters for Estimation
You can specify the parameters for estimation experiments using the Estimated Parameters editor.
In the Parameter Estimator, on the Parameter Estimation tab, click Select Parameters.

To select parameters for all experiments, click Select Parameters in the Parameters Tuned for all
Experiments panel. This opens the Select model variables dialog. Here you can select the
parameters you want to estimate by clicking the check box next to it or specifying an expression. For
more information see “Select Parameters Using Select Model Variables Dialog Box” on page 2-11.

The editor looks like

 Specify Parameters for Estimation

2-9

For example, in the engine_idle_speed model, select freq1, freq2, freq3, gain1, gain2,
gain3 and mean_speed for estimation. You do not need to estimate the parameters all at once. You
can first select all the parameters you are interested in, and then later select a subset to estimate. By
default, all the parameters are selected for estimation. To deselect the ones you do not want to
estimate, clear the Estimate check box for a parameter. For this example, only estimate gain1,
gain2, gain3 and mean_speed. Set their initial values 10, 100, 50, and 500, respectively, and then
click OK. The Edit: Estimated Parameters dialog box looks like

2 Parameter Estimation

2-10

To learn how to specify initial values and upper and lower bounds of the parameters, see “Specifying
Initial Guesses and Upper/Lower Bounds” on page 2-13.

Select Parameters to Estimate for a Specific Experiment

To select the parameters to estimate in a specific experiment, first, select the experiment for
estimation as described in “Estimate Parameters and States” on page 2-19. Then, you can use the
Edit:Estimated Parameters dialog to select parameters to estimate for that experiment. Select the
experiment name from the Experiment: combo box in the Parameters and Initial States Tuned
per Experiment panel. Then click Edit experiment to launch the experiment editor for the
experiment you select.

Alternatively, you can right click the experiment name in the Experiments list and select Edit.... In
the experiment editor, click the Select parameters button in the Parameters panel. In the Select
model variables dialog box, you can select the parameters you want to estimate in this experiment by
checking the box next to it or specifying an expression. For more information see “Select Parameters
Using Select Model Variables Dialog Box” on page 2-11.

Select Parameters Using Select Model Variables Dialog Box

Use this dialog box to specify parameters to estimate. The table lists the variables that the model
uses to set block parameter values. The variables can reside in the model workspace, the base
workspace, or a data dictionary.

 Specify Parameters for Estimation

2-11

Select variables by clicking the check box next to each variable. If your model contains many
variables, filter the list by typing in the Filter by variable name field. The Used By column lists all
blocks in the model that use the variable. When a variable is used in more than one block, all blocks
are listed. To highlight blocks in the model that use the variable, click the block name.

The variables that you select must have a numeric value that uses the data type double. If the value
of a variable is not a double number, use these techniques:

• To select a single element or a subset of a matrix or array variable, click Specify expression
indexing if necessary.

Enter an expression such as myArray(2), which selects the second element of an array variable
myArray.

After you type the expression, press the Enter key to add the variable to the list of model
variables.

• To use a variable of a numeric data type other than double, convert the variable to a
Simulink.Parameter object, which separates a parameter value from its data type. Set the
Value property to a default double number, and use the DataType property to control the data
type.

• To use the value of a Simulink.Parameter object, specify the Value property. Enter the
expression myParamObj.Value.

• To use a numeric field of a structure, enter myStruct.PID.P1. If you store the structure in a
Simulink.Parameter object, enter myStruct.Value.PID.P1.

• To use one cell of a cell array, enter myCells{3}.

You cannot use mathematical expressions such as a + b. Sometimes, models have parameters that are
not explicitly defined in the model itself. For example, a gain k could be defined in the MATLAB
workspace as k = a + b, where a and b are not defined in the model but k is used. To add these
independent parameters, see “Add Model Parameters as Variables for Estimation” on page 2-7.

2 Parameter Estimation

2-12

Specifying Initial Guesses and Upper/Lower Bounds

After you select parameters, you can specify

• Initial guess — The value the estimation uses to start the process.
• Minimum — The smallest allowable parameter value. The default is -Inf.
• Maximum — The largest allowable parameter value. The default is +Inf.

You can enter the initial value in the dialog box below the parameter name. You can specify the
minimum and maximum value fields by clicking the arrow . The default minimum and maximum
values are -Inf and +Inf, respectively, but you can select any range you want.

If you believe a parameter lies within a finite range, it is best not to use the default minimum and
maximum values. Often, there are computational advantages in specifying finite bounds. It can be
very important to specify lower and upper bounds. For example, if a parameter specifies the
weight of a part, be sure to specify 0 as the absolute lower bound if better information is
unavailable.

Note When you specify the minimum and maximum values for the parameters, it does not affect
your settings in the Parameters list under Data Browser pane. You make these choices for each
experiment.

• Scale — The scale value to use for normalization. The parameters are scaled, or normalized, by
dividing their current value by the scale value. Scale is useful, in situations, for example, when
parameters have different orders of magnitude.

The default scale value is the next power of 2 greater than the current value of the parameter. For
example, if the current parameter value is 15, Scale is 16 (=24). You can edit this field to provide
an alternate scaling factor.

See Also

Related Examples
• “Specify Known Initial States” on page 2-14

More About
• “What Is an Experiment?” on page 2-3

 Specify Parameters for Estimation

2-13

Specify Known Initial States

When to Specify Initial States Versus Estimate Initial States
Sets of measured data are often collected at various times and under different initial conditions.
When you estimate model parameters using one data set and subsequently run another estimation
with a second data set, your parameter values may not match.

You can use the Parameter Estimator to estimate the initial conditions using procedures that are
similar to those you use to estimate parameters. You can then use these initial condition estimates as
a basis for estimating parameters for your Simulink model.

Specify Model Initial States
After you select parameters for estimation, as described in “Specify Parameters for Estimation” on
page 2-7, you can specify initial conditions of states in your model. By default, the estimation uses
initial conditions specified in the Simulink model. If you want to specify initial conditions other than
the defaults, use the Initial States panel in the experiment editor dialog. For this example, right
click NewData and select Edit... from the list to open the experiment editor on page 2-5. Then, click
Select Initial States button.

The Select Model States dialog for the engine_idle_speed model looks like

Click the check box next to the state you would like to modify. For example, if you select
engine_idle_speed/Transfer Fcn and enter the initial values -0.2 and 0, the Initial States panel
now looks like

2 Parameter Estimation

2-14

Click Select Parameters in the Parameter Estimation tab. After you also select the parameters as
described in “Specify Parameters for Estimation” on page 2-7, the Edit: Estimated Parameters dialog
looks like the following figure.

See Also

Related Examples
• “Specify Estimation Data” on page 2-4
• “Specify Parameters for Estimation” on page 2-7

 Specify Known Initial States

2-15

More About
• “Edit Experiment Data” on page 2-5

2 Parameter Estimation

2-16

Specify Estimation Options
This topic shows how to specify estimation options in the Parameter Estimator.

After you have specified estimation data and parameters, specify the following estimation options:

1 Goodness of fit criteria (cost function)

The cost function is a function that estimation methods minimize. To specify the method for
calculating the cost function, in the Parameter Estimation tab of the app, select one of the
following from the Cost Function drop-down list:

• Sum Squared Error — Uses a least-squares approach (default).
• Sum-Absolute Error — Uses the sum of absolute errors.

If the experimental data has many outliers, you can select the robust cost option. The software
uses a Huber loss function to handle the outliers in the cost function and improves the fit quality.
This option reduces the influence of outliers on the estimation without you having to manually

modify your data. To select this option, in the Parameter Estimation tab, click More
Options to open the Estimation Options dialog box. In the Optimization Options tab of the
dialog box, select Use robust cost.

The software uses the error statistics to identify the outliers. The error, e, is calculated as the
difference between measured and simulated output. The cost function used, F(x), depends on the
method used.

Method Name Cost Function for Nonoutliers Cost Function for Outliers
Sum Squared
Error

F(x) = ∑
t ∈ NOL

e(t) × e(t)

NOL is the set of nonoutlier
samples.

F(x) = ∑
t ∈ OL

w × e(t)

w is a linear weight. OL is the set
of outlier samples.

Sum-Absolute
Error F(x) = ∑

t ∈ NOL
e(t)

NOL is the set of nonoutlier
samples.

F(x) = ∑
t ∈ OL

w

w is a constant value. OL is the set
of outlier samples.

2 Estimation progress and result options for estimation task

To specify these options, in the Parameter Estimation tab, click More Options to open the
Estimation Options dialog box. In the General Options tab, specify the estimation progress and
result options. For details about the options, click the Help button.

 Specify Estimation Options

2-17

3 Optimization options, such as optimization method and optimization termination options.

Specify these options in the Optimization Options tab of the Estimation Options dialog box. For
details about the options, click the Help button.

4 Parallel computing options

Specify these options in the Parallel Options tab of the Estimation Options dialog box. For
details about the options, see “Estimate Parameters Using Parallel Computing in the Parameter
Estimator App” on page 2-34.

See Also

Related Examples
• “Specify Estimation Data” on page 2-4
• “Specify Parameters for Estimation” on page 2-7

More About
• “How the Software Formulates Parameter Estimation as an Optimization Problem” on page 2-

41

2 Parameter Estimation

2-18

Estimate Parameters and States
This topic shows how to estimate parameters and states in the Parameter Estimator.

To estimate parameters and states after you have specified estimation data on page 2-4, parameters
on page 2-7, and estimation options on page 2-17:

1 Specify experiments for estimation.

In the Parameter Estimator, in the Parameter Estimation tab, click Select Experiments. In
the Select Experiments dialog box, in the Estimation column, select the experiment to use.

For information about the Validation column, see “Validate Estimation Results” on page 2-25.
2 (Optional) Create progress plots to view estimation progress.

 Estimate Parameters and States

2-19

When you start the estimation, the app automatically displays a parameter trajectory plot that
shows the change in the parameter values during estimation. You can create other plots for
viewing the progress of the estimation before you begin estimating the parameters. During
estimation, all these plots update with each iteration.

• To plot the measured data, on the Parameter Estimation tab, click Add Plot. Select the
experiment to use for estimation under Experiment Plots of the drop-down list.

To add the simulated response to the measured data plot, on the Parameter Estimation tab,
click Plot Model Response.

Alternatively, right-click the experiment name in the Experiments area of the app, and select
Plot measured & simulated data from the menu.

You can edit the labels, adjust the limits, change the units, and the font style of the plot in the
Property Editor. To open the editor, right-click the experiment plot and select Properties
from the list.

• To plot the parameter values as they change, click Add Plot, and select Parameter
Trajectory. To add the scaled values or save iteration data, right-click the plot.

• To add a plot for the estimation cost, click Add Plot, and select Estimation Cost. To add the
scaled values or save iteration data, right-click the plot.

Use the View tab of the app to arrange the layout of the plots, so that all the progress plots you
created are visible.

2 Parameter Estimation

2-20

3 Estimate the parameters and states.

In the Parameter Estimation tab, click Estimate.

An Estimation Progress Report window opens at the start of estimation. The report and progress
plots update with each iteration.

4 View the Estimation Progress Report after the estimation completes.

By default, the report displays the iteration number (Iteration), the number of times the
objective function is calculated (F-count), and cost function value (f(x), for example,
NewData(Minimize)). You can change the display table by clicking Display Options. To learn
more about the display table, see “Iterative Display”.

 Estimate Parameters and States

2-21

5 View the estimated results.

The estimation results are saved in a new variable, EstimatedParams, in the Results area of
the app.

To view the contents of the variable, right-click EstimatedParams and select Open... from the
menu. EstimatedParams includes the values of the parameters, the cost function value, and
information about the stopping criteria for the estimation.

6 View the progress plots.

2 Parameter Estimation

2-22

The measured versus simulated data plot shows how closely the simulated data matches the
measured estimation data. The estimated parameters plot and cost function plots show the
changes in the estimated value of the parameters and estimated cost function for each iteration.

Typically, a lower cost function value indicates the model simulation with the estimated
parameters closely matches experimental data. If the optimization went well, you should see your
cost function converge to a minimum value. The lower the cost, the more successful the
estimation.

For information on types of problems you may encounter using optimization solvers, see “When
the Solver Fails”, “When the Solver Might Have Succeeded”, and “When the Solver Succeeds”.

See Also

Related Examples
• “Specify Estimation Data” on page 2-4
• “Specify Parameters for Estimation” on page 2-7

 Estimate Parameters and States

2-23

• “Specify Known Initial States” on page 2-14
• “Specify Estimation Options” on page 2-17
• “Validate Estimation Results” on page 2-25
• “Save and Load Estimation Sessions” on page 2-39

More About
• “What Is an Experiment?” on page 2-3

2 Parameter Estimation

2-24

Validate Estimation Results
This topic shows how to validate estimation results in the Parameter Estimator. After you estimate
parameters as described in “Estimate Parameters and States” on page 2-19, validate the estimation
results using another data set.

Configure and Perform Validation
To validate a model using the Parameter Estimator:

1 Load the validation data set.

At the MATLAB prompt, load the validation data into the MATLAB workspace.

load iodataval;
2 Add a new experiment for validation.

In the Parameter Estimator, in the Validation tab, click New Experiment. A new experiment
with default name appears in the Experiments area of the app. To rename the experiment
ValidationData, right-click the experiment and select Rename from the drop-down menu.

3 Import the validation data set into the validation experiment.

Right click the experiment name, and select Edit. Specify [time,iodataval(:,1)] in Inputs ,
and [time,iodataval(:,2)] in Outputs.

4 Specify the experiment for validation.

When you create an experiment, it is by default selected for estimation. To select another
experiment for validation, in the Validation tab, click Select Experiments.

In the Select Experiments dialog box, clear Estimation and select Validation for the validation
experiment.

 Validate Estimation Results

2-25

5 Specify the estimation results to use in the validation.

After you import validation data, select the estimated parameter values to validate.

The estimation results are saved in the EstimatedParams variable in the Results area of the
app. In the Validation tab, click Select Results to Validate.

To validate the estimated parameters, in the Select Results dialog box, select EstimatedParams
and clear Use current parameter values.

6 Select the plots to display at the end of validation.

Parameter Estimator can display the measured and simulated responses and the residuals plot
at the end of validation. Select the plots to display by checking the corresponding box on the
Validation Tab.

7 Validate the estimation results.

2 Parameter Estimation

2-26

On the Validation tab, click Validate. The Validation Progress Report shows the status of the
validation.

Compare Measured and Simulated Responses
1 Compare measured validation data against the model output simulated with the estimated

parameters.

The app displays the experiment plot for each experiment selected for validation. Each
experiment plot shows the measured data, and data from simulation using each set of results
selected. For example, the following figure shows the experiment plot for the ValidationExp
data.

 Validate Estimation Results

2-27

2 Examine the Residuals Plot.

The residuals plot shows the difference between simulated response and measured data. When
there is a good fit between the simulated output and measured data, the residuals show the
following behavior:

• Lie within a small percent of the maximum output variation.
• Do not display any systematic patterns.

For example, you can see from the following figure that the residuals for ValidationExp data
satisfy both criteria.

2 Parameter Estimation

2-28

See Also

Related Examples
• “Estimate Parameters and States” on page 2-19

More About
• “What Is an Experiment?” on page 2-3

 Validate Estimation Results

2-29

Speed Up Parameter Estimation Using Parallel Computing
When to Use Parallel Computing for Parameter Estimation
You can use Simulink Design Optimization software with Parallel Computing Toolbox™ software to
speed up parameter estimation of Simulink models. Using parallel computing may reduce the
estimation time in the following cases:

• The model contains a large number parameters to estimate, and the estimation method is
specified as either Nonlinear least squares or Gradient descent.

• The Pattern search method is selected as the estimation method.
• The model is complex and takes a long time to simulate.

When you use parallel computing, the software distributes independent simulations to run them in
parallel on multiple MATLAB sessions, also known as workers. The time required to simulate the
model dominates the total estimation time. Therefore, distributing the simulations significantly
reduces the estimation time.

For information on how the software distributes the simulations and the expected speedup, see “How
Parallel Computing Speeds Up Estimation” on page 2-30.

For information on configuring your system and using parallel computing, see “Use Parallel
Computing for Parameter Estimation” on page 2-33.

How Parallel Computing Speeds Up Estimation
You can enable parallel computing with the Nonlinear least squares, Gradient descent and
Pattern search estimation methods.

Parallel Computing with Nonlinear least squares and Gradient descent Methods

When you select Gradient descent as the estimation method, the model is simulated during the
following computations:

• Objective value computation — One simulation per iteration
• Objective gradient computations — Two simulations for every tuned parameter per iteration
• Line search computations — Multiple simulations per iteration

The total time, Ttotal, taken per iteration to perform these simulations is given by the following
equation:

Ttotal = T + (Np × 2 × T) + (Nls × T) = T × (1 + (2 × Np) + Nls)

where T is the time taken to simulate the model and is assumed to be equal for all simulations, Np is
the number of parameters to estimate, and Nls is the number of line searches. Nls is difficult to
estimate and you generally assume it to be equal to one, two, or three.

When you use parallel computing, the software distributes the simulations required for objective
gradient computations. The simulation time taken per iteration when the gradient computations are
performed in parallel, TtotalP, is approximately given by the following equation:

TtotalP = T + (ceil Np
Nw × 2 × T) + (Nls × T) = T × (1 + 2 × ceil Np

Nw + Nls)

2 Parameter Estimation

2-30

where Nw is the number of MATLAB workers.

Note The equation does not include the time overheads associated with configuring the system for
parallel computing and loading Simulink software on the remote MATLAB workers.

The expected reduction of the total estimation time is given by the following equation:

TtotalP
Ttotal =

1 + 2 × ceil Np
Nw + Nls

1 + (2 × Np) + Nls

For example, for a model with Np=3, Nw=4, and Nls=3, the expected reduction of the total estimation

time equals
1 + 2 × ceil 3

4 + 3
1 + (2 × 3) + 3 = 0.6.

Parallel Computing with the Pattern search Method

The Pattern search method uses search and poll sets to create and compute a set of candidate
solutions at each estimation iteration.

The total time, Ttotal, taken per iteration to perform these simulations, is given by the following
equation:

Ttotal = (T × Np × Nss) + (T × Np × Nps) = T × Np × (Nss + Nps)

where T is the time taken to simulate the model and is assumed to be equal for all simulations, Np is
the number of parameters to estimate, Nss is a factor for the search set size, and Nps is a factor for
the poll set size. Nss and Nps are typically proportional to Np.

When you use parallel computing, Simulink Design Optimization software distributes the simulations
required for the search and poll set computations, which are evaluated in separate parfor loops. The
simulation time taken per iteration when the search and poll sets are computed in parallel, TtotalP, is
given by the following equation:

TtotalP = (T × ceil(Np × Nss
Nw)) + (T × ceil(Np × Nps

Nw))

= T × (ceil(Np × Nss
Nw) + ceil(Np × Nps

Nw))

where Nw is the number of MATLAB workers.

Note The equation does not include the time overheads associated with configuring the system for
parallel computing and loading Simulink software on the remote MATLAB workers.

The expected speed up for the total estimation time is given by the following equation:

TtotalP
Ttotal =

ceil(Np × Nss
Nw) + ceil(Np × Nps

Nw)
Np × (Nss + Nps)

 Speed Up Parameter Estimation Using Parallel Computing

2-31

For example, for a model with Np=3, Nw=4, Nss=15, and Nps=2, the expected speedup equals
ceil(3 × 15

4) + ceil(3 × 2
4)

3 × (15 + 2) = 0.27.

Using the Pattern search method with parallel computing may not speed up the estimation time.
When you do not use parallel computing, the method stops searching for a candidate solution at each
iteration as soon as it finds a solution better than the current solution. When you use parallel
computing, the candidate solution search is more comprehensive. Although the number of iterations
may be larger, the estimation without using parallel computing may be faster.

See Also

Related Examples
• “Use Parallel Computing for Parameter Estimation” on page 2-33

2 Parameter Estimation

2-32

Use Parallel Computing for Parameter Estimation

Configure Your System for Parallel Computing
You can speed up parameter estimation using parallel computing on multicore processors or
multiprocessor networks. Use parallel computing with the Parameter Estimator and
sdo.optimize to estimate parameters using the fmincon, lsqonlin, and patternsearch
methods. Parallel computing is not supported for the fminsearch (Simplex search) method.

When you estimate model parameters using parallel computing, the software uses the available
parallel pool. If none is available, and you select Automatically create a parallel pool in your
Parallel Computing Toolbox preferences, the software starts a parallel pool using the settings in those
preferences. To open a parallel pool that uses a specific cluster profile, use:

parpool(MyProfile);

MyProfile is the name of a cluster profile.

For information regarding creating a cluster profile, see “Add and Modify Cluster Profiles” (Parallel
Computing Toolbox).

Model Dependencies
Model dependencies are any referenced models, data such as model variables, S-functions, and
additional files necessary to run the model. Before starting the optimization, verify that the model
dependencies are complete. Otherwise, you may get unexpected results.

Making Model Dependencies Accessible to Remote Workers

When you use parallel computing, the Simulink Design Optimization software helps you identify
model dependencies. To do so, the software uses the Dependency Analyzer. The dependency analysis
may not find all the files required by your model. To learn more, see “Dependency Analyzer Scope and
Limitations”. If your model has dependencies that are undetected or inaccessible by the parallel pool
workers, then add them to the list of model dependencies.

The dependencies are made accessible to the parallel pool workers by specifying one of the following:

• File dependencies: the model dependency files are copied to the parallel pool workers.
• Path dependencies: the paths to the model dependencies are added to the paths of the parallel

pool workers. If you are working in a multi-platform scenario, ensure that the paths are
compatible across platforms.

Using file dependencies is recommended, however, in some cases it can be better to choose path
dependencies. For example, if parallel computing is set up on a local multi-core computer, using path
dependencies is preferred as using file dependencies creates multiple copies of the dependent files on
the local computer.

For more information, see:

• “Estimate Parameters Using Parallel Computing in the Parameter Estimator App” on page 2-34
• “Estimate Parameters Using Parallel Computing (Code)” on page 2-35

 Use Parallel Computing for Parameter Estimation

2-33

Estimate Parameters Using Parallel Computing in the Parameter
Estimator App
To estimate model parameters using parallel computing in the Parameter Estimator:

1 Ensure that the software can access parallel pool workers that use the appropriate cluster
profile.

For more information, see “Configure Your System for Parallel Computing” on page 2-33.
2 Open the Parameter Estimator for the Simulink model.
3 Configure the estimation data, estimation parameters and states, and, optionally, estimation

settings.

For more information, see “Specify Estimation Data” on page 2-4, “Specify Parameters for
Estimation” on page 2-7, and “Specify Estimation Options” on page 2-17.

4
On the Parameter Estimation tab, click More Options to open the Estimation Options
dialog box.

5 Select the Parallel Options tab.

6 Select the Use the parallel pool during optimization check box.

This option checks for dependencies in your Simulink model. The file dependencies are displayed
in the Model file dependencies list box, and corresponding path to the files in Model path
dependencies. The files listed in Model file dependencies are copied to the remote workers.

Note The automatic dependencies check may not detect all the dependencies in your model.

For more information, see “Model Dependencies” on page 2-33. In this case, add the undetected
dependencies manually.

7 Add any file dependencies that the automatic check does not detect.

2 Parameter Estimation

2-34

Specify the files in the Model file dependencies list box separated by semicolons or on separate
lines.

Alternatively, click Add file dependency to open a dialog box, and select the file to add.

Note If you do not want to copy the files to the remote workers, delete all entries in the Model
file dependencies list box. Populate the Model path dependencies list box by clicking the
Sync path dependencies from model, and add any undetected path dependencies. In addition,
in the list box, update the paths on local drives to make them accessible to remote workers. For
example, change C:\ to \\\\hostname\\C$\\.

8 If you modify the Simulink model, resync the dependencies to ensure that any new dependencies
are detected. Click Sync file dependencies from model in the Parallel Options tab to rerun
the automatic dependency check for your model.

This action updates the Model file dependencies list box with any new file dependency found in
the model.

9 Click OK.
10 In the Parameter Estimation tab, click Estimate to estimate the model parameters using

parallel computing.

For information on troubleshooting problems related to estimation using parallel computing, see
“Troubleshooting” on page 2-36.

Estimate Parameters Using Parallel Computing (Code)
To use parallel computing for parameter estimation at the command line:

1 Ensure that the software can access parallel pool workers that use the appropriate cluster
profile.

For more information, see “Configure Your System for Parallel Computing” on page 2-33.
2 Open the model.

 Use Parallel Computing for Parameter Estimation

2-35

3 Configure an estimation experiment. For example, see “Estimate Model Parameter Values
(Code)” on page 2-58.

4 Enable parallel computing using an optimization option set, opt.

opt = sdo.OptimizeOptions;
opt.UseParallel = true;

5 Find the model dependencies.

[dirs,files] = sdo.getModelDependencies(modelname)

Note sdo.getModelDependencies may not detect all the dependencies in your model. For
more information, see “Model Dependencies” on page 2-33. In this case, add the undetected
dependencies manually.

6 Modify files to include any file dependencies that sdo.getModelDependencies does not
detect.

files = vertcat(files,'C:\matlab\work\filename.m')

Note If you do not want to copy the files to the remote workers, use the path dependencies. Add
any undetected path dependencies to dirs and update the paths on local drives to make them
accessible to remote workers. See sdo.getModelDependencies for more details.

7 Add the file dependencies for optimization.

opt.ParallelFileDependencies = files;
8 Run the optimization.

[pOpt,opt_info] = sdo.optimize(opt_fcn,param,opt);

For information on troubleshooting problems related to estimation using parallel computing, see
“Troubleshooting” on page 2-36.

Troubleshooting
Why Are the Estimation Results With and Without Parallel Computing Different?

• Different numerical precision on the client and worker machines can produce marginally different
simulation results. Thus, the optimization method can take a different solution path and produce a
different result.

• When you use parallel computing with the Pattern search method, the search is more
comprehensive and can result in a different solution. To learn more, see “Parallel Computing with
the Pattern search Method” on page 2-31.

Why Didn’t the Estimation Speed up Using Parallel Computing?

• When you estimate a few parameters or when the model does not take long to simulate, you do not
see a speedup in the estimation time. In such cases, the overhead associated with creating and
distributing the parallel tasks outweighs the benefits of running the estimation in parallel.

• Using the Pattern search method with parallel computing might not speed up the optimization
time. Without parallel computing, the method stops the search at each iteration as soon as it finds
a solution better than the current solution. The candidate solution search is more comprehensive

2 Parameter Estimation

2-36

when you use parallel computing. Although the number of iterations might be larger, the
optimization without using parallel computing might be faster.

To learn more about the expected speedup, see “Parallel Computing with the Pattern search
Method” on page 2-31.

Why Doesn’t the Estimation Using Parallel Computing Make Any Progress?

To troubleshoot the problem:

1 Run the optimization for a few iterations without parallel computing to see if the optimization
progresses.

2 Check whether the remote workers have access to all model dependencies. Model dependencies
include data variables and files required by the model to run.

To learn more, see “Model Dependencies” on page 2-33.

Why Does the Estimation Using Parallel Computing Continue When I Click Stop?

When you use parallel computing with the Pattern search method, the software must wait until
the current optimization iteration completes before it notifies the workers to stop. The optimization
does not terminate immediately when you click Stop, and, instead, appears to continue running.

See Also
parpool | sdo.OptimizeOptions | sdo.getModelDependencies | sdo.optimize

More About
• “Speed Up Parameter Estimation Using Parallel Computing” on page 2-30
• “Ways to Speed Up Design Optimization Tasks”

 Use Parallel Computing for Parameter Estimation

2-37

Estimating Initial Conditions for Blocks with External Initial
Conditions

When an integrator block uses an initial-condition port, which you specify by an IC block, you cannot
estimate the initial conditions of the integrator using Simulink Design Optimization software.
Estimation is not possible because external initial conditions have priority over the initial conditions
of a specific block to maintain the integrity of the model.

To tune the initial conditions of an integrator block with external initial conditions, you must modify
the model to make the external signal into a tunable parameter. For example, you can set the IC block
that feeds into the integrator to be a tunable variable and estimate it.

See Also

2 Parameter Estimation

2-38

Save and Load Estimation Sessions
This topic shows how to save and load estimation sessions in the Parameter Estimator.

Structure of an Estimation Session
The Parameter Estimator stores and organizes data from a given Simulink model inside a session.
An estimation session includes the following information:

• One or more estimation or validation experiments along with their configurations
• Parameter information
• Estimation results
• Estimation settings
• Plots — Changes to plots layout and plot characteristics, such as axis limits, line colors, are not

included.

The default session name is the same as the Simulink model name. The session name is shown on the
title pane of the Parameter Estimator.

Save Parameter Estimator App Sessions
Saving a session lets you reuse your estimation settings and results later. You can save the session as
a MAT-file or workspace variable:

• To save the session as a MAT-file, in the Parameter Estimation tab, in the Save Session drop-
down list, click Save to file. A window opens where you specify the MAT-file name.

• To save the session as a model or MATLAB workspace variable, select Save to model workspace
or Save to MATLAB workspace in the Save Session drop-down list.

Load Parameter Estimator App Sessions
To load a previously saved MAT-file or workspace sessions:

1 Open a Parameter Estimator for the model.
2 To load a MAT-file, in the Parameter Estimation tab click the Open Session drop-down list,

and select Open from file. A window opens where you select the MAT-file to load.

To load a workspace variable, select Open from model workspace or Open from MATLAB
workspace in the Open Session drop-down list.

Load Legacy Projects
Open legacy projects that are in MAT-files by selecting Open from file from the Open Session
drop-down list. The Parameter Estimator recognizes and converts them into the new session
format.

 Save and Load Estimation Sessions

2-39

See Also

More About
• “What Is an Experiment?” on page 2-3

2 Parameter Estimation

2-40

How the Software Formulates Parameter Estimation as an
Optimization Problem

Overview of Parameter Estimation as an Optimization Problem
When you perform parameter estimation, the software formulates an optimization problem. The
optimization problem solution is the estimated parameter values set. This optimization problem
consists of:

• x — Design variables. The model parameters and initial states to be estimated.
• F(x) — Objective function. A function that calculates a measure of the difference between the

simulated and measured responses. Also called cost function or estimation error.
• (Optional) x ≤ x ≤ x — Bounds. Limits on the estimated parameter values.
• (Optional) C(x) — Constraint function. A function that specifies restrictions on the design

variables.

The optimization solver tunes the values of the design variables to satisfy the specified objectives and
constraints. The exact formulation of the optimization depends on the optimization method that you
use.

Cost Function
The software tunes the model parameters to obtain a simulated response (ysim) that tracks the
measured response or reference signal (yref). To do so, the solver minimizes the cost function or
estimation error, a measure of the difference between the simulated and measured responses. The
cost function, F(x), is the objective function of the optimization problem.

Types

The raw estimation error, e(t), is defined as:

e(t) = yref (t)− ysim(t)

e(t) is also referred to as the error residuals or, simply, residuals.

Simulink Design Optimization software provides you the following cost functions to process e(t):

Cost Function Formulation Option Name in GUI or
Command Line

Sum squared error (default)
F(x) = ∑

t = 0

tN
e(t) × e(t)

N is the number of samples.

'SSE'

Sum absolute error
F(x) = ∑

t = 0

tN
e(t)

N is the number of samples.

'SAE'

 How the Software Formulates Parameter Estimation as an Optimization Problem

2-41

Cost Function Formulation Option Name in GUI or
Command Line

Raw error
F(x) =

e(0)
⋮

e(N)

N is the number of samples.

'Residuals'

This option is available only at
the command line.

Custom function N/A This option is available only at
the command line.

Time Base

The software evaluates the cost function for a specific time interval. This interval is dependent on the
measured signal time base and the simulated signal time base.

• The measured signal time base consists of all the time points for which the measured signal is
specified. In case of multiple measured signals, this time base is the union of the time points of all
the measured signals.

• The simulated signal time base consists of all the time points for which the model is simulated.

If the model uses a variable-step solver, then the simulated signal time base can change from one
optimization iteration to another. The simulated and measured signal time bases can be different. The
software evaluates the cost function for only the time interval that is common to both. By default, the
software uses only the time points specified by the measured signal in the common time interval.

• In the GUI, you can specify the simulation start and stop times in the Simulation time area of the
Simulation Options dialog box.

• At the command line, the software specifies the simulation stop time as the last point of the
measured signal time base. For example, the following code simulates the model until the end
time of the longest running output signal of exp, an sdo.Experiment object:

sim_obj = createSimulator(exp);
sim_obj = sim(sim_obj);

sim_obj contains the simulated response for the model associated with exp.

Bounds and Constraints
You can specify bounds for the design variables (estimated model parameters), based on your
knowledge of the system. Bounds are expressed as:

x ≤ x ≤ x

x and x are the lower and upper bounds for the design variables.

For example, in a battery discharging experiment, the estimated battery initial charge must be
greater than zero and less than Inf. These bounds are expressed as:

0 < x < ∞

For an example of how to specify these types of bounds, see “Estimate Model Parameters and Initial
States (Code)” on page 2-67.

2 Parameter Estimation

2-42

You can also specify other constraints, C(x), on the design variables at the command line. C(x) can be
linear or nonlinear and can describe equalities or inequalities. C(x) can also specify multiparameter
constraints. For example, for a simple friction model, C(x) can specify that the static friction
coefficient must be greater than or equal to the dynamic friction coefficient. One way of expressing
this constraint is:

C(x):x1− x2
C(x) ≤ 0

x1 and x2 are the dynamic and static friction coefficients, respectively.

For an example of how to specify a constraint, see “Estimate Model Parameters with Parameter
Constraints (Code)” on page 2-124.

Optimization Methods and Problem Formulations
An optimization problem can be one of the following types:

• Minimization problem — Minimizes an objective function, F(x). You specify the measured signal
that you want the model output to track. You can optionally specify bounds for the estimated
parameters.

• Mixed minimization and feasibility problem — Minimizes an objective function, F(x), subject to
specified bounds and constraints,C(x). You specify the measured signal that you want the model to
track and bounds and constraints for the estimated parameters.

• Feasibility problem — Finds a solution that satisfies the specified constraints, C(x). You specify
only bounds and constraints for the estimated parameters. This type of problem is not common in
parameter estimation.

The optimization method that you specify determines the formulation of the estimation problem. The
software provides the following optimization methods:

Optimization Method
Name

Description Optimization Problem Formulation

• User interface:
Nonlinear Least
Squares

• Command line:
'lsqnonlin'

Minimizes the squares of
the residuals,
recommended method for
parameter estimation.

This method requires a
vector of error residuals,
computed using a fixed
time base. Do not use this
approach if you have a
scalar cost function or if
the number of error
residuals can change from
one iteration to another.

This method uses the
Optimization Toolbox™
function, lsqnonlin.

Minimization Problem

min
x

F(x) 2
2 = min

x
f1(x)2 + f2(x)2 + …+fn(x)2

s . t . x ≤ x ≤ x

f1(x), f2(x),...,fn(x) represent residuals. n is the number
of samples.

Mixed Minimization and Feasibility Problem

Not supported.

Feasibility Problem

Not supported.

 How the Software Formulates Parameter Estimation as an Optimization Problem

2-43

Optimization Method
Name

Description Optimization Problem Formulation

• User interface:
Gradient Descent

• Command line:
'fmincon'

General nonlinear solver,
uses the cost function
gradient.

Use this approach if you
want to specify one or any
combination of the
following:

• Custom cost functions
• Parameter-based

constraints
• Signal-based

constraints

This method uses the
Optimization Toolbox
function, fmincon.

For information on how
the gradient is computed,
see “Gradient
Computations” on page 2-
57.

Minimization Problem

min
x

 F(x)

s . t . x ≤ x ≤ x

Mixed Minimization and Feasibility Problem

min
x

 F(x)

s . t . C(x) ≤ 0
 x ≤ x ≤ x

Note When tracking a reference signal, the software
ignores the maximally feasible solution option.

Feasibility Problem

• If you select the maximally feasible solution option
(i.e., the optimization continues after an initial
feasible solution is found), the software uses the
following problem formulation:

min
x, γ

 γ

s . t . C(x) ≤ γ
 x ≤ x ≤ x
 γ ≤ 0

γ is a slack variable that permits a feasible solution
with C(x) ≤ γ rather than C(x) ≤ 0.

• If you do not select the maximally feasible solution
option (i.e., the optimization terminates as soon as
a feasible solution is found), the software uses the
following problem formulation:

min
x

 0

 s . t . C(x) ≤ 0
 x ≤ x ≤ x

2 Parameter Estimation

2-44

Optimization Method
Name

Description Optimization Problem Formulation

• User interface:
Simplex Search

• Command line:
'fminsearch'

Based on the Nelder-Mead
algorithm, this approach
does not use the cost
function gradient.

Use this approach if your
cost function or
constraints are not
continuous or
differentiable.

This method uses the
Optimization Toolbox
functions, fminsearch
and fminbnd. fminbnd is
used if one scalar
parameter is being
optimized. Otherwise,
fminsearch is used. You
cannot specify parameter
bounds, x ≤ x ≤ x, with
fminsearch.

Minimization Problem

min
x

 F(x)

Mixed Minimization and Feasibility Problem

The software formulates the problem in two steps:

1 Finds a feasible solution.

min
x

 max C x

2 Minimizes the objective. The software uses the
results from step 1 as initial guesses. It maintains
feasibility by introducing a discontinuous barrier
in the optimization objective.

min
x

 Γ x

where

Γ(x) =
∞ ifmax C(x) > 0
F(x) otherwise.

Feasibility Problem

min
x

 max C x

 How the Software Formulates Parameter Estimation as an Optimization Problem

2-45

Optimization Method
Name

Description Optimization Problem Formulation

• User interface: Pattern
Search

• Command line:
'patternsearch'

Direct search method,
based on the generalized
pattern search algorithm,
this method does not use
the cost function gradient.

Use this approach if your
cost function or
constraints are not
continuous or
differentiable.

This method uses the
Global Optimization
Toolbox function,
patternsearch.

Minimization Problem

min
x

 F(x)

s . t . x ≤ x ≤ x

Mixed Minimization and Feasibility Problem

The software formulates the problem in two steps:

1 Finds a feasible solution.

min
x

 max C x

s . t . x ≤ x ≤ x
2 Minimizes the objective. The software uses the

results from step 1 as initial guesses. It maintains
feasibility by introducing a discontinuous barrier
in the optimization objective.

min
x

Γ(x)

s . t . x ≤ x ≤ x
where

Γ(x) =
∞ ifmax C(x) > 0
F(x) otherwise.

Feasibility Problem

min
x

 max C x

s . t . x ≤ x ≤ x

See Also
evalRequirement | fminbnd | fmincon | fminsearch | lsqnonlin | patternsearch |
sdo.Experiment | sdo.SimulationTest | sdo.requirements.SignalTracking

Related Examples
• “Estimate Model Parameter Values (Code)” on page 2-58
• “Estimate Model Parameters with Parameter Constraints (Code)” on page 2-124
• “Estimate Parameters from Measured Data”

More About
• “Write a Cost Function” on page 2-49

2 Parameter Estimation

2-46

Specify Steady-State Operating Point for Parameter Estimation

What is a Steady-State Operating Point?
An operating point of a dynamic system defines the states and root-level input signals of the model at
a specific time. For example, in a car engine model, variables such as engine speed, throttle angle,
engine temperature, and surrounding atmospheric conditions typically describe the operating point.

A steady-state operating point of a model, also called an equilibrium or trim condition, includes state
variables that do not change with time.

A model can have several steady-state operating points. For example, a hanging damped pendulum
has two steady-state operating points at which the pendulum position does not change with time. A
stable steady-state operating point occurs when a pendulum hangs straight down. When the
pendulum position deviates slightly, the pendulum always returns to equilibrium. In other words,
small changes in the operating point do not cause the system to leave the region of good
approximation around the equilibrium value.

When using optimization search to compute operating points for nonlinear systems, your initial
guesses for the states and input levels must be near the desired operating point to ensure
convergence.

When linearizing a model with multiple steady-state operating points, it is important to have the right
operating point. For example, linearizing a pendulum model around the stable steady-state operating
point produces a stable linear model, whereas linearizing around the unstable steady-state operating
point produces an unstable linear model.

For more information on operating points, see “What Is an Operating Point?” (Simulink Control
Design) and “What Is a Steady-State Operating Point?” (Simulink Control Design).

Setting up a Steady-State Operating Point
This topic shows how to setup a steady-state operating point in Parameter Estimator. To improve
the fit between the model and measured data, the model must be set to steady-state when parameters
are estimated.

1 Open the Parameter Estimator and setup your experiment using the steps outlined in
“Estimate Model Parameter Values (GUI)” on page 2-143.

2 In the toolstrip, click More Options and select Operating Point Options from the drop
down menu.

3 The following Operating Point dialog box opens.

 Specify Steady-State Operating Point for Parameter Estimation

2-47

The Estimate at steady-state option is checked by default when you open the operating point
dialog. Select the appropriate experiment to change the parameters for from the Experiment:
drop down menu. Use the States, Inputs and Outputs tabs to specify the known parameters,
bounds and deviations. For instance, there is one state in the above figure. Use the operating
point dialog to specify that this state should be treated as an unknown, and it should be set to
steady state. During parameter estimation, the operating point computation will vary this state to
set it at steady-state.

You can also sync operating point specifications from your Simulink model or another experiment
using the Sync with specification from: drop-down list. After you make your selection,

click on the button to copy the parameters.
4 The Simulink Design Optimization software uses optimization methods to search for operating

points in a model. Use the Options tab of the dialog to specify these optimization methods. These
options specify the optimization algorithm, tolerances, and stopping conditions. For instance, the
option Gradient descent with projection is often used to find the operating point for
systems that use physical modeling. For more information, click on the button.

5 Having specified the operating point parameters, continue with the estimation workflow as
described in “Estimate Model Parameter Values (GUI)” on page 2-143.

See Also

More About
• “What Is an Operating Point?” (Simulink Control Design)
• “What Is a Steady-State Operating Point?” (Simulink Control Design)
• “Set Model to Steady-State When Estimating Parameters (GUI)” on page 2-117
• “Set Model to Steady-State When Estimating Parameters (Code)” on page 2-97

2 Parameter Estimation

2-48

Write a Cost Function
A cost function is a MATLAB function that evaluates your design requirements using design variable
values. After writing and saving the cost function, you can use it for estimation, optimization, or
sensitivity analysis at the command line.

When you optimize or estimate model parameters, you provide the saved cost function as an input to
sdo.optimize. At every optimization iteration, sdo.optimize calls this function and uses the
function output to decide the optimization direction. When you perform sensitivity analysis using
sdo.evaluate, you generate sample values of the design variables and evaluate the cost function
for each sample value using sdo.evaluate.

Anatomy of a Cost Function
To understand the parts of a cost function, consider the following sample function myCostFunc. For a
design variable x, myCostFunc evaluates the objective x2 and the nonlinearity constraint x2-4x+1 <=
0.

function [vals,derivs] = myCostFunc(params)
% Extract the current design variable values from the parameter object, params.
x = params.Value;
% Compute the requirements (objective and constraint violations) and
% assign them to vals, the output of the cost function.
vals.F = x.^2;
vals.Cleq = x.^2-4*x+1;
% Compute the cost and constraint derivatives.
derivs.F = 2*x;
derivs.Cleq = 2*x-4;
end

This cost function performs the following tasks:

1 Specifies the inputs of the cost function.

A cost function must have as input, params, a vector of the design variables to be estimated,
optimized, or used for sensitivity analysis. Design variables are model parameter objects
(param.Continuous objects) or model initial states (param.State objects).

Since the cost function is called repeatedly during estimation, optimization, or evaluation, you
can specify additional inputs to the cost function to help reduce code redundancy and
computation cost. For more information, see “Specify Inputs of the Cost Function” on page 2-50.

2 Computes the requirements.

Requirements can be objectives and constraints based on model parameters, model signals, or
linearized models. In this sample cost function, the requirements are based on the design
variable x, a model parameter. The cost function first extracts the current values of the design
variables and then computes the requirements.

For information about computing requirements based on model parameters, model signals, or
linearized models, see “Compute Requirements” on page 2-51.

3 Specifies the requirement values as outputs, vals and derivs, of the cost function.

A cost function must return vals, a structure with one or more fields that specify the values of
the objective and constraint violations.

 Write a Cost Function

2-49

The output can optionally include derivs, a structure with one or more fields that specify the
values of the gradients of the objective and constraint violations. For more information, see
“Specify Outputs of the Cost Function” on page 2-52.

After saving the cost function as a MATLAB file myCostFunc.m, to perform the optimization, use the
cost function as an input to sdo.optimize.

[param_opt,opt_info] = sdo.optimize(@myCostFunc,params)

When performing sensitivity analysis, to compute the requirements in the cost function for a range of
design variable sample values paramsamples, use the cost function as an input to sdo.evaluate.

[y,info] = sdo.evaluate(@myCostFunc,paramsamples)

Specify Inputs of the Cost Function
The sample cost function myCostFunc takes one input, params.

function [vals,derivs] = myCostFunc(params)

A cost function must have as input, params, a vector of the design variables to be estimated,
optimized, or used for sensitivity analysis. Design variables are model parameter objects
(param.Continuous objects) or model initial states (param.State objects). You obtain params by
using the sdo.getParameterFromModel and sdo.getStateFromModel commands.

Specify Multiple Inputs

Because the cost function is called repeatedly during estimation, optimization, or evaluation, you can
specify additional inputs to the cost function to help reduce code redundancy and computation cost.
However, sdo.optimize and sdo.evaluate accept a cost function with only one input argument.
To use a cost function that accepts more than one input argument, you use an anonymous function.
Suppose that the myCostFunc_multi_inputs.m file specifies a cost function that takes params and
arg1 as inputs. For example, you can make the model name an input argument, arg1, and configure
the cost function to be used for multiple models. Then, assuming that all input arguments are
variables in the workspace, specify an anonymous function myCostFunc2, and use it as an input to
sdo.optimize or sdo.evaluate.

myCostFunc2 = @(params) myCostFunc_multi_inputs(params,arg1);
[param_opt,opt_info] = sdo.optimize(@myCostFunc2,params);

You can also specify additional inputs using convenience objects provided by Simulink Design
Optimization software. You create convenience objects once and pass them as an input to the cost
function to reduce code redundancy and computation cost.

For example, you can create a simulator (sdo.SimulationTest object) to simulate your model
using alternative model parameters without modifying the model, and pass the simulator to your cost
function.

simulator = sdo.SimulationTest(model)
myCostFunc2 = @(params) myCostFunc_multi_inputs(params,arg1,arg2,simulator);
[param_opt,opt_info] = sdo.optimize(@myCostFunc2,params);

For more information about the available convenience objects, see “Convenience Objects as
Additional Inputs” on page 2-54. For an example, see “Design Optimization to Meet a Custom
Objective (Code)” on page 3-118.

2 Parameter Estimation

2-50

Compute Requirements
The sample cost function myCostFunc computes the requirements based on a model parameter x. In
general, requirements can be objectives or constraints based on model parameters, model signals, or
linearized models. As seen in myCostFunc, you can use MATLAB functions to compute the
requirements. You can also use the requirements objects that Simulink Design Optimization software
provides. These objects enable you to specify requirements such as step-response characteristics,
gain and phase margin bounds, and Bode magnitude bounds. You can use the evalRequirement
method of these objects to evaluate the objective and constraint violations. For a list of available
requirement objects, see “Convenience Objects as Additional Inputs” on page 2-54.

Parameter-Based Requirements

If you have requirements on model parameters, in the cost function you first extract the current
parameter values, and then compute the requirements.

1 Extract the current parameter value from params.

x = params.Value;
2 Compute the requirement, and specify it as vals, the output of the cost function.

Suppose that the objective to be computed is x2 and the constraint is the nonlinearity constraint
x2-4x+1.

vals.F = x.^2;
vals.Cleq = x.^2-4*x+1;

In the context of optimization, x2 is minimized subject to satisfying the constraints. For sensitivity
analysis, the cost and constraints are evaluated for all values of the parameter params.

For more information about the output of a cost function, see “Specify Outputs of the Cost
Function” on page 2-52.

For an example of a cost function with a parameter-based requirement, see “Design Optimization to
Meet a Custom Objective (Code)” on page 3-118. In this example, you minimize the cylinder cross-
sectional area, a design variable in a hydraulic cylinder.

Model Signal Requirements

If you have requirements on model signals, in the cost function you simulate the model using current
design variable values, extract the signal of interest, and compute the requirement on the signal.

1 Simulate the model using the current design variable values in param. There are multiple ways
to simulate your model:

• Using sdo.SimulationTest object — If an sdo.SimulationTest object, simulator, is
a cost function input, you update the model parameter values using the Parameters property
of the simulator. Then use sim to simulate the model.

simulator.Parameters = params;
simulator = sim(simulator);

For an example, see “Design Optimization to Meet a Custom Objective (Code)” on page 3-118.
• Using sdo.Experiment object — If you are performing parameter estimation based on

input-output data defined in an sdo.Experiment object, exp, update the design variable

 Write a Cost Function

2-51

values associated with the experiment using the setEstimatedValues method. Create a
simulator using the createSimulator method, and simulate the model using the updated
model configuration.

exp = setEstimatedValues(exp,params);
simulator = createSimulator(exp,simulator);
simulator = sim(simulator);

For an example, see “Estimate Model Parameters Per Experiment (Code)” on page 2-86.
• Using sim command — If you are not using sdo.SimulationTest or sdo.Experiment

objects, use sdo.setValueInModel to update the model parameter values, and then call
sim to simulate the model.

sdo.setValueInModel('model_name',param);
LoggedData = sim('model_name');

2 Extract the logged signal of interest, SignalOfInterest.

Use the SignalLoggingName model parameter to get the simulation log name.

logName = get_param(simulator.ModelName,'SignalLoggingName');
simLog = get(simulator.LoggedData,logName);
Sig = get(simLog,'SignalOfInterest')

3 Evaluate the requirement, and specify it as the output of the cost function.

For example, if you specified a step-response bound on a signal using a
sdo.requirements.StepResponseEnvelope object, StepResp, you can use the
evalRequirement method of the object to evaluate the objective and constraint violations.

vals.Cleq = evalRequirement(StepResp,SignalOfInterest.Values);

For an example, see “Design Optimization to Meet Step Response Requirements (Code)”. For
more information about the output of a cost function, see “Specify Outputs of the Cost Function”
on page 2-52.

Linearization-Based Requirements

If you are optimizing or evaluating frequency-domain requirements, in the cost function you linearize
the model, and compute the requirement values. Linearizing the model requires Simulink Control
Design™ software.

Use the SystemLoggingInfo property of sdo.SimulationTest to specify linear systems to log
when simulating the model. For an example, see “Design Optimization to Meet Frequency-Domain
Requirements (Code)” on page 3-216. Alternatively, use linearize to linearize the model.

Note For models in Simulink fast restart mode, you cannot use the linearize command.

Specify Outputs of the Cost Function
The sample cost function myCostFunc outputs vals, a structure with fields that specify the values of
the objective and constraint violations. The second output is derivs, a structure with fields that
specify the derivatives of the objective and constraint.

function [vals,derivs] = myCostFunc(params)

2 Parameter Estimation

2-52

A cost function must output vals, a structure with one or more of the following fields that specify the
values of the objective and constraint violations:

• F — Value of the cost or objective evaluated at param.
• Cleq — Value of the nonlinear inequality constraint violations evaluated at param. For

optimization, the solver ensures Cleq ≤ 0.
• Ceq — Value of the nonlinear equality constraint violations evaluated at param. For optimization,

the solver ensures Ceq = 0.
• leq — Value of the linear inequality constraint violations evaluated at param. For optimization,

the solver ensures leq ≤ 0.
• eq — Value of the linear equality constraint violations evaluated at param. For optimization, the

solver ensures eq = 0.
• Log — Additional optional information from evaluation.

If you have multiple constraints of one type, concatenate the values into a vector, and specify this
vector as the corresponding field value. For instance, if you have a hydraulic cylinder, you can specify
nonlinear inequality constraints on the piston position (Cleq1) and cylinder pressure (Cleq2). In this
case, specify the Cleq field of the output structure vals as:

vals.Cleq = [Cleq1; Cleq2];

For an example, see “Design Optimization to Meet a Custom Objective (Code)” on page 3-118.

By default, the sdo.optimize command computes the objective and constraint gradients using
numeric perturbation. You can also optionally return the gradients as an additional cost function
output, derivs. Where derivs must contain the derivatives of all applicable objective and constraint
violations and is specified as a structure with one or more of the following fields:

• F — Derivatives of the cost or objective.
• Cleq — Derivatives of the nonlinear inequality constraints.
• Ceq — Derivatives of the nonlinear equality constraints.

The derivatives are not required for sensitivity analysis. For estimation or optimization, specify the
GradFcn property of sdo.OptimizeOptions as 'on'.

Multiple Objectives

Simulink Design Optimization software does not support multi-objective optimization. However, you
can return the objective value (vals.F) as a vector that represents the multiple objective values. The
software sums the elements of the vector and minimizes this sum. The exception to this behavior is in
the use of the nonlinear least squares (lsqnonlin) optimization method. The nonlinear least squares
method, used for parameter estimation, requires that you return the error residuals as a vector. In
this case, the software minimizes the sum square of this vector. If you are tracking multiple signals
and using lsqnonlin, then concatenate the error residuals for the different signals into one vector.
Specify this vector as the F field value.

For an example of single-objective optimization using the gradient descent method, see “Design
Optimization to Meet a Custom Objective (Code)” on page 3-118.

For an example of multiple-objective optimization using the nonlinear least squares method, see
“Estimate Model Parameters Per Experiment (Code)” on page 2-86.

 Write a Cost Function

2-53

Convenience Objects as Additional Inputs
A cost function must have as input, params, a vector of the design variables to be estimated,
optimized, or used for sensitivity analysis. You can specify additional inputs to the cost function using
convenience objects provided by the Simulink Design Optimization software. You create convenience
objects once and pass them as an input to the cost function to reduce code redundancy and
computation cost. For information about specifying additional inputs to the cost function, see “Specify
Multiple Inputs” on page 2-50.

Convenience Object Class Name Description
Simulator objects sdo.SimulationTest Use the simulator object to simulate

the model using alternative inputs,
model parameters, and initial-state
values without modifying the model.
Use the SystemLoggingInfo
property of sdo.SimulationTest
to specify linear systems to log
when you have frequency-domain
requirements.

In the cost function, use the sim
method to simulate the model. Then
extract the model response from the
object, and evaluate the
requirements.

For an example, see “Design
Optimization to Meet a Custom
Objective (Code)” on page 3-118.

Note To perform estimation,
optimization, or evaluation using
Simulink fast restart, it is necessary
to create the simulator before the
cost function, and then pass the
simulator to the cost function.

2 Parameter Estimation

2-54

Convenience Object Class Name Description
Requirements objects Available Requirements Objects

Time-domain requirements:

• sdo.requirements.SignalBo
und

• sdo.requirements.StepResp
onseEnvelope

• sdo.requirements.SignalTr
acking

• sdo.requirements.PhasePla
neEllipse

• sdo.requirements.PhasePla
neRegion

Parameter requirements:

• sdo.requirements.Function
Matching

• sdo.requirements.Monotoni
cVariable

• sdo.requirements.Relation
alConstraint

• sdo.requirements.Smoothne
ssConstraint

Frequency-domain requirements:

• sdo.requirements.GainPhas
eMargin

• sdo.requirements.BodeMagn
itude

• sdo.requirements.ClosedLo
opPeakGain

• sdo.requirements.PZDampin
gRatio

• sdo.requirements.PZNatura
lFrequency

• sdo.requirements.PZSettli
ngTime

• sdo.requirements.SignalTr
acking

• sdo.requirements.StepResp
onseEnvelope

• sdo.requirements.OpenLoop
GainPhase

Use these objects to specify time-
domain and frequency-domain costs
or constraints that depend on the
design variable values.

In the cost function, use the
evalRequirement method of the
object to evaluate how closely the
current design variables satisfy your
design requirement.

For an example, see “Design
Optimization to Meet Step Response
Requirements (Code)”.

 Write a Cost Function

2-55

Convenience Object Class Name Description
Experiment objects sdo.Experiment Use an experiment object to specify

the input-output data, model
parameters, and initial-state values
for parameter estimation.

In the cost function, update the
design variable values associated
with the experiment using the
setEstimatedValues method.
Then, to simulate the model using
the updated model configuration,
create a simulator using the
createSimulator method.

For an example, see “Estimate
Model Parameters Per Experiment
(Code)” on page 2-86.

See Also
param.Continuous | sdo.Experiment | sdo.OptimizeOptions | sdo.SimulationTest |
sdo.evaluate | sdo.optimize | sdo.setValueInModel

Related Examples
• “How the Optimization Algorithm Formulates Minimization Problems” on page 3-3
• “Design Optimization to Meet a Custom Objective (Code)” on page 3-118
• “How the Software Formulates Parameter Estimation as an Optimization Problem” on page 2-41
• “Estimate Model Parameter Values (Code)” on page 2-58
• “What is Sensitivity Analysis?” on page 4-2
• “Identify Key Parameters for Estimation (Code)” on page 4-169

2 Parameter Estimation

2-56

Gradient Computations
For the Gradient descent (fmincon) optimization solver, the gradients are computed using
numerical perturbation:

dx = eps3 × max x , 1
10xtypical

dL = max x− dx, xmin
dR = min x + dx, xmax
FL = opt_ f cn(dL)
FR = opt_ f cn(dR)

dF
dx =

FL− FR
dL− dR

• x is a scalar design variable.
• xmin is the lower bound of x.
• xmax is the upper bound of x.
• xtypical is the scaled value of x.
• opt_fcn is the objective function.

dx is relatively large to accommodate simulation solver tolerances.

If you want to compute the gradients in any other way, you can do so in the cost function you write for
performing design optimization programmatically. See sdo.optimize and GradFcn of
sdo.OptimizeOptions for more information.

See Also
fmincon

More About
• “How the Software Formulates Parameter Estimation as an Optimization Problem” on page 2-41
• “How the Optimization Algorithm Formulates Minimization Problems” on page 3-3

 Gradient Computations

2-57

Estimate Model Parameter Values (Code)
This example shows how to use experimental data to estimate model parameter values.

Aircraft Model

The Simulink model, sdoAircraftEstimation, models the longitudinal flight control system of an
aircraft.

open_system('sdoAircraftEstimation')

Estimation Problem

You use measured data to estimate the aircraft model parameters and states.

Measured output data:

• Pilot G force, output of the Pilot G-force calculation block
• Angle of attack, fourth output of the Aircraft Dynamics Model block

Parameters:

• Actuator time constant, Ta, used by the Actuator Model block

2 Parameter Estimation

2-58

• Vertical velocity, Zd, used by the Aircraft Dynamics Model block
• Pitch rate gains, Md, used by the Aircraft Dynamics Model block

State:

• Initial state of the first-order actuator model, sdoAircraftEstimation/Actuator Model

Define the Estimation Experiment

Get the measured data.

[time,iodata] = sdoAircraftEstimation_Experiment;

The sdoAircraftEstimation_Experiment function returns the measured output data, iodata,
and the corresponding time vector. The first column of iodata is the pilot G force and the second
column is the angle of attack.

To see the code for this function, type edit sdoAircraftEstimation_Experiment.

Create an experiment object to store the measured input/output data.

Exp = sdo.Experiment('sdoAircraftEstimation');

Create an object to store the measured pilot G-Force output.

PilotG = Simulink.SimulationData.Signal;
PilotG.Name = 'PilotG';
PilotG.BlockPath = 'sdoAircraftEstimation/Pilot G-force calculation';
PilotG.PortType = 'outport';
PilotG.PortIndex = 1;
PilotG.Values = timeseries(iodata(:,2),time);

Create an object to store the measured angle of attack (alpha) output.

AoA = Simulink.SimulationData.Signal;
AoA.Name = 'AngleOfAttack';
AoA.BlockPath = 'sdoAircraftEstimation/Aircraft Dynamics Model';
AoA.PortType = 'outport';
AoA.PortIndex = 4;
AoA.Values = timeseries(iodata(:,1),time);

Add the measured pilot G-Force and angle of attack data to the experiment as the expected output
data.

Exp.OutputData = [...
 PilotG; ...
 AoA];

Add the initial state for the Actuator Model block to the experiment. Set its Free field to true so
that it is estimated.

Exp.InitialStates = sdo.getStateFromModel('sdoAircraftEstimation','Actuator Model');
Exp.InitialStates.Minimum = 0;
Exp.InitialStates.Free = true;

Compare the Measured Output and the Initial Simulated Output

Create a simulation scenario using the experiment and obtain the simulated output.

 Estimate Model Parameter Values (Code)

2-59

Simulator = createSimulator(Exp);
Simulator = sim(Simulator);

Search for the pilot G-Force and angle of attack signals in the logged simulation data.

SimLog = find(Simulator.LoggedData,get_param('sdoAircraftEstimation','SignalLoggingName'));
PilotGSignal = find(SimLog,'PilotG');
AoASignal = find(SimLog,'AngleOfAttack');

Plot the measured and simulated data.

As expected, the model response does not match the experimental output data.

plot(time, iodata, ...
 AoASignal.Values.Time,AoASignal.Values.Data,'--', ...
 PilotGSignal.Values.Time,PilotGSignal.Values.Data,'-.');
title('Simulated and Measured Responses Before Estimation')
legend('Measured angle of attack', 'Measured pilot g force', ...
 'Simulated angle of attack', 'Simulated pilot g force');

Specify the Parameters to Estimate

Select the model parameters that describe the flight control actuation system. Specify bounds for the
estimated parameter values based on our understanding of the actuation system.

p = sdo.getParameterFromModel('sdoAircraftEstimation',{'Ta','Md','Zd'});
p(1).Minimum = 0.01; %Ta
p(1).Maximum = 1;

2 Parameter Estimation

2-60

p(2).Minimum = -10; %Md
p(2).Maximum = 0;
p(3).Minimum = -100; %Zd
p(3).Maximum = 0;

Get the actuator initial state value that is to be estimated from the experiment.

s = getValuesToEstimate(Exp);

Group the model parameters and initial states to be estimated together.

v = [p;s]

v(1,1) =

 Name: 'Ta'
 Value: 0.5000
 Minimum: 0.0100
 Maximum: 1
 Free: 1
 Scale: 0.5000
 Info: [1x1 struct]

v(2,1) =

 Name: 'Md'
 Value: -1
 Minimum: -10
 Maximum: 0
 Free: 1
 Scale: 1
 Info: [1x1 struct]

v(3,1) =

 Name: 'Zd'
 Value: -80
 Minimum: -100
 Maximum: 0
 Free: 1
 Scale: 128
 Info: [1x1 struct]

v(4,1) =

 Name: 'sdoAircraftEstimation/Actuator...'
 Value: 0
 Minimum: 0
 Maximum: Inf
 Free: 1
 Scale: 1
 dxValue: 0
 dxFree: 1
 Info: [1x1 struct]

 Estimate Model Parameter Values (Code)

2-61

4x1 param.Continuous

Define the Estimation Objective Function

Create an estimation objective function to evaluate how closely the simulation output, generated
using the estimated parameter values, matches the measured data.

Use an anonymous function with one input argument that calls the
sdoAircraftEstimation_Objective function. We pass the anonymous function to
sdo.optimize, which evaluates the function at each optimization iteration.

estFcn = @(v) sdoAircraftEstimation_Objective(v,Simulator,Exp);

The sdoAircraftEstimation_Objective function:

• Has one input argument that specifies the actuator parameter values and the actuator initial state.

• Has one input argument that specifies the experiment object containing the measured data.

• Returns a vector of errors between simulated and experimental outputs.

The sdoAircraftEstimation_Objective function requires two inputs, but sdo.optimize
requires a function with one input argument. To work around this, estFcn is an anonymous function
with one input argument, v, but it calls sdoAircraftEstimation_Objective using two input
arguments, v and Exp.

For more information regarding anonymous functions, see “Anonymous Functions”.

The sdo.optimize command minimizes the return argument of the anonymous function estFcn,
that is, the residual errors returned by sdoAircraftEstimation_Objective. For more details on
how to write an objective/constraint function to use with the sdo.optimize command, type help
sdoExampleCostFunction at the MATLAB command prompt.

To examine the estimation objective function in more detail, type edit
sdoAircraftEstimation_Objective at the MATLAB command prompt.

type sdoAircraftEstimation_Objective

function vals = sdoAircraftEstimation_Objective(v,Simulator,Exp)
%SDOAIRCRAFTESTIMATION_OBJECTIVE
%
% The sdoAircraftEstimation_Objective function is used to compare model
% outputs against experimental data.
%
% vals = sdoAircraftEstimation_Objective(v,Exp)
%
% The |v| input argument is a vector of estimated model parameter values
% and initial states.
%
% The |Simulator| input argument is a simulation object used
% simulate the model with the estimated parameter values.
%
% The |Exp| input argument contains the estimation experiment data.

2 Parameter Estimation

2-62

%
% The |vals| return argument contains information about how well the
% model simulation results match the experimental data and is used by
% the |sdo.optimize| function to estimate the model parameters.
%
% See also sdo.optimize, sdoExampleCostFunction,
% sdoAircraftEstimation_cmddemo
%

% Copyright 2012-2015 The MathWorks, Inc.

%%
% Define a signal tracking requirement to compute how well the model output
% matches the experiment data. Configure the tracking requirement so that
% it returns the tracking error residuals (rather than the
% sum-squared-error) and does not normalize the errors.
%
r = sdo.requirements.SignalTracking;
r.Type = '==';
r.Method = 'Residuals';
r.Normalize = 'off';

%%
% Update the experiments with the estimated parameter values.
%
Exp = setEstimatedValues(Exp,v);

%%
% Simulate the model and compare model outputs with measured experiment
% data.
%
Simulator = createSimulator(Exp,Simulator);
Simulator = sim(Simulator);

SimLog = find(Simulator.LoggedData,get_param('sdoAircraftEstimation','SignalLoggingName'));
PilotGSignal = find(SimLog,'PilotG');
AoASignal = find(SimLog,'AngleOfAttack');

PilotGError = evalRequirement(r,PilotGSignal.Values,Exp.OutputData(1).Values);
AoAError = evalRequirement(r,AoASignal.Values,Exp.OutputData(2).Values);

%%
% Return the residual errors to the optimization solver.
%
vals.F = [PilotGError(:); AoAError(:)];
end

Estimate the Parameters

Use the sdo.optimize function to estimate the actuator parameter values and initial state.

Specify the optimization options. The estimation function sdoAircraftEstimation_Objective
returns the error residuals between simulated and experimental data and does not include any
constraints, making this problem ideal for the 'lsqnonlin' solver.

opt = sdo.OptimizeOptions;
opt.Method = 'lsqnonlin';

 Estimate Model Parameter Values (Code)

2-63

Estimate the parameters.

vOpt = sdo.optimize(estFcn,v,opt)

 Optimization started 25-Aug-2020 20:42:05

 First-order
 Iter F-count f(x) Step-size optimality
 0 8 27955.2 1
 1 17 10121.6 0.4744 5.68e+04
 2 26 3127.27 0.3854 1.24e+04
 3 35 872.666 0.4288 2.81e+03
 4 44 238.616 0.5154 617
 5 53 71.693 0.4938 148
 6 62 17.1565 0.4236 43.9
 7 71 1.73233 0.3027 11
 8 80 0.0392376 0.135 1.33
 9 89 0.000957796 0.02489 0.266
 10 98 0.000202147 0.007931 0.0114
Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

vOpt(1,1) =

 Name: 'Ta'
 Value: 0.0500
 Minimum: 0.0100
 Maximum: 1
 Free: 1
 Scale: 0.5000
 Info: [1x1 struct]

vOpt(2,1) =

 Name: 'Md'
 Value: -6.8849
 Minimum: -10
 Maximum: 0
 Free: 1
 Scale: 1
 Info: [1x1 struct]

vOpt(3,1) =

 Name: 'Zd'
 Value: -63.9989
 Minimum: -100
 Maximum: 0
 Free: 1
 Scale: 128
 Info: [1x1 struct]

2 Parameter Estimation

2-64

vOpt(4,1) =

 Name: 'sdoAircraftEstimation/Actuator...'
 Value: 1.1976e-04
 Minimum: 0
 Maximum: Inf
 Free: 1
 Scale: 1
 dxValue: 0
 dxFree: 1
 Info: [1x1 struct]

4x1 param.Continuous

Compare the Measured Output and the Final Simulated Output

Update the experiments with the estimated parameter values.

Exp = setEstimatedValues(Exp,vOpt);

Simulate the model using the updated experiment and compare the simulated output with the
experimental data.

The model response using the estimated parameter values closely matches the experiment output
data.

Simulator = createSimulator(Exp,Simulator);
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData,get_param('sdoAircraftEstimation','SignalLoggingName'));
PilotGSignal = find(SimLog,'PilotG');
AoASignal = find(SimLog,'AngleOfAttack');

plot(time, iodata, ...
 AoASignal.Values.Time,AoASignal.Values.Data,'-.', ...
 PilotGSignal.Values.Time,PilotGSignal.Values.Data,'--')
title('Simulated and Measured Responses After Estimation')
legend('Measured angle of attack', 'Measured pilot g force', ...
 'Simulated angle of attack', 'Simulated pilot g force');

 Estimate Model Parameter Values (Code)

2-65

Update the Model Parameter Values

Update the model with the estimated actuator parameter values. Do not update the model actuator
initial state (fourth element of vOpt) as it is dependent on the experiment.

sdo.setValueInModel('sdoAircraftEstimation',vOpt(1:3));

Related Examples

To learn how to estimate model parameters using the Parameter Estimator app, see “Estimate
Model Parameter Values (GUI)” on page 2-143.

Close the model.

bdclose('sdoAircraftEstimation')

2 Parameter Estimation

2-66

Estimate Model Parameters and Initial States (Code)
This example shows how to estimate the initial state and parameters of a model.

This example requires Simscape®.

RC Circuit Model

The Simulink model, sdoRCCircuit, models a simple resistor-capacitor (RC) circuit.

open_system('sdoRCCircuit');

Estimation Problem

You use the measured data to estimate the RC model parameter and state values.

Measured output data:

• Capacitor voltage, output of the PS-Simulink Converter block

Parameter:

• Capacitance, C1, used by the C1 block

State:

• Initial voltage of the capacitor, C1

Define the Estimation Experiment

Get the measured data.

load sdoRCCircuit_ExperimentData

The variables time and data are loaded into the workspace, where data is the measured capacitor
voltage for times time.

Create an experiment object to store the experimental voltage data.

 Estimate Model Parameters and Initial States (Code)

2-67

Exp = sdo.Experiment('sdoRCCircuit');

Create an object to store the measured capacitor voltage output.

Voltage = Simulink.SimulationData.Signal;
Voltage.Name = 'Voltage';
Voltage.BlockPath = 'sdoRCCircuit/PS-Simulink Converter';
Voltage.PortType = 'outport';
Voltage.PortIndex = 1;
Voltage.Values = timeseries(data,time);

Add the measured capacitor data to the experiment as the expected output data.

Exp.OutputData = Voltage;

Compare the Measured Output and the Initial Simulated Output

Create a simulation scenario using the experiment and obtain the simulated output.

Simulator = createSimulator(Exp);
Simulator = sim(Simulator);

Search for the voltage signal in the logged simulation data.

SimLog = find(Simulator.LoggedData,get_param('sdoRCCircuit','SignalLoggingName'));
Voltage = find(SimLog,'Voltage');

Plot the measured and simulated data.

The model response does not match the experimental output data.

plot(time,data,'ro',Voltage.Values.Time,Voltage.Values.Data,'b')
title('Simulated and Measured Responses Before Estimation')
legend('Measured Voltage','Simulated Voltage')

2 Parameter Estimation

2-68

Specify the Parameters to Estimate

Select the capacitance parameter from the model. Specify an initial guess for the capacitance value
(460 uF) and a minimum bound (0 F).

p = sdo.getParameterFromModel('sdoRCCircuit','C1');
p.Value = 460e-6;
p.Minimum = 0;

Define the Estimation Objective Function

Create an estimation objective function to evaluate how closely the simulation output, generated
using the estimated parameter value, matches the measured data.

Use an anonymous function with one input argument that calls the sdoRCCircuit_Objective
function. We pass the anonymous function to sdo.optimize, which evaluates the function at each
optimization iteration.

estFcn = @(v) sdoRCCircuit_Objective(v,Simulator,Exp);

The sdoRCCircuit_Objective function:

• Has one input argument that specifies the estimated circuit capacitance value.

• Has one input argument that specifies the experiment object containing the measured data.

• Returns a vector of errors between simulated and experimental outputs.

 Estimate Model Parameters and Initial States (Code)

2-69

The sdoRCCircuit_Objective function requires two inputs, but sdo.optimize requires a
function with one input argument. To work around this, estFcn is an anonymous function with one
input argument, v, but it calls sdoRCCircuit_Objective using two input arguments, v and Exp.

For more information regarding anonymous functions, see “Anonymous Functions”.

The optimization solver minimizes the residual errors. For more details on how to write an objective/
constraint function to use with the sdo.optimize command, type help
sdoExampleCostFunction at the MATLAB command prompt.

To examine the estimation object function in more detail, type edit sdoRCCircuit_Objective at
the MATLAB command prompt.

type sdoRCCircuit_Objective

function vals = sdoRCCircuit_Objective(v,Simulator,Exp)
%SDORCCIRCUIT_OBJECTIVE
%
% The sdoRCCircuit_Objective function is used to compare model
% outputs against experimental data.
%
% vals = sdoRCCircuit_Objective(v,Exp)
%
% The |v| input argument is a vector of estimated model parameter values
% and initial states.
%
% The |Simulator| input argument is a simulation object used
% simulate the model with the estimated parameter values.
%
% The |Exp| input argument contains the estimation experiment data.
%
% The |vals| return argument contains information about how well the
% model simulation results match the experimental data and is used by
% the |sdo.optimize| function to estimate the model parameters.
%
% See also sdo.optimize, sdoExampleCostFunction, sdoRCCircuit_cmddemo
%

% Copyright 2012-2015 The MathWorks, Inc.

%%
% Define a signal tracking requirement to compute how well the model output
% matches the experiment data. Configure the tracking requirement so that
% it returns the tracking error residuals (rather than the
% sum-squared-error) and does not normalize the errors.
%
r = sdo.requirements.SignalTracking;
r.Type = '==';
r.Method = 'Residuals';
r.Normalize = 'off';

%%
% Update the experiments with the estimated parameter values.
%
Exp = setEstimatedValues(Exp,v);

%%

2 Parameter Estimation

2-70

% Simulate the model and compare model outputs with measured experiment
% data.
%
Simulator = createSimulator(Exp,Simulator);
Simulator = sim(Simulator);

SimLog = find(Simulator.LoggedData,get_param('sdoRCCircuit','SignalLoggingName'));
Voltage = find(SimLog,'Voltage');

VoltageError = evalRequirement(r,Voltage.Values,Exp.OutputData(1).Values);

%%
% Return the residual errors to the optimization solver.
%
vals.F = VoltageError(:);
end

Estimate the Parameters

Use the sdo.optimize function to estimate the capacitance value.

Specify the optimization options. The estimation function sdoRCCircuit_Objective returns the
error residuals between simulated and experimental data and does not include any constraints,
making this problem ideal for the 'lsqnonlin' solver.

opt = sdo.OptimizeOptions;
opt.Method = 'lsqnonlin';

Estimate the parameters.

pOpt = sdo.optimize(estFcn,p,opt)

 Optimization started 25-Aug-2020 20:45:31

 First-order
 Iter F-count f(x) Step-size optimality
 0 3 55.0041 1
 1 6 21.0161 0.2124 17.2
 2 9 11.5085 0.1272 6.08
 3 12 9.56468 0.06553 1.99
 4 15 9.27666 0.02744 0.442
 5 18 9.27666 0.00717 0.442
 6 21 9.27131 0.001793 0.356
Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

pOpt =

 Name: 'C1'
 Value: 1.1600e-04
 Minimum: 0
 Maximum: Inf
 Free: 1
 Scale: 0.0020
 Info: [1x1 struct]

 Estimate Model Parameters and Initial States (Code)

2-71

1x1 param.Continuous

Compare the Measured Output and the Simulated Output

Update the experiment with the estimated capacitance value.

Exp = setEstimatedValues(Exp,pOpt);

Create a simulation scenario using the experiment and obtain the simulated output.

Simulator = createSimulator(Exp,Simulator);
Simulator = sim(Simulator);

Search for the voltage signal in the logged simulation data.

SimLog = find(Simulator.LoggedData,get_param('sdoRCCircuit','SignalLoggingName'));
Voltage = find(SimLog,'Voltage');

Plot the measured and simulated data.

The simulated and measured signals match well, except for near time zero. This mismatch is because
the capacitor initial voltage defined in the model does not match the initial voltage from the
experiment.

plot(time,data,'ro',Voltage.Values.Time,Voltage.Values.Data,'b')
title('Simulated and Measured Responses After Estimation')
legend('Measured Voltage','Simulated Voltage')

2 Parameter Estimation

2-72

Estimate the Initial State

Add the capacitor initial voltage for the C1 block to the experiment. Set its initial guess value to 1 V.

Exp.InitialStates = sdo.getStateFromModel('sdoRCCircuit','C1');
Exp.InitialStates.Value = 1;

Recreate the estimation function to use the experiment with initial state estimation

estFcn = @(v) sdoRCCircuit_Objective(v,Simulator,Exp);

Get the initial state and capacitance value that is to be estimated from the experiment.

v = getValuesToEstimate(Exp);

Estimate the parameters.

vOpt = sdo.optimize(estFcn,v,opt)

 Optimization started 25-Aug-2020 20:45:45

 First-order
 Iter F-count f(x) Step-size optimality
 0 5 4.66337 1
 1 10 2.01883 1.533 21
 2 15 1.34889 0.1257 0.0803
 3 20 1.34365 0.0525 0.12

 Estimate Model Parameters and Initial States (Code)

2-73

 4 25 1.34363 0.001294 0.000711
Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

vOpt(1,1) =

 Name: 'sdoRCCircuit/C1:sdoRCCircuit.C1.vc'
 Value: 2.3596
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 1
 dxValue: 0
 dxFree: 1
 Info: [1x1 struct]

vOpt(2,1) =

 Name: 'C1'
 Value: 2.2638e-04
 Minimum: 0
 Maximum: Inf
 Free: 1
 Scale: 0.0020
 Info: [1x1 struct]

2x1 param.Continuous

Compare the Measured Output and the Final Simulated Output

Update the experiment with the estimated capacitance and capacitor initial voltage values.

Exp = setEstimatedValues(Exp,vOpt);

Simulate the model with the estimated initial-state and parameter values and compare the simulated
output with the experiment data.

Simulator = createSimulator(Exp,Simulator);
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData,get_param('sdoRCCircuit','SignalLoggingName'));
Voltage = find(SimLog,'Voltage');

plot(time,data,'ro',Voltage.Values.Time,Voltage.Values.Data,'b')
title('Simulated and Measured Responses After Initial State and Model Parameter Estimation')
legend('Measured Voltage','Simulated Voltage')

2 Parameter Estimation

2-74

Update the Model Parameter Values

Update the model with the estimated capacitance value. Do not update the model capacitor initial
voltage (first element of vOpt) as it is dependent on the experiment.

sdo.setValueInModel('sdoRCCircuit',vOpt(2));

Related Examples

To learn how to estimate model parameters using the sdo.optimize command, see “Estimate Model
Parameters and Initial States (GUI)” on page 2-168.

Close the model

bdclose('sdoRCCircuit')

 Estimate Model Parameters and Initial States (Code)

2-75

Estimate Model Parameters Using Multiple Experiments (Code)
This example shows how to estimate model parameters from multiple sets of experimental data. You
estimate the parameters of a mass-spring-damper system.

Open the Model and Get Experimental Data

This example uses the sdoMassSpringDamper model. The model includes two integrators to model
the velocity and position of a mass in a mass-spring-damper system.

open_system('sdoMassSpringDamper');

Load the experiment data.

load sdoMassSpringDamper_ExperimentData

The variables texp1, yexp1, texp2, and yexp2 are loaded into the workspace. yexp1 and yexp2
describe the mass position for times texp1 and texp2 respectively.

Define the Estimation Experiments

Create a 2-element array of experiment objects to store the measured data for the two experiments.

Create an experiment object for the first experiment.

Exp = sdo.Experiment('sdoMassSpringDamper');

Create an object to store the measured mass position output.

MeasuredPos = Simulink.SimulationData.Signal;
MeasuredPos.Values = timeseries(yexp1,texp1);
MeasuredPos.BlockPath = 'sdoMassSpringDamper/Position';
MeasuredPos.PortType = 'outport';

2 Parameter Estimation

2-76

MeasuredPos.PortIndex = 1;
MeasuredPos.Name = 'Position';

Add the measured mass position data to the experiment as the expected output data.

Exp.OutputData = MeasuredPos;

Create an object to specify the initial state for the Velocity block. The initial velocity of the mass is
0 m/s.

sVel = sdo.getStateFromModel('sdoMassSpringDamper','Velocity');
sVel.Value = 0;
sVel.Free = false;

sVel.Free is set to false because the initial velocity is known and does not need to be estimated.

Create an object to specify the initial state for the Position block. Specify a guess for the initial
mass position. Set the Free field of the initial position object to true so that it is estimated.

sPos = sdo.getStateFromModel('sdoMassSpringDamper','Position');
sPos.Free = true;
sPos.Value = -0.1;

Add the initial states to the experiment.

Exp.InitialStates = [sVel;sPos];

Create a 2-element array of experiments. As the two experiments are identical except for the
expected output data, copy the first experiment twice.

Exp = [Exp; Exp];

Modify the expected output data of the second experiment object in Exp.

Exp(2).OutputData.Values = timeseries(yexp2,texp2);

Compare the Measured Output and the Initial Simulated Output

Create a simulation scenario using the first experiment and obtain the simulated output.

Simulator = createSimulator(Exp(1));
Simulator = sim(Simulator);

Search for the position signal in the logged simulation data.

SimLog = find(Simulator.LoggedData,get_param('sdoMassSpringDamper','SignalLoggingName'));
Position = find(SimLog,'Position');

Obtain the simulated position signal for the second experiment.

Simulator = createSimulator(Exp(2),Simulator);
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData,get_param('sdoMassSpringDamper','SignalLoggingName'));
Position(2) = find(SimLog,'Position');

Plot the measured and simulated data.

The model response does not match the experimental output data.

 Estimate Model Parameters Using Multiple Experiments (Code)

2-77

subplot(211)
plot(...
 Position(1).Values.Time,Position(1).Values.Data, ...
 Exp(1).OutputData.Values.Time, Exp(1).OutputData.Values.Data,'--')
title('Experiment 1: Simulated and Measured Responses Before Estimation')
ylabel('Position')
legend('Simulated Position','Measured Position','Location','SouthEast')
subplot(212)
plot(...
 Position(2).Values.Time,Position(2).Values.Data, ...
 Exp(2).OutputData.Values.Time, Exp(2).OutputData.Values.Data,'--')
title('Experiment 2: Simulated and Measured Responses Before Estimation')
xlabel('Time (seconds)')
ylabel('Position')
legend('Simulated Position','Measured Position','Location','SouthEast')

Specify Parameters to Estimate

Select the mass m, spring constant k, and damping coefficient b parameters from the model. Specify
that the estimated values for these parameters must be positive.

p = sdo.getParameterFromModel('sdoMassSpringDamper', {'b', 'k', 'm'});
p(1).Minimum = 0;
p(2).Minimum = 0;
p(3).Minimum = 0;

Get the position initial state values to be estimated from the experiment.

2 Parameter Estimation

2-78

s = getValuesToEstimate(Exp);

s contains two initial state objects, both for the Position block. Each object corresponds to an
experiment in Exp.

Group the model parameters and initial states to be estimated together.

v = [p;s]

v(1,1) =

 Name: 'b'
 Value: 100
 Minimum: 0
 Maximum: Inf
 Free: 1
 Scale: 128
 Info: [1x1 struct]

v(2,1) =

 Name: 'k'
 Value: 500
 Minimum: 0
 Maximum: Inf
 Free: 1
 Scale: 512
 Info: [1x1 struct]

v(3,1) =

 Name: 'm'
 Value: 8
 Minimum: 0
 Maximum: Inf
 Free: 1
 Scale: 8
 Info: [1x1 struct]

v(4,1) =

 Name: 'sdoMassSpringDamper/Position'
 Value: -0.1000
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 0.1250
 dxValue: 0
 dxFree: 1
 Info: [1x1 struct]

v(5,1) =

 Estimate Model Parameters Using Multiple Experiments (Code)

2-79

 Name: 'sdoMassSpringDamper/Position'
 Value: -0.1000
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 0.1250
 dxValue: 0
 dxFree: 1
 Info: [1x1 struct]

5x1 param.Continuous

Define the Estimation Objective

Create an estimation objective function to evaluate how closely the simulation output, generated
using the estimated parameter values, matches the measured data.

Use an anonymous function with one input argument that calls the
sdoMassSpringDamper_Objective function. We pass the anonymous function to sdo.optimize,
which evaluates the function at each optimization iteration.

estFcn = @(v) sdoMassSpringDamper_Objective(v,Simulator,Exp);

The sdoMassSpringDamper_Objective function:

• Has one input argument that specifies the mass, spring constant and damper values as well as the
initial mass position.

• Has one input argument that specifies the experiment object containing the measured data.

• Returns a vector of errors between simulated and experimental outputs.

The sdoMassSpringDamper_Objective function requires two inputs, but sdo.optimize requires
a function with one input argument. To work around this, estFcn is an anonymous function with one
input argument, v, but it calls sdoMassSpringDamper_Objective using two input arguments, v
and Exp.

For more information regarding anonymous functions, see “Anonymous Functions”.

The sdo.optimize command minimizes the return argument of the anonymous function estFcn,
that is, the residual errors returned by sdoMassSpringDamper_Objective. For more details on
how to write an objective/constraint function to use with the sdo.optimize command, type help
sdoExampleCostFunction at the MATLAB command prompt.

To examine the estimation objective function in more detail, type edit
sdoMassSpringDamper_Objective at the MATLAB command prompt.

type sdoMassSpringDamper_Objective

function vals = sdoMassSpringDamper_Objective(v,Simulator,Exp)
%SDOMASSSPRINGDAMPER_OBJECTIVE
%
% The sdoMassSpringDamper_Objective function is used to compare model
% outputs against experimental data.

2 Parameter Estimation

2-80

%
% vals = sdoMassSpringDamper_Objective(v,Exp)
%
% The |v| input argument is a vector of estimated model parameter values
% and initial states.
%
% The |Simulator| input argument is a simulation object used
% simulate the model with the estimated parameter values.
%
% The |Exp| input argument contains the estimation experiment data.
%
% The |vals| return argument contains information about how well the
% model simulation results match the experimental data and is used by
% the |sdo.optimize| function to estimate the model parameters.
%
% see also sdo.optimize, sdoExampleCostFunction
%

% Copyright 2012-2015 The MathWorks, Inc.

%%
% Define a signal tracking requirement to compute how well the model output
% matches the experiment data. Configure the tracking requirement so that
% it returns the tracking error residuals (rather than the
% sum-squared-error) and does not normalize the errors.
%
r = sdo.requirements.SignalTracking;
r.Type = '==';
r.Method = 'Residuals';
r.Normalize = 'off';

%%
% Update the experiments with the estimated parameter values.
%
Exp = setEstimatedValues(Exp,v);

%%
% Simulate the model and compare model outputs with measured experiment
% data.
%
Error = [];
for ct=1:numel(Exp)

 Simulator = createSimulator(Exp(ct),Simulator);
 Simulator = sim(Simulator);

 SimLog = find(Simulator.LoggedData,get_param('sdoMassSpringDamper','SignalLoggingName'));
 Position = find(SimLog,'Position');

 PositionError = evalRequirement(r,Position.Values,Exp(ct).OutputData.Values);

 Error = [Error; PositionError(:)];
end

%%
% Return the residual errors to the optimization solver.
%

 Estimate Model Parameters Using Multiple Experiments (Code)

2-81

vals.F = Error(:);
end

Estimate the Parameters

Use the sdo.optimize function to estimate the actuator parameter values and initial state.

Specify the optimization options. The estimation function sdoMassSpringDamper_Objective
returns the error residuals between simulated and experimental data and does not include any
constraints, making this problem ideal for the 'lsqnonlin' solver.

opt = sdo.OptimizeOptions;
opt.Method = 'lsqnonlin';

Estimate the parameters. Notice that the initial mass position is estimated twice, once for each
experiment.

vOpt = sdo.optimize(estFcn,v,opt)

 Optimization started 25-Aug-2020 20:43:45

 First-order
 Iter F-count f(x) Step-size optimality
 0 11 0.777696 1
 1 22 0.00413099 3.696 0.00648
 2 33 0.00118327 0.3194 0.00243
 3 44 0.0011106 0.06718 5.09e-05
Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

vOpt(1,1) =

 Name: 'b'
 Value: 58.1959
 Minimum: 0
 Maximum: Inf
 Free: 1
 Scale: 128
 Info: [1x1 struct]

vOpt(2,1) =

 Name: 'k'
 Value: 399.9452
 Minimum: 0
 Maximum: Inf
 Free: 1
 Scale: 512
 Info: [1x1 struct]

vOpt(3,1) =

 Name: 'm'

2 Parameter Estimation

2-82

 Value: 9.7225
 Minimum: 0
 Maximum: Inf
 Free: 1
 Scale: 8
 Info: [1x1 struct]

vOpt(4,1) =

 Name: 'sdoMassSpringDamper/Position'
 Value: 0.2995
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 0.1250
 dxValue: 0
 dxFree: 1
 Info: [1x1 struct]

vOpt(5,1) =

 Name: 'sdoMassSpringDamper/Position'
 Value: 0.0994
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 0.1250
 dxValue: 0
 dxFree: 1
 Info: [1x1 struct]

5x1 param.Continuous

Compare the Measured Output and the Final Simulated Output

Update the experiments with the estimated parameter values.

Exp = setEstimatedValues(Exp,vOpt);

Obtain the simulated output for the first experiment.

Simulator = createSimulator(Exp(1),Simulator);
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData,get_param('sdoMassSpringDamper','SignalLoggingName'));
Position(1) = find(SimLog,'Position');

Obtain the simulated output for the second experiment.

Simulator = createSimulator(Exp(2),Simulator);
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData,get_param('sdoMassSpringDamper','SignalLoggingName'));
Position(2) = find(SimLog,'Position');

Plot the measured and simulated data.

 Estimate Model Parameters Using Multiple Experiments (Code)

2-83

The model response using the estimated parameter values nicely matches the output data for the
experiments.

subplot(211)
plot(...
 Position(1).Values.Time,Position(1).Values.Data, ...
 Exp(1).OutputData.Values.Time, Exp(1).OutputData.Values.Data,'--')
title('Experiment 1: Simulated and Measured Responses After Estimation')
ylabel('Position')
legend('Simulated Position','Measured Position','Location','NorthEast')
subplot(212)
plot(...
 Position(2).Values.Time,Position(2).Values.Data, ...
 Exp(2).OutputData.Values.Time, Exp(2).OutputData.Values.Data,'--')
title('Experiment 2: Simulated and Measured Responses After Estimation')
xlabel('Time (seconds)')
ylabel('Position')
legend('Simulated Position','Measured Position','Location','SouthEast')

Update the Model Parameter Values

Update the model m, k, and b parameter values. Do not update the model initial position value as this
is dependent on the experiment.

sdo.setValueInModel('sdoMassSpringDamper',vOpt(1:3));

Close the model

2 Parameter Estimation

2-84

bdclose('sdoMassSpringDamper')

 Estimate Model Parameters Using Multiple Experiments (Code)

2-85

Estimate Model Parameters Per Experiment (Code)
This example shows how to use multiple experiments to estimate a mix of model parameter values;
some that are estimated using all the experiments and others that are estimated using individual
experiments. The example also shows how to configure estimation experiments with experiment
dependent parameter values.

You estimate the parameters of a rechargeable battery based on data collected in experiments that
discharge and charge the battery.

Open the Model and Get Experimental Data

This example estimates parameters of a simple, rechargeable battery model, sdoBattery. The model
input is the battery current and the model output, the battery terminal voltage, is computed from the
battery state-of-charge.

open_system('sdoBattery');

The model is based on the equation

E = 1− Loss V − KQmax
1− s

s

In the equation:

E is the battery terminal voltage in Volts.

V is the battery constant voltage in Volts.

K is the battery polarization resistance in Ohms.

Qmax is the maximum battery capacity in Ampere-hours.

s is the battery charge state, with 1 being fully charged and 0 discharged. The battery state-of-charge
is computed from the integral of the battery current with a positive current indicating discharge and

2 Parameter Estimation

2-86

a negative current indicating charging. The battery initial state-of-charge is specified by Q0 in
Ampere-hours.

Loss is the voltage drop when charging, expressed as a fraction of the battery constant voltage. When
the battery is discharging this value is zero.

V, K, Qmax, Q0, and Loss are variables defined in the model workspace.

Load the experiment data. A 1.2V (6500mAh) battery was subjected to a discharge experiment and a
charging experiment.

load sdoBattery_ExperimentData

The variables Charge_Data and DCharge_Data are loaded into the workspace. The first column of
Charge_Data contains time data. The second and third columns of Charge_Data describe the
current and voltage during a battery charging experiment. DCharge_Data is similarly structured and
contains data for a battery discharging experiment.

Plot the Experiment Data

subplot(221),
plot(DCharge_Data(:,1)/3600,DCharge_Data(:,2))
title('Experiment: Discharge')
xlabel('Time (hours)')
ylabel('Current (A)')
subplot(223)
plot(DCharge_Data(:,1)/3600,DCharge_Data(:,3))
xlabel('Time (hours)')
ylabel('Voltage (V)')
subplot(222),
plot(Charge_Data(:,1)/3600,Charge_Data(:,2))
title('Experiment: Charge')
xlabel('Time (hours)')
ylabel('Current (A)')
subplot(224)
plot(Charge_Data(:,1)/3600,Charge_Data(:,3))
xlabel('Time (hours)')
ylabel('Voltage (V)')

 Estimate Model Parameters Per Experiment (Code)

2-87

Define the Estimation Experiments

Create a 2-element array of experiment objects to specify the measured data for the two experiments.

Create an experiment object for the battery discharge experiment. The measured current data is
specified as a timeseries in the experiment object.

DCharge_Exp = sdo.Experiment('sdoBattery');

Specify the input data (current) as a timeseries object.

DCharge_Exp.InputData = timeseries(DCharge_Data(:,2),DCharge_Data(:,1));

Create an object to specify the measured voltage output data.

VoltageSig = Simulink.SimulationData.Signal;
VoltageSig.Name = 'Voltage';
VoltageSig.BlockPath = 'sdoBattery/SOC -> Voltage';
VoltageSig.PortType = 'outport';
VoltageSig.PortIndex = 1;
VoltageSig.Values = timeseries(DCharge_Data(:,3),DCharge_Data(:,1));

Add the voltage signal to the discharge experiment as the expected output data.

DCharge_Exp.OutputData = VoltageSig;

Specify the battery initial charge state for the experiment. The battery charge state is modeled by the
Q (Ah) block and it's initial value is specified by the variable Q0. Create a parameter for the Q0

2 Parameter Estimation

2-88

variable and add the parameter to the experiment. Q0 is experiment dependent and assumes different
values in the discharging and charging experiments.

Q0 = sdo.getParameterFromModel('sdoBattery','Q0');
Q0.Value = 6.5;
Q0.Free = false;

Q0.Free is set to false because the initial battery charge is known and does not need to be
estimated.

Add the Q0 parameter to the experiment.

DCharge_Exp.Parameters = Q0;

Create an experiment object to store the charging experiment data. Add the measured current input
and measured voltage output data to the object.

Charge_Exp = sdo.Experiment('sdoBattery');
Charge_Exp.InputData = timeseries(Charge_Data(:,2),Charge_Data(:,1));
VoltageSig.Values = timeseries(Charge_Data(:,3),Charge_Data(:,1));
Charge_Exp.OutputData = VoltageSig;

Add the battery initial charge and charging loss fraction parameters to the experiment. For this
experiment, the initial charge (Q0) is known (0 Ah), but the value of the charging loss fraction (Loss)
is not known.

Q0.Value = 0;

Loss = sdo.getParameterFromModel('sdoBattery','Loss');
Loss.Free = true;
Loss.Minimum = 0;
Loss.Maximum = 0.5;

Charge_Exp.Parameters = [Q0;Loss];

Loss.Free is set to true so that the value of Loss is estimated.

Collect both experiments into one vector.

Exp = [DCharge_Exp; Charge_Exp];

Compare the Measured Output and the Initial Simulated Output

Create a simulation scenario using the first (discharging) experiment and obtain the simulated
output.

Simulator = createSimulator(Exp(1));
Simulator = sim(Simulator);

Search for the voltage signal in the logged simulation data.

SimLog = find(Simulator.LoggedData,get_param('sdoBattery','SignalLoggingName'));
Voltage(1) = find(SimLog,'Voltage');

Obtain the simulated voltage signal for the second (charging) experiment.

Simulator = createSimulator(Exp(2),Simulator);
Simulator = sim(Simulator);

 Estimate Model Parameters Per Experiment (Code)

2-89

SimLog = find(Simulator.LoggedData,get_param('sdoBattery','SignalLoggingName'));
Voltage(2) = find(SimLog,'Voltage');

Plot the measured and simulated data. The model response does not match the experimental output
data.

subplot(211)
plot(...
 Voltage(1).Values.Time/3600,Voltage(1).Values.Data, ...
 Exp(1).OutputData.Values.Time/3600, Exp(1).OutputData.Values.Data,'-.')
title('Discharging Experiment: Simulated and Measured Responses Before Estimation')
ylabel('Voltage (V)')
legend('Simulated Voltage','Measured Voltage','Location','SouthWest')

subplot(212)
plot(...
 Voltage(2).Values.Time/3600,Voltage(2).Values.Data, ...
 Exp(2).OutputData.Values.Time/3600, Exp(2).OutputData.Values.Data,'-.')
title('Charging Experiment: Simulated and Measured Responses Before Estimation')
xlabel('Time (hours)')
ylabel('Voltage (V)')
legend('Simulated Voltage','Measured Voltage','Location','SouthEast')

Specify Parameters to Estimate

Estimate the values of the battery voltage V, the battery polarization resistance K, and the charging
loss fraction Loss. The V and K parameters are estimated using all the experiment data while the
Loss parameter is estimated using only the charging data.

2 Parameter Estimation

2-90

Select the battery voltage V and the battery polarization resistance K parameters from the model.
Specify minimum and maximum bounds for these parameters.

p = sdo.getParameterFromModel('sdoBattery',{'V','K'});

p(1).Minimum = 0;
p(1).Maximum = 2;

p(2).Minimum = 1e-6;
p(2).Maximum = 1e-1;

Get the experiment-specific Loss parameter from the experiment.

s = getValuesToEstimate(Exp);

Group all the parameters to be estimated.

v = [p;s]

v(1,1) =

 Name: 'V'
 Value: 1.2000
 Minimum: 0
 Maximum: 2
 Free: 1
 Scale: 2
 Info: [1x1 struct]

v(2,1) =

 Name: 'K'
 Value: 1.0000e-03
 Minimum: 1.0000e-06
 Maximum: 0.1000
 Free: 1
 Scale: 0.0020
 Info: [1x1 struct]

v(3,1) =

 Name: 'Loss'
 Value: 0.0100
 Minimum: 0
 Maximum: 0.5000
 Free: 1
 Scale: 0.0156
 Info: [1x1 struct]

3x1 param.Continuous

 Estimate Model Parameters Per Experiment (Code)

2-91

Define the Estimation Objective

Create an estimation objective function to evaluate how closely the simulation output, generated
using the estimated parameter values, matches the measured data.

Use an anonymous function with one input argument that calls the sdoBattery_Objective
function. We pass the anonymous function to sdo.optimize, which evaluates the function at each
optimization iteration.

estFcn = @(v) sdoBattery_Objective(v,Simulator,Exp);

The sdoBattery_Objective function:

• Has one input argument that specifies the estimated battery parameter values.
• Has one input argument that specifies the experiment object containing the measured data.
• Returns a vector of errors between simulated and experimental outputs.

The sdoBattery_Objective function requires two inputs, but sdo.optimize requires a function
with one input argument. To work around this, estFcn is an anonymous function with one input
argument, v, but it calls sdoBattery_Objective using two input arguments, v and Exp.

For more information regarding anonymous functions, see “Anonymous Functions”.

The sdo.optimize command minimizes the return argument of the anonymous function estFcn,
that is, the residual errors returned by sdoBattery_Objective. For more details on how to write
an objective/constraint function to use with the sdo.optimize command, type help
sdoExampleCostFunction at the MATLAB® command prompt.

To examine the estimation objective function in more detail, type edit sdoBattery_Objective at
the MATLAB command prompt.

type sdoBattery_Objective

function vals = sdoBattery_Objective(v,Simulator,Exp)
%SDOBATTERY_OBJECTIVE
%
% The sdoBattery_Objective function is used to compare model
% outputs against experimental data.
%
% vals = sdoBattery_Objective(v,Exp)
%
% The |v| input argument is a vector of estimated model parameter values
% and initial states.
%
% The |Simulator| input argument is a simulation object used
% simulate the model with the estimated parameter values.
%
% The |Exp| input argument contains the estimation experiment data.
%
% The |vals| return argument contains information about how well the
% model simulation results match the experimental data and is used by
% the |sdo.optimize| function to estimate the model parameters.
%
% See also sdo.optimize, sdoExampleCostFunction, sdoBattery_cmddemo
%

2 Parameter Estimation

2-92

% Copyright 2012-2015 The MathWorks, Inc.

%%
% Define a signal tracking requirement to compute how well the model output
% matches the experiment data. Configure the tracking requirement so that
% it returns the tracking error residuals (rather than the
% sum-squared-error) and does not normalize the errors.
%
r = sdo.requirements.SignalTracking;
r.Type = '==';
r.Method = 'Residuals';
r.Normalize = 'off';

%%
% Update the experiments with the estimated parameter values.
%
Exp = setEstimatedValues(Exp,v);

%%
% Simulate the model and compare model outputs with measured experiment
% data.
%
Error = [];
for ct=1:numel(Exp)

 Simulator = createSimulator(Exp(ct),Simulator);
 Simulator = sim(Simulator);

 SimLog = find(Simulator.LoggedData,get_param('sdoBattery','SignalLoggingName'));
 Voltage = find(SimLog,'Voltage');

 VoltageError = evalRequirement(r,Voltage.Values,Exp(ct).OutputData(1).Values);

 Error = [Error; VoltageError(:)];
end

%%
% Return the residual errors to the optimization solver.
%
vals.F = Error(:);
end

Estimate the Parameters

Use the sdo.optimize function to estimate the battery parameter values.

Specify the optimization options. The estimation function sdoBattery_Objective returns the error
residuals between simulated and experimental data and does not include any constraints, making this
problem ideal for the 'lsqnonlin' solver.

opt = sdo.OptimizeOptions;
opt.Method = 'lsqnonlin';

Estimate the parameters.

vOpt = sdo.optimize(estFcn,v,opt)

 Optimization started 25-Aug-2020 21:25:24

 Estimate Model Parameters Per Experiment (Code)

2-93

 First-order
 Iter F-count f(x) Step-size optimality
 0 7 3272.22 1
 1 14 619.356 0.1634 3.15e+05
 2 21 411.131 0.2175 28.7
 3 28 405.529 0.3838 2.16e+03
 4 35 403.727 0.2767 15.2
 5 42 403.379 0.1645 1.14e+03
Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

vOpt(1,1) =

 Name: 'V'
 Value: 1.3083
 Minimum: 0
 Maximum: 2
 Free: 1
 Scale: 2
 Info: [1x1 struct]

vOpt(2,1) =

 Name: 'K'
 Value: 0.0010
 Minimum: 1.0000e-06
 Maximum: 0.1000
 Free: 1
 Scale: 0.0020
 Info: [1x1 struct]

vOpt(3,1) =

 Name: 'Loss'
 Value: 5.1801e-05
 Minimum: 0
 Maximum: 0.5000
 Free: 1
 Scale: 0.0156
 Info: [1x1 struct]

3x1 param.Continuous

Compare the Measured Output and the Final Simulated Output

Update the experiments with the estimated parameter values.

Exp = setEstimatedValues(Exp,vOpt);

Obtain the simulated output for the first (discharging) experiment.

Simulator = createSimulator(Exp(1),Simulator);
Simulator = sim(Simulator);

2 Parameter Estimation

2-94

SimLog = find(Simulator.LoggedData,get_param('sdoBattery','SignalLoggingName'));
Voltage(1) = find(SimLog,'Voltage');

Obtain the simulated output for the second (charging) experiment.

Simulator = createSimulator(Exp(2),Simulator);
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData,get_param('sdoBattery','SignalLoggingName'));
Voltage(2) = find(SimLog,'Voltage');

Plot the measured and simulated data. The simulation results match the experimental data well
except in the regions when the battery is fully charged. This is not unexpected as the simple battery
model does not model the exponential voltage drop when the battery is fully charged.

subplot(211)
plot(...
 Voltage(1).Values.Time/3600,Voltage(1).Values.Data, ...
 Exp(1).OutputData.Values.Time/3600, Exp(1).OutputData.Values.Data,'-.')
title('Discharging Experiment: Simulated and Measured Responses After Estimation')
ylabel('Voltage (V)')
legend('Simulated Voltage','Measured Voltage','Location','SouthWest')
subplot(212)
plot(...
 Voltage(2).Values.Time/3600,Voltage(2).Values.Data, ...
 Exp(2).OutputData.Values.Time/3600, Exp(2).OutputData.Values.Data,'-.')
title('Charging Experiment: Simulated and Measured Responses After Estimation')
xlabel('Time (hours)')
ylabel('Voltage (V)')
legend('Simulated Voltage','Measured Voltage','Location','SouthEast')

 Estimate Model Parameters Per Experiment (Code)

2-95

Update the Model Parameter Values

Update the model V, K, and Loss parameter values.

sdo.setValueInModel('sdoBattery',vOpt);

Related Examples

To learn how to estimate the battery parameters using the Parameter Estimator, see “Estimate
Model Parameters Per Experiment (GUI)” on page 2-154.

Close the model

bdclose('sdoBattery')

2 Parameter Estimation

2-96

Set Model to Steady-State When Estimating Parameters (Code)
This example shows how to set a model to steady-state in the process of parameter estimation.
Setting a model to steady-state is important in many applications such as power systems and aircraft
dynamics. This example uses a population dynamics model.

Model Description

The Simulink model sdoPopulationInflux models a simple ecology where an organism population
growth is limited by the carrying capacity of the environment:

• is the inherent growth rate of the organism population.

• is the carrying capacity of the environment.

There is also an influx of other members of the organism from a neighboring environment. The model
uses normalized units.

Open the model.

modelName = 'sdoPopulationInflux';
open_system(modelName)

 Set Model to Steady-State When Estimating Parameters (Code)

2-97

The file sdoPopulationInflux_Data.mat contains data of the population in the environment as
well as the influx of additional organisms from the neighboring environment.

load sdoPopulationInflux_Data.mat; % Timer series: Population_ts Inflow_ts
hFig = figure;
subplot(2,1,1);
plot(Population_ts)
subplot(2,1,2);
plot(Inflow_ts)

The population starts in a steady state. After some time, there is an influx of organisms from the
neighboring environment. Based on the measured data, we want to estimate values for the model
parameters.

The parameter R represents the inherent growth rate of the organism. Use 1 as the initial guess for
this parameter. It is non-negative.

R = sdo.getParameterFromModel(modelName, 'R');
R.Value = 1;
R.Minimum = 0;

The parameter K represents the carrying capacity of the environment. Use 2 as the initial guess for
this parameter. It is known to be at least 0.1.

K = sdo.getParameterFromModel(modelName, 'K');
K.Value = 2;
K.Minimum = 0.1;

2 Parameter Estimation

2-98

Collect these parameters into a vector.

v = [R K];

Compare Measured Data to Initial Simulated Output

Create an Experiment object.

Exp = sdo.Experiment(modelName);

Associate Population_ts with model output.

Population = Simulink.SimulationData.Signal;
Population.Name = 'Population';
Population.BlockPath = [modelName '/Integrator'];
Population.PortType = 'outport';
Population.PortIndex = 1;
Population.Values = Population_ts;

Add Population to the experiment.

Exp.OutputData = Population;

Associate Inflow_ts with model input.

Inflow = Simulink.SimulationData.Signal;
Inflow.Name = 'Population';
Inflow.BlockPath = [modelName '/In1'];
Inflow.PortType = 'outport';
Inflow.PortIndex = 1;
Inflow.Values = Inflow_ts;

Add Inflow to the experiment.

Exp.InputData = Inflow;

Create a simulation scenario using the experiment, and obtain the simulated output.

Exp = setEstimatedValues(Exp, v); % use vector of parameters/states
Simulator = createSimulator(Exp);
Simulator = sim(Simulator);

Search for the model output signal in the logged simulation data.

SimLog = find(Simulator.LoggedData, ...
 get_param(modelName, 'SignalLoggingName'));
PopulationSim = find(SimLog, 'Population');

The model output does not match the data very well, indicating that we need to compute better
estimates of the model parameters.

clf;
plot(PopulationSim.Values, 'r');
hold on;
plot(Population_ts, 'b');
legend('Model Simulation', 'Measured Data', 'Location', 'best');

 Set Model to Steady-State When Estimating Parameters (Code)

2-99

Estimate Parameters

To estimate parameters, define an objective function to compute the sum squared error between
model simulation and measured data.

estFcn = @(v) sdoPopulationInflux_Objective(v, Simulator, Exp);
type sdoPopulationInflux_Objective.m

function vals = sdoPopulationInflux_Objective(v, Simulator, Exp, OpPointSetup)
% Compare model output with data
%
% Inputs:
% v - vector of parameters and/or states
% Simulator - used to simulate the model
% Exp - Experiment object
% OpPointSetup - Object to set up computation of steady-state
% operating point

% Copyright 2018 The MathWorks, Inc.

%Parse inputs
if nargin < 4
 OpPointSetup = [];
end

% Requirement setup
req = sdo.requirements.SignalTracking;

2 Parameter Estimation

2-100

req.Type = '==';
req.Method = 'Residuals';

% Simulate the model
Exp = setEstimatedValues(Exp, v); % use vector of parameters/states
Simulator = createSimulator(Exp,Simulator);
strOT = mat2str(Exp.OutputData(1).Values.Time);
if isempty(OpPointSetup)
 Simulator = sim(Simulator, 'OutputOption', 'AdditionalOutputTimes', 'OutputTimes', strOT);
else
 Simulator = sim(Simulator, 'OutputOption', 'AdditionalOutputTimes', 'OutputTimes', strOT, ...
 'OperatingPointSetup', OpPointSetup);
end

% Compare model output with data
SimLog = find(Simulator.LoggedData, ...
 get_param(Exp.ModelName, 'SignalLoggingName'));
OutputModel = find(SimLog, 'Population');
Model_Error = evalRequirement(req, OutputModel.Values, Exp.OutputData.Values);
vals.F = Model_Error;

%Define options for the optimization.
%
opts = sdo.OptimizeOptions;
opts.Method = 'lsqnonlin';

Estimate the parameters.

vOpt = sdo.optimize(estFcn, v, opts);
disp(vOpt)

 Optimization started 25-Aug-2020 20:44:33

 First-order
 Iter F-count f(x) Step-size optimality
 0 5 12.485 1
 1 10 1.09824 1.184 0.244
 2 15 0.9873 1.088 0.0259
 3 20 0.952948 1.217 0.00624
 4 25 0.946892 0.9151 0.00197
 5 30 0.946484 0.3541 0.00153
Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

(1,1) =

 Name: 'R'
 Value: 5.5942
 Minimum: 0
 Maximum: Inf
 Free: 1
 Scale: 1
 Info: [1x1 struct]

 Set Model to Steady-State When Estimating Parameters (Code)

2-101

(1,2) =

 Name: 'K'
 Value: 3.2061
 Minimum: 0.1000
 Maximum: Inf
 Free: 1
 Scale: 2
 Info: [1x1 struct]

1x2 param.Continuous

Use the estimated parameter values in the model, and obtain the model response. Search for the
model output signal in the logged simulation data.

Exp = setEstimatedValues(Exp, vOpt);
Simulator = createSimulator(Exp,Simulator);
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData, ...
 get_param(modelName, 'SignalLoggingName'));
PopulationSim = find(SimLog, 'Population');

Comparing the measured population data with the optimized model response shows that they still do
not match well. There is a transient at the beginning of the model response, where it is markedly
different from the measured data.

clf;
plot(PopulationSim.Values, 'r');
hold on;
plot(Population_ts, 'b');
legend('Model Simulation', 'Measured Data', 'Location', 'best');

2 Parameter Estimation

2-102

Put Model in Steady-State During Estimation

To improve the fit between the model and measured data, the model needs to be set to steady-state
when parameters are estimated. Define an operating point specification. The input is known from
experimental data. Therefore, (1) it should not be treated as a free variable when computing the
steady-state operating point, and (2) after the operating point is found, its input should not be used
when simulating the model. On the other hand, all the states found when computing the operating
point should be used when simulating the model. Create an sdo.OperatingPointSetup to collect the
operating point specification, inputs to use, and states to use, so this information can be passed to the
objective function and used when simulating the model. You can also provide a fourth argument to
sdo.OperatingPointSetup, specifying options for computing the operating point. For example, the
option 'graddescent-proj' is often used to find the operating point for systems that use physical
modeling.

opSpec = operspec(modelName);
opSpec.Inputs(1).Known = true;
inputsToUse = [];
statesToUse = 1:numel(opSpec.States);
OpPointSetup = sdo.OperatingPointSetup(opSpec, inputsToUse, statesToUse);

Estimate the parameters, setting the model to steady-state in the process.

estFcn = @(v) sdoPopulationInflux_Objective(v, Simulator, Exp, OpPointSetup);
vOpt = sdo.optimize(estFcn, v, opts);
disp(vOpt)

 Set Model to Steady-State When Estimating Parameters (Code)

2-103

 Optimization started 25-Aug-2020 20:44:45

 First-order
 Iter F-count f(x) Step-size optimality
 0 5 11.1517 1
 1 10 0.025674 0.5732 0.045
 2 15 0.00239293 0.3451 0.357
 3 20 0.000692478 0.0148 0.00301
 4 25 0.00069236 6.539e-05 1.16e-07
Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

(1,1) =

 Name: 'R'
 Value: 0.5953
 Minimum: 0
 Maximum: Inf
 Free: 1
 Scale: 1
 Info: [1x1 struct]

(1,2) =

 Name: 'K'
 Value: 3.0988
 Minimum: 0.1000
 Maximum: Inf
 Free: 1
 Scale: 2
 Info: [1x1 struct]

1x2 param.Continuous

Use the estimated parameter values in the model, and obtain the model response. Search for the
model output signal in the logged simulation data.

Exp = setEstimatedValues(Exp, vOpt);
Simulator = createSimulator(Exp,Simulator);
Simulator = sim(Simulator, 'OperatingPointSetup', OpPointSetup);
SimLog = find(Simulator.LoggedData, ...
 get_param(modelName, 'SignalLoggingName'));
PopulationSim = find(SimLog, 'Population');

There is no more transient at the beginning of the model response, and there is a much better match
between the model response and measured data, which is also reflected by the lower objective/cost
function value in the second optimization. All these indicate that we have found a good set of
parameter values.

clf;
plot(PopulationSim.Values, 'r');
hold on;

2 Parameter Estimation

2-104

plot(Population_ts, 'b');
legend('Model Simulation', 'Measured Data', 'Location', 'best');

Related Examples

To learn how to put models in a steady state using the Parameter Estimator app, see “Set Model to
Steady-State When Estimating Parameters (GUI)” on page 2-117.

Close the model and figure.

bdclose(modelName)
close(hFig)

 Set Model to Steady-State When Estimating Parameters (Code)

2-105

Parameter Estimation for Power Plant Excitation System
Starting at Steady-State (GUI)

This example shows how to perform parameter estimation while starting the system in steady state
using the example of an excitation system model for a power plant electric generator.

Need for Parameter Estimation in Power Systems

Parameter estimation is a powerful tool for power system operations where the accuracy of models is
critical and may be required by regulation. There are several reasons why one might need to perform
parameter estimation in power systems, including:

• The system parameters may have been unknown from the start. For instance, if some or all of the
parameters were not provided by the supplier.

• Even if the system parameters were known in the past, these parameters may drift with time due
to wear on components in the system.

• Some settings may be changed for the system causing unknown effects on the system parameters.
Parameter estimation can be used to account for these settings changes.

• The system may need to be fit to some standardized model. For instance, in this example we are
fitting the IEEE DC1A standard model for excitation systems to our system.

Excitation System Model Description

Generators create power by rotating a magnetic field and coiled wires relative to one another to
induce an electric current. For generators that use electromagnets, an excitation system supplies
current to the generator's field coils to create the magnetic field. By controlling the strength of the
magnetic field inside the generator, the exciter system can control the generator's output voltage.

The Simulink® model spe_exciter models an excitation system in an offline step test. In this test,
the generator is taken offline, then a step voltage input is applied to the exciter, and the output
voltage is measured for system characterization purposes. This model includes the subsystem labeled
"DC1A Excitation System" which follows the model structure for an excitation system outlined in the
IEEE DC1A standard. The block contains several parameters, such as gains and time constants, that
define the system's behavior and need to be fit to our system. The voltage inputs and outputs are in
p.u. (per unit).

You can open the model with the following command:

open_system('spe_exciter');

2 Parameter Estimation

2-106

Open Parameter Estimator App

Double-click the orange block labeled Parameter Estimation with preloaded data in the
lower left corner of the model. This will launch a Parameter Estimation session pre-loaded with data
for this project, including the experimental data from the offline step test.

The Parameter Estimation session is loaded with the system parameters which were determined to
need tuning due to any of the reasons noted previously. These parameters include the gains Ka, Ke,
and Kf; and time constants Ta, Tb, Tc, Te, Tf, and Tr. These parameters are bound to use only
positive values during estimation.

To plot the model's response against the experimental data, click the Plot Model Response button
in the toolbar. Notice that the initial conditions for the states in our model are currently incorrect,
which causes the initial dynamic in the simulated response and the offset between the simulated and
measured response. In the next step we will update the options in the Parameter Estimator app to
solve for the correct initial conditions in our model.

 Parameter Estimation for Power Plant Excitation System Starting at Steady-State (GUI)

2-107

Compute Steady-State Operating Point During Parameter Estimation

In the experimental step test that produced the measured response, the excitation system was in
steady state and outputting around 1.1 p.u. before the test measurements began. To match these
conditions in our parameter estimation, we will specify that the model should start at a steady-state
operating point during parameter estimation. Click More Options and select Operating Point
Options.

2 Parameter Estimation

2-108

This shows a dialog where you can specify how steady-state operating points should be computed
during parameter estimation. Open the dialog and select the check box Estimate at steady-
state so that the Parameter Estimator will put the model into steady-state each time it varies
parameters and runs the model. There are seven states in this model, by default they will be set to
unknown and marked as states to be set to steady-state. This matches our system, so we will keep
these options unchanged.

 Parameter Estimation for Power Plant Excitation System Starting at Steady-State (GUI)

2-109

The inputs to the model (terminal voltage and reference voltage) are known from the offline step test.
Switching to the Inputs tab under Specifications, we can specify these conditions. We can see that
the inputs are marked as known by default with a value of one. These come from the starting value in
the measured data, and we will leave these values unchanged.

2 Parameter Estimation

2-110

Switching to the Outputs tab under Specifications, we mark the output (field voltage) of our system
as known by checking the “Known” checkbox, and set its “Value” to 1.1028, which is the first value of
our measured field voltage test data.

 Parameter Estimation for Power Plant Excitation System Starting at Steady-State (GUI)

2-111

With the options we have now set up, before running each model simulation, Parameter Estimation
will solve for a set of initial conditions that will place all the specified states in steady-state at the
specified input and output levels. To see the result of these changes, click Plot Model Response
again and see that the simulated response is now in steady state at the expected initial output.

2 Parameter Estimation

2-112

Set up Parameter Estimation View

Before estimating parameters, we can use the toolbar to customize the view of Parameter Estimation
to display the information we are interested in. Use the Add Plot button on the toolbar to add a
Parameter Trajectory plot and an Estimation Cost plot. You can use the View tab to adjust the
layout and make all plots visible.

 Parameter Estimation for Power Plant Excitation System Starting at Steady-State (GUI)

2-113

Perform Parameter Estimation

Now we are ready to perform parameter estimation. In the Parameter Estimation tab, click
Estimate.. Due to the large number of parameters being estimated in this example, this process may
take several minutes.

Once the estimation process has converged, the new model response is shown in the Experiment
Plot. We see a better match between the model and the measured data, and the error in the ExpCost
plot decreased significantly. These indicate that a good set of parameters was found. The
EstimatedParams plot shows how each parameter changed at each iteration. To more clearly see
how much each parameter changed relative to its initial value, right click the EstimatedParams plot
and select Show scaled values.

2 Parameter Estimation

2-114

Speed Up Estimation Using Parallel Pool Options

Because of the large number of parameters being estimated, the parameter estimation can take a
long time. As the number of parameters increases, the number of times the model must run at each
iteration also increases. This leads to an increase in the total computation time required for the
parameter estimation to converge.

To speed up our parameter estimation we can set up our options to use a parallel pool. Then our
parallel workers can run simulations simultaneously to speed up the parameter estimation process.

To do this you will need MATLAB Parallel Computing Toolbox. Before performing parameter
estimation, go to More Options>Parallel Options in the Parameter Estimation toolbar. Then select
Use parallel pool during estimation. Click OK, then click Estimate in the toolbar.

For a parallel pool with 8 workers, the estimation process for this example was 3.5 times faster to
complete. For access to options related to parallel computing like number of workers and cluster
setup, see "Specify Your Parallel Preferences".

Related Topics

• Specify Steady-State Operating Point for Parameter Estimation

 Parameter Estimation for Power Plant Excitation System Starting at Steady-State (GUI)

2-115

https://www.mathworks.com/help/distcomp/parallel-preferences.html
https://www.mathworks.com/help/sldo/ug/specify-steady-state-operating-point-for-parameter-estimation.html

• What Is an Operating Point? (Simulink Control Design)
• What Is a Steady-State Operating Point? (Simulink Control Design)
• Set Model to Steady-State When Estimating Parameters (GUI)
• Set Model to Steady-State When Estimating Parameters (Code)

2 Parameter Estimation

2-116

https://www.mathworks.com/help/slcontrol/ug/what-is-an-operating-point.html#bq31rcb
https://www.mathworks.com/help/slcontrol/ug/what-is-an-operating-point.html#bql5xee-3
https://www.mathworks.com/help/sldo/examples/set-model-to-steady-state-when-estimating-parameters-gui.html
https://www.mathworks.com/help/sldo/examples/set-model-to-steady-state-when-estimating-parameters-code.html

Set Model to Steady-State When Estimating Parameters (GUI)
This example shows how to set a model to steady-state in the process of parameter estimation.
Setting a model to steady-state is important in many applications such as power systems and aircraft
dynamics. This example uses a population dynamics model.

Model Description

The Simulink model sdoPopulationInflux models a simple ecology where an organism population
growth is limited by the carrying capacity of the environment:

• is the inherent growth rate of the organism population.

• is the carrying capacity of the environment.

There is also an influx of other members of the organism from a neighboring environment. The model
uses normalized units.

Open the model.

open_system('sdoPopulationInflux')

 Set Model to Steady-State When Estimating Parameters (GUI)

2-117

Open Parameter Estimator App

In the Apps tab, click Parameter Estimator under Control Systems to launch the Parameter
Estimator app. In Parameter Estimator app, click Open Session and select Open from model
workspace, and then select sdoPopulationInflux_spesession to load a session with population
experiment data already loaded. In the toolstrip, click Plot Model Response to plot the model
response with the model's initial parameter values for R and K. The plot shows that with the model's
initial parameter values, the model output is not close to the measured data, indicating that we need
to compute better estimates of the parameters.

Estimate Parameters

The preconfigured parameter estimation session also specifies that R and K are to be estimated, and
that their lower bounds are 0 since the inherent growth rate and environment carrying capacity are
not negative. In the toolstrip, click Add Plot and add a plot to show the parameter trajectories during
estimation, and another plot to show the estimation cost. Use the View tab to lay out the plots in a
convenient format. Click Estimate to estimate parameters R and K. The optimization goes through
several iterations, changing the values of the parameters to improve the fit between model response
and data.

2 Parameter Estimation

2-118

Comparing the measured population data with the optimized model response shows that they still do
not match well. There is a transient at the beginning of the model response, where it is markedly
different from the measured data.

Compute Steady-State Operating Point During Parameter Estimation

To improve the fit between the model and measured data, the model needs to be set to steady-state
when parameters are estimated. In the toolstrip click More Options and select Operating Point
Options.

 Set Model to Steady-State When Estimating Parameters (GUI)

2-119

This shows a dialog where you can specify how steady-state operating points are to be computed
during parameter estimation. There is one state in this model, namely the initial condition of the
integrator. Use the operating point dialog to specify that this state should be treated as an unknown,
and it should be set to steady state. During parameter estimation, the operating point computation
will vary this state to set it at steady-state.

2 Parameter Estimation

2-120

The input to the model is known from the experimental data for the population influx. Use the
operating point dialog to specify that this input is known. This input will not be varied by the
operating point computation during parameter estimation.

 Set Model to Steady-State When Estimating Parameters (GUI)

2-121

You can also specify options for computing the operating point, by using the options tab in the dialog.
For example, the option Gradient descent with projection is often used to find the operating
point for systems that use physical modeling.

Having specified that the operating point is to be computed, click Estimate and perform parameter
estimation again. There is no more transient at the beginning of the model response, and there is a
much better match between the model response and measured data, which is also reflected by the
lower objective/cost function value in the second optimization. All these indicate that we have found a
good set of parameter values.

2 Parameter Estimation

2-122

Related Examples

To learn how to put models in a steady state using the sdo.optimize command, see “Set Model to
Steady-State When Estimating Parameters (Code)” on page 2-97.

Close the model.

bdclose('sdoPopulationInflux')

 Set Model to Steady-State When Estimating Parameters (GUI)

2-123

Estimate Model Parameters with Parameter Constraints (Code)
This example shows how to estimate model parameters while imposing constraints on the parameter
values.

You estimate dynamic and static friction coefficients of a simple friction system.

Open the Model and Get Experimental Data

This example estimates parameters for a simple friction system, sdoFriction. The model input is
the force applied to a mass and the model outputs are the mass position and velocity.

open_system('sdoFriction');

The model is based on a mass sliding on a surface. The mass is subject to a static friction that must
be overcome before the mass moves and a dynamic friction once the mass moves. The static friction,
u_static, is a fraction of the mass normal force; similarly the dynamic friction, u_dynamic, is a
fraction of the mass normal force.

Load the experiment data. The mass was subjected to an applied force and its position recorded.

load sdoFriction_ExperimentData

The variables AppliedForce, Position, and Velocity are loaded into the workspace. The first
column of each of these variables represents time and the second column represents the measured
data. Because velocity is the first derivative of position, we only use the position measurements for
this example.

Plot the Experiment Data

subplot(211),
plot(AppliedForce(:,1),AppliedForce(:,2))

2 Parameter Estimation

2-124

title('Measured Applied Force Input for Simple Friction System');
ylabel('Applied Force (N)')
subplot(212)
plot(Position(:,1),Position(:,2))
title('Measured Mass Position for Simple Friction System');
xlabel('Time (seconds)')
ylabel('Position (m)')

Define the Estimation Experiment

Create an experiment object to specify the experiment data.

Exp = sdo.Experiment('sdoFriction');

Specify the input data (applied force) as a timeseries object.

Exp.InputData = timeseries(AppliedForce(:,2),AppliedForce(:,1));

Create an object to specify the measured mass position output.

PositionSig = Simulink.SimulationData.Signal;
PositionSig.Name = 'Position';
PositionSig.BlockPath = 'sdoFriction/x';
PositionSig.PortType = 'outport';
PositionSig.PortIndex = 1;
PositionSig.Values = timeseries(Position(:,2),Position(:,1));

Add the measured mass position data to the experiment as the expected output data.

 Estimate Model Parameters with Parameter Constraints (Code)

2-125

Exp.OutputData = PositionSig;

Compare the Measured Output and the Initial Simulated Output

Create a simulation scenario using the experiment and obtain the simulated output.

Simulator = createSimulator(Exp);
Simulator = sim(Simulator);

Search for the position signal in the logged simulation data.

SimLog = find(Simulator.LoggedData,get_param('sdoFriction','SignalLoggingName'));
Position = find(SimLog,'Position');

Plot the measured and simulated data.

As expected, the model response does not match the experimental output data.

figure
plot(...
 Position.Values.Time,Position.Values.Data, ...
 Exp.OutputData.Values.Time, Exp.OutputData.Values.Data,'-.')
title('Simulated and Measured Responses Before Estimation')
ylabel('Position (m)')
xlabel('Time (seconds)')
legend('Simulated Position','Measured Position','Location','NorthWest')

2 Parameter Estimation

2-126

Specify Parameters to Estimate

Estimate the u_static and u_dynamic friction coefficients using the experiment data. These
coefficients are used as gains in the Static Friction and Dynamic Friction blocks,
respectively. Physics indicates that friction coefficients should be constrained so that u_static
u_dynamic; this parameter constraint is implemented in the estimation objective function.

Select the u_static and u_dynamic model parameters. Specify bounds for the estimated parameter
values. Both coefficients are limited to the range [0 1].

p = sdo.getParameterFromModel('sdoFriction',{'u_static','u_dynamic'});

p(1).Minimum = 0;
p(1).Maximum = 1;

p(2).Minimum = 0;
p(2).Maximum = 1;

Define the Estimation Objective

Create an estimation objective function to evaluate how closely the simulation output, generated
using the estimated parameter values, matches the measured data.

Use an anonymous function with one input argument that calls the sdoFriction_Objective
function. We pass the anonymous function to sdo.optimize, which evaluates the function at each
optimization iteration.

estFcn = @(v) sdoFriction_Objective(v,Simulator,Exp);

The sdoFriction_Objective function:

• Has one input argument that specifies the estimated friction coefficients.

• Has one input argument that specifies the experiment object containing the measured data.

• Returns the sum-squared-error errors between simulated and experimental outputs, and returns
the parameter constraint.

The sdoFriction_Objective function requires two inputs, but sdo.optimize requires a function
with one input argument. To work around this, estFcn is an anonymous function with one input
argument, v, but it calls sdoFriction_Objective using two input arguments, v and Exp.

For more information regarding anonymous functions, see “Anonymous Functions”.

The sdo.optimize command minimizes the return argument of the anonymous function estFcn,
that is, the residual errors returned by sdoFriction_Objective. For more details on how to write
an objective/constraint function to use with the sdo.optimize command, type help
sdoExampleCostFunction at the MATLAB command prompt.

To examine the estimation objective function in more detail, type edit sdoFriction_Objective
at the MATLAB command prompt.

type sdoFriction_Objective

function vals = sdoFriction_Objective(p,Simulator,Exp)
%SDOFRICTION_OBJECTIVE

 Estimate Model Parameters with Parameter Constraints (Code)

2-127

%
% The sdoFriction_Objective function is used to compare model
% outputs against experimental data and measure how well constraints are
% satisfied.
%
% vals = sdoFriction_Objective(p,Exp)
%
% The |p| input argument is a vector of estimated model parameter values.
%
% The |Simulator| input argument is a simulation object used
% simulate the model with the estimated parameter values.
%
% The |Exp| input argument contains the estimation experiment data.
%
% The |vals| return argument contains information about how well the
% model simulation results match the experimental data and how well
% constraints are satisfied. The |vals| argument is used by the
% |sdo.optimize| function to estimate the model parameters.
%
% See also sdo.optimize, sdoExampleCostFunction, sdoFriction_cmddemo
%

% Copyright 2012-2015 The MathWorks, Inc.

%%
% Define a signal tracking requirement to compute how well the model output
% matches the experiment data. Configure the tracking requirement so that
% it returns the sum-squared-error.
%
r = sdo.requirements.SignalTracking;
r.Type = '==';
r.Method = 'SSE';

%%
% Update the experiments with the estimated parameter values.
%
Exp = setEstimatedValues(Exp,p);

%%
% Simulate the model and compare model outputs with measured experiment
% data.
%
Simulator = createSimulator(Exp,Simulator);
Simulator = sim(Simulator);

SimLog = find(Simulator.LoggedData,get_param('sdoFriction','SignalLoggingName'));
Position = find(SimLog,'Position');

PositionError = evalRequirement(r,Position.Values,Exp.OutputData(1).Values);

%%
% Measure how well the parameters satisfy the friction coefficient constraint,
% |u_static| >= |u_dynamic|. Note that constraints are returned to the
% optimizer in a c <=0 format. The friction coefficient constraint is
% rewritten accordingly.
PConstr = p(2).Value - p(1).Value; % u_dynamic - u_static <= 0

%%

2 Parameter Estimation

2-128

% Return the sum-squared-error and constraint violation to the optimization
% solver.
%
vals.F = PositionError(:);
vals.Cleq = PConstr;
end

The friction coefficient constraint, u_static u_dynamic, is implemented in the
sdoFriction_Objective function as u_dynamic - u_static 0. This is because the optimizer
requires constraint values in a format. For more information, type help sdo.optimize at the
MATLAB command prompt.

Estimate the Parameters

Use the sdo.optimize function to estimate the friction model parameter values.

Specify the optimization options. The estimation function sdoFriction_Objective returns the
sum-squared-error between simulated and experimental data and includes a parameter constraint.
The default 'fmincon' solver is ideal for this type of problem.

Estimate the parameters.

pOpt = sdo.optimize(estFcn,p)

 Optimization started 25-Aug-2020 20:43:15

 max First-order
 Iter F-count f(x) constraint Step-size optimality
 0 5 27.7267 0
 1 11 22.5643 0 2.21 72.9
 2 15 17.4771 0 0.51 16
 3 22 0.76336 0 1.33 10.7
 4 29 0.408381 0 0.263 3.15
 5 34 0.0255292 0 0.0897 1.22
 6 39 0.00527178 0 0.0295 0.271
 7 44 0.00405706 0 0.02 0.177
 8 49 0.00140806 0 0.109 0.181
 9 60 0.00137222 0 0.022 0.185
 10 72 0.00133069 0 0.0311 0.186
 11 89 0.00133069 0 0.00165 0.186
Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

pOpt(1,1) =

 Name: 'u_static'
 Value: 0.7977
 Minimum: 0
 Maximum: 1
 Free: 1
 Scale: 0.5000
 Info: [1x1 struct]

 Estimate Model Parameters with Parameter Constraints (Code)

2-129

pOpt(2,1) =

 Name: 'u_dynamic'
 Value: 0.4022
 Minimum: 0
 Maximum: 1
 Free: 1
 Scale: 0.2500
 Info: [1x1 struct]

2x1 param.Continuous

Compare the Measured Output and the Final Simulated Output

Update the experiments with the estimated parameter values.

Exp = setEstimatedValues(Exp,pOpt);

Obtain the simulated output for the experiment.

Simulator = createSimulator(Exp,Simulator);
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData,get_param('sdoFriction','SignalLoggingName'));
Position = find(SimLog,'Position');

Plot the measured and simulated data.

It can be seen that the model response using the estimated parameter values nicely matches the
experiment output data.

plot(...
 Position.Values.Time,Position.Values.Data, ...
 Exp.OutputData.Values.Time, Exp.OutputData.Values.Data,'-.')
title('Simulated and Measured Responses After Model Parameter Estimation')
ylabel('Position (m)')
xlabel('Time (seconds)')
legend('Simulated Position','Measured Position','Location','NorthWest')

2 Parameter Estimation

2-130

Update the Model Parameter Values

Update the model u_static and u_dynamic parameter values.

sdo.setValueInModel('sdoFriction',pOpt);

Close the model

bdclose('sdoFriction')

 Estimate Model Parameters with Parameter Constraints (Code)

2-131

Importing and Preprocessing Experiment Data (GUI)
This example shows how to create an estimation experiment from measured data stored in a file and
how to preprocess the measured data. You use the imported data to estimate the parameters of a
simple RC circuit.

This example requires Simscape®.

RC Circuit Model

The Simulink model, sdoRCCircuit, models a simple resistor-capacitor (RC) circuit.

open_system('sdoRCCircuit');

You use measured data to estimate the RC model parameter and state values.

Measured output data:

• Capacitor voltage, output of the PS-Simulink Converter block

Parameter:

• Capacitance, C1, used by the C1 block

State:

• Initial voltage of the capacitor, C1

Define the Estimation Experiment

In this example we load the measured data from a saved MATLAB file, the data is also stored in a
comma separated variable (csv) text file and we will import from there as well.

First load the measured data from the MATLAB file, the file defines two variables, time and data
that specify the measured capacitor voltage.

load sdoRCCircuit_ExperimentData

2 Parameter Estimation

2-132

In the Apps tab, click Parameter Estimator under Control Systems to launch the Parameter
Estimator app.

Click New Experiment to create an estimation experiment that contains the measured data. A Exp
variable is created in the Parameter Estimator and a dialog to edit the experiment is opened.

 Importing and Preprocessing Experiment Data (GUI)

2-133

The experiment editor contains sections to specify measured output data and sections to optionally
specify experiment initial states and parameters.

The experiment editor automatically adds measured output signals for model root level ports and
logged model signals. Click Select Measured Output Signals to add additional measured outputs if
needed. For this example the capacitor voltage signal is logged in the model and already added to the
experiment.

Specify the measured capacitor voltage by typing [time, data] in the edit field. This uses the
MATLAB variables time and data loaded from file earlier to specify the measured capacitor voltage.
Measured data is specified as a matrix where the 1st column is time and subsequent columns signal
data.

2 Parameter Estimation

2-134

Alternatively to specifying the measured capacity voltage using MATLAB variables you can load the
measured data directly from text or excel files. Click the import button to open a file chooser and
navigate to $matlabroot$\toolbox\sldo\sldodemos\estim and open the
sdoRCCircuit_ExperimentData.xlsx file.

A tool for importing column data from a file opens. The 1st column selected for import is used to
specify the signal time, subsequent columns selected for import are used to specify the signal data.
Select the time and data columns and click Import

 Importing and Preprocessing Experiment Data (GUI)

2-135

In the experiment editor click Plot & Simulate to plot the measured experiment data and the
simulated model response.

2 Parameter Estimation

2-136

The experiment plot shows that the simulated data does not match the measured data. The plot also
shows that the model initial state is not correct and needs to be estimated (the measured and
simulated voltages at time 0 are significantly different). From the experiment editor click Select
Initial States to open a dialog to select model initial states; select the sdoRCCircuit.C1.vc state
and click Ok to add the state to the experiment.

 Importing and Preprocessing Experiment Data (GUI)

2-137

Preprocess the Experiment Data

The measured data contains high frequency noise that we remove using a low-pass filter. Click the
Experiment Plot tab and select Low Pass Filter.

This opens the Low-Pass Filter tool. The upper axis shows the signal FFT, the lower axis shows the
signals. The original signal is shown in blue and the filtered signal in red. Adjust the filter bandwidth
by either typing a value in the Normalized cutoff frequency edit field or clicking and dragging the
yellow patch edge. Drag the filter cutoff to 0.4. Click Options and select Zero-phase shift filter to
avoid introducing the filter phase shift into the measured data.

2 Parameter Estimation

2-138

Click Apply and Close Low-Pass Filter to complete low-pass filtering of the data. The experiment is
updated with the filtered signal. You can use other preprocessing tools such as, remove offset, scale,
resample, etc., to further process the measured data. For this example low-pass filtering is sufficient.

Estimate Model Parameter Values

With the experiment data configured and preprocessed we are ready to run an estimation. First we
select parameters to estimate. Click the Parameter Estimation tab and select Select Parameters.
A dialog to specify model parameters for estimation opens. Click Select Parameters and select, C1,
the circuit capacitor value. Set the capacitor minimum value to 0 and the initial guess to 460e-6.

 Importing and Preprocessing Experiment Data (GUI)

2-139

Click Estimate to start the estimation. You can modify estimation options by setting the Cost
Function combobox and clicking More Options....

While the estimation is running the plots update and a dialog showing estimation progress appears.
The progress dialog shows the estimation iterations, the number of times the model has been
evaluated (F-count), and the estimation cost at each iteration.

2 Parameter Estimation

2-140

 Importing and Preprocessing Experiment Data (GUI)

2-141

After a number of iterations the estimation converges and terminates. The model is updated with the
estimated parameters and the estimation results are saved in the data browser.

Related Examples

To learn how to estimate model parameters using the sdo.optimize command, see “Estimate Model
Parameters and Initial States (Code)” on page 2-67.

Close the model

bdclose('sdoRCCircuit')

2 Parameter Estimation

2-142

Estimate Model Parameter Values (GUI)
This example shows how to use experiment data to estimate model parameters. You estimate the
parameters of an engine throttle system.

Simulink® Model of the Engine Throttle System

The Simulink® model for the engine throttle system, spe_engine_throttle, is shown below.

Throttle Model Description

The throttle controls the air mass flow into the intake manifold of an engine. The throttle body
contains a butterfly valve that opens when the driver presses down on the accelerator pedal. This lets
more air enter the cylinders and causes the engine to produce more torque.

A DC motor controls the opening angle of the butterfly valve. There is also a spring attached to the
valve to return it to its closed position when the DC motor is de-energized. The amount of rotation of
the valve is limited to approximately 90 degrees. Therefore, if a large command input is applied to the
motor, the valve hits the hard stops preventing it from rotating further.

The motor is modeled as a torque gain and a time-delay input with parameters Kt and input_delay.
The butterfly valve is modeled as a mass-spring-damper system with parameters J, c and k. This
system is augmented with hard stops to limit the valve opening to 90 degrees. We know the model
components, however, the parameter values of the system are not known accurately.

Estimation Experiment Data

Double-click the Parameter Estimation GUI with preloaded data block in the model to open
a pre-configured estimation GUI session.

The saved estimation project defines three experiments; the EstimationData experiment will be
used for parameter estimation, while ValidationData1, ValidationData2 are used for validating
the estimated parameters. The EstimateData experiment is plotted.

 Estimate Model Parameter Values (GUI)

2-143

The signal data for the experiments can be imported from various sources including MATLAB®
variables, MAT files, Excel® files, or comma-separated-value files.See “Importing and Preprocessing
Experiment Data (GUI)” on page 2-132 for more information.

The experiment plot is also used to see how well the measured data matches the current model. Click
Plot Model Response to display simulated signal data on the experiment plots.

2 Parameter Estimation

2-144

The simulation results show that the model does not match the measured data and that model
parameters need to be estimated.

Estimated Parameters

The next step is to define the parameter to estimate. Click Select Parameters to open a dialog to
select model parameters to estimate. In this example we have preselected the four unknown
parameters; the butterfly valve inertia, J; the damping coefficient, c; the return spring constant, k;
and the time lag in motor response, input_delay.

 Estimate Model Parameter Values (GUI)

2-145

Since we know from physical insight that all of these parameters have positive values, we set their
lower limits to zero. We also put an upper bound of 0.1 sec on the input_delay parameter. We can
also select an initial value for the parameters. These may come from some quick calculations of some
formulas that determine the parameters.

Click the right arrow toggle button to modify the parameter minimum and maximum bounds.

2 Parameter Estimation

2-146

The Estimation Task

With the parameters for estimation selected we select experiments to use for estimation. Click Select
Experiments and select EstimationData for estimation.

We are now almost ready to start our estimation but first create plots to monitor the estimation
progress. Click Add Plot and select Parameter Trajectory. This creates a plot that shows how the

 Estimate Model Parameter Values (GUI)

2-147

estimated parameter values change during estimation. Click the View tab to layout the plots so that
the Experiment plot:EstimationData and EstimatedParams are both visible.

Click the Estimate button to start the estimation. You can modify estimation options by setting the
Cost Function combobox and clicking More Options....

While the estimation is running the plots update and a dialog showing estimation progress appears.
The progress dialog shows the estimation iterations, the number of times the model has been
evaluated (F-count), and the estimation cost at each iteration.

2 Parameter Estimation

2-148

 Estimate Model Parameter Values (GUI)

2-149

After a number of iterations the estimation converges and terminates. The model is updated with the
estimated parameters and the estimation results are saved in the data browser. Right click
EstimatedParams and select Open... to see details of the estimation result.

2 Parameter Estimation

2-150

Validation

It is important to validate the estimation results against other experiments. A successful estimation
will not only match the experimental data that was used for estimation but also other independent
measured data that were collected in experiments.

Click the Validation tab and click Select Experiments to select experiments for validation. Select
both ValidationData1 and ValidationData2 for validation.

 Estimate Model Parameter Values (GUI)

2-151

Click Select Results to select the estimation result(s) to use for validation. Select
EstimatedParams and deselect Use current parameter values.

Click Validate to validate the estimation result against the validation experiments. Validation
simulates the model using the estimated parameters and selected experiments and creates plots
showing the measured and simulation data. Use the View tab to layout the plots so that the
Experiment plot:ValidationData1 and Experiment plot:ValidationData2 are both
visible.

2 Parameter Estimation

2-152

The validation plots confirm that our estimation was successful, showing that the estimated
parameters are robust enough to handle a variety of inputs.

Related Examples

To learn how to estimate model parameters using the sdo.optimize command, see “Estimate Model
Parameter Values (Code)” on page 2-58.

Close the model.

 Estimate Model Parameter Values (GUI)

2-153

Estimate Model Parameters Per Experiment (GUI)
This example shows how to use multiple experiments to estimate a mix of model parameter values;
some that are estimated using all the experiments and others that are estimated using individual
experiments. The example also shows how to configure estimation experiments with experiment
dependent parameter values.

You estimate the parameters of a rechargeable battery based on data collected in experiments that
discharge and charge the battery.

Open the Model and Get Experimental Data

This example estimates parameters of a simple, rechargeable battery model, sdoBattery. The model
input is the battery current and the model output, the battery terminal voltage, is computed from the
battery state-of-charge.

open_system('sdoBattery')

The model is based on the equation

E = 1− Loss V − KQmax
1− s

s

In the equation:

E is the battery terminal voltage in Volts.

V is the battery constant voltage in Volts.

K is the battery polarization resistance in Ohms.

Qmax is the maximum battery capacity in Ampere-hours.

s is the battery charge state, with 1 being fully charged and 0 discharged. The battery state-of-charge
is computed from the integral of the battery current with a positive current indicating discharge and

2 Parameter Estimation

2-154

a negative current indicating charging. The battery initial state-of-charge is specified by Q0 in
Ampere-hours.

Loss is the voltage drop when charging, expressed as a fraction of the battery constant voltage. When
the battery is discharging this value is zero.

V, K, Qmax, Q0, and Loss are variables defined in the model workspace.

Estimation Experiment Data

A 1.2V (6500mAh) battery was subjected to a discharge and a charging experiment. This experiment
data has been loaded into a preconfigured estimation session.

Use the following commands to load the pre-configured estimation session.

load sdoBattery_spesession
spetool(SDOSessionData)

The measured charge and discharge experiment data are loaded and plotted. Click the View tab to
layout the plots so that the Experiment plot:Charge_Exp and Experiment plot:DCharge_Exp
are both visible. Click Plot Model Response to see how well the model simulation matches the
measured experiment data.

 Estimate Model Parameters Per Experiment (GUI)

2-155

The plots show that the battery initial charge Q0 is not set correctly for the Charge_Exp experiment
and that the model V, K, and Loss parameters need to be estimated.

Setting Experiment Parameter Values

The previous plot indicates that the Charge_Exp battery initial charge, Q0, is not set correctly. Add
the initial charge to both experiments. Right click Charge_Exp and select Edit. A dialog to edit the
experiment opens.

Click Select Parameters to open a dialog to add model parameters to the experiment. Select Loss
and Q0 to add to the experiment. Select Loss as we need to estimate this parameter using only the
Charge_Exp experiment. Click Ok to add the Q0 and Loss parameters to the experiment.

2 Parameter Estimation

2-156

Set the battery initial charge Q0 in the Charge_Exp to 0, i.e. there is no initial charge.

 Estimate Model Parameters Per Experiment (GUI)

2-157

Similarly add the battery initial charge Q0 to the DCharge_Exp experiment and set the initial charge
to 6.5., i.e. for this experiment there is an initial charge.

2 Parameter Estimation

2-158

Now that the experiments are updated with the correct initial battery charge click Plot Model
Response to simulate the model and compare measured and simulated data.

 Estimate Model Parameters Per Experiment (GUI)

2-159

The experiment plots show that the experiment initial conditions match but the battery response does
not. The next step is to estimate the K and V model parameters.

Select Estimation Parameters

The previous plot showed that the model response does not match the measured data and we need to
estimate the model V and K parameters.

Click Select Parameters to open a dialog to select model parameters.

2 Parameter Estimation

2-160

The upper portion of the select parameters dialog has a section for parameters that are tuned using
all experiments. Click Select Parameters and add the V and K model parameters to the estimated
parameters. Set the V minimum to 0 and the maximum to 2, similarly set the K minimum to 1e-6 and
maximum to 0.1.

 Estimate Model Parameters Per Experiment (GUI)

2-161

The lower section of the dialog has a section for initial states and parameters that are tuned using
individual experiments.

For the Charge_Exp we tune the Loss parameter and set its minimum to 0 maximum to 0.5. The
battery initial charge Q0 is fixed to 0 and should not be estimated; uncheck Estimate.

2 Parameter Estimation

2-162

Select DCharge_Exp from the Experiment combobox to view the parameter settings for the
DCharge_Exp experiment. The battery initial charge Q0 is fixed to 6.5 and should not be estimated;
uncheck Estimate.

 Estimate Model Parameters Per Experiment (GUI)

2-163

Estimate Parameter Values

The experiments and estimated parameters are configured and we a ready to run the estimation.
First create a plot to monitor the estimation progress. Click Add Plot and select Parameter
Trajectory. This creates a plot that shows how the estimated parameter values change during
estimation. Click the View tab to layout the plots so that the experiment and parameter trajectory
plots are all visible.

2 Parameter Estimation

2-164

Click the Estimate button to start the estimation. You can modify estimation options by setting the
Cost Function combobox and clicking More Options.

While the estimation is running the plots update and a dialog showing estimation progress appears.
The progress dialog shows the estimation iterations, the number of times the model has been
evaluated (F-count), and the estimation cost at each iteration.

 Estimate Model Parameters Per Experiment (GUI)

2-165

2 Parameter Estimation

2-166

After a number of iterations the estimation converges and terminates. The experiment plots show the
measured and simulation data matching well. The EstimatedParams plot shows the V, K, and Loss
parameters changing during the estimation; the scale of V, K, and Loss are different, right click on
the plot and select Show scaled values to see how all the parameters changed from their original
values.

Related Examples

To learn how to estimate parameters per experiment using the sdo.optimize command, see
“Estimate Model Parameters Per Experiment (Code)” on page 2-86.

Close the model

bdclose('sdoBattery')

 Estimate Model Parameters Per Experiment (GUI)

2-167

Estimate Model Parameters and Initial States (GUI)
This example shows how to estimate the physical parameters - mass (m), spring constant (k) and
damping (b) of a simple mass-spring-damper model. This example illustrates the significance of initial
state estimation.

Simulink® Model of the Mass Spring Damper System

The Simulink model for the mass-spring-damper system, msd_system, is shown below.

The model's output is the displacement response (position) of the mass in a mass-spring-damper
system, subject to a constant force (F), and an initial displacement (x0). x0 is the initial condition of
the Position integrator block. Run the simulation once to observe the response of the model to a
nominal set of parameter values.

Experimental Data Sets

For estimation of the model parameters (m, b and k), two sets of experimental data are used. These
data sets were obtained using two different initial positions (0.1 and 0.3), and contain additive noise.
A plot of these data sets is shown below (orange and cyan curves), along with the simulated response
(yellow curve) of the Simulink model for x0=-0.1 and a nominal set of parameter values (m=8, k=500,
b=100).

2 Parameter Estimation

2-168

Estimation of Model Parameters

The model has three parameters (k, b, m) that appear in the Gain blocks of the Simulink model
msd_system. We estimate these parameters using Parameter Estimation.

Double-click the Parameter Estimation GUI with preloaded data block in the model to open
a pre-configured estimation GUI session. The experimental data sets are already loaded in the project
(data_exp1 and data_exp2). Click the View tab to layout the plots so that the Experiment
plot:data_exp1 and Experiment plot:data_exp2 are both visible. Click Plot Model
Response to simulate the model for the two experiments. The plots show that the model simulation
does not match the experiment data.

 Estimate Model Parameters and Initial States (GUI)

2-169

Parameter Estimation with No State Estimation

The app has been configured to estimate the model parameters using both data_exp1 and
data_exp2 experiments, click Select Parameters to see the selected parameters and Select
Experiments to see the experiments selected for estimation.

Click Estimate to start the estimation. You can modify estimation options by setting the Cost
Function combobox and clicking More Options....

While the estimation is running the plots update and a dialog showing estimation progress appears.
The progress dialog shows the estimation iterations, the number of times the model has been
evaluated (F-count), and the estimation cost at each iteration.

2 Parameter Estimation

2-170

 Estimate Model Parameters and Initial States (GUI)

2-171

After a number of iterations the estimation converges and terminates. The model is updated with the
estimated parameters and the estimation results are saved in the data browser.

The data_exp1 and data_exp2 experiment plots show that the model parameters have been tuned
to match the measured experiment data as closely as possible. The simulated measured signals match
well from the 2 second mark onward but don't match well before 2 seconds. The simulation results
for both experiments start at -0.1. This is the initial condition of the model which was not estimated;
these plots show that the initial condition should also be estimated.

Parameter Estimation with Initial State Estimation

The data_exp1 and data_exp2 experiments specify the measured output data but as seen above
must also specify the model initial state. We now add the initial states to the experiments and
estimate them.

Right click data_exp1 and select Edit... to open a dialog to configure the experiment.

2 Parameter Estimation

2-172

Click Select Initial States and select the position state. Click OK to close the state selector and add
the selected state to the experiment.

 Estimate Model Parameters and Initial States (GUI)

2-173

Right click data_exp2 and select Edit.. and add the position state to the experiment.

The experiments are now configured to include initial states that can be estimated. Click Select
Parameters.

2 Parameter Estimation

2-174

The upper portion of the select parameters dialog has a section for parameters that are tuned using
all experiments selected for estimation. The lower section of the dialog has a combo-box to select an
experiment and widgets to specify initial states and parameters that are tuned using only the selected
experiment. For this problem the data_exp1 and data_exp2 experiments estimate the model initial
state for each experiment.

Now we are ready to start our estimation but first create plots to monitor the estimation progress.
Click Add Plot and select Parameter Trajectory, right click the plot and select Show scaled
values. This creates a plot that shows how the estimated parameter values change during estimation.
Click the View tab to layout the plots so that the Experiment plot:data_exp1, Experiment
plot:data_exp2, and Iteration plot 1 are both visible.

Click the Estimate button to start the estimation.

 Estimate Model Parameters and Initial States (GUI)

2-175

After a number of iterations the estimation converges and terminates. The data_exp1 and
data_exp2 experiment plots show how estimating the initial value improves the estimation fit. The
EstimatedParams plot shows the estimated initial state for the two experiments, the plot also shows
that the estimated k value did not change while b and m changed slightly. You can confirm this by
clicking EstimatedParams and examining the preview pane and then clicking EstimatedParams1
and examining the preview pane. Alternatively right click EstimatedParams and select Open... to
open a dialog to view the results.

2 Parameter Estimation

2-176

This example shows that it is important to independently estimate initial states for each experiment
in order to obtain the correct estimates of the model parameters.

Related Examples

To learn how to estimate model parameters and initial states using the sdo.optimize command, see
“Estimate Model Parameters and Initial States (Code)” on page 2-67.

Close the model

 Estimate Model Parameters and Initial States (GUI)

2-177

Generate MATLAB Code for Parameter Estimation Problems
(GUI)

This example shows how to automatically generate a MATLAB® function to solve a Parameter
Estimation problem. You use the Parameter Estimator to define an estimation problem for a mass-
spring-damper and generate MATLAB code to solve this estimation problem.

Mass-Spring-Damper Estimation Problem

The “Estimate Model Parameters and Initial States (GUI)” on page 2-168 example shows how to use
the Parameter Estimator to estimate parameters of a mass-spring-damper model. In this example
we load a pre-configured Parameter Estimator session based on that example.

Use the following commands to load the pre-configured estimation session

load sdoMassSpringDamper_sdosession
spetool(SDOSessionData)

Generate MATLAB Code

From the Estimate list, select Generate MATLAB Code.

2 Parameter Estimation

2-178

The generated code is added to the MATLAB editor as an unsaved MATLAB function.

Examine the generated code. Significant code portions are:

• Specify Model Parameters to Estimate - Definition of the model parameters being
estimated.

• Define the Estimation Experiments - Definition of the measured and expected signal data
to use for estimation.

• Create Estimation Objective Function - Creation of an anonymous function that calls the
subfunction msd_system_optFcn, which evaluates the model using each experiment and
compares simulation and measured experiment outputs. This anonymous function is called by
sdo.optimize at each iteration of the optimization problem to solve the estimation problem.

 Generate MATLAB Code for Parameter Estimation Problems (GUI)

2-179

• Estimate the Parameters - Solve the estimation problem using the sdo.optimize command.

Select Save from the MATLAB editor to save the generated function.

Run Generated Code

Run the generated function.

The first output argument, pOpt, contains the optimized parameter values and the second output
argument, optInfo, contains optimization information.

Modify the Generated Code

You can:

• Modify the generated spe_msd_system function to include or exclude new experiments or
change estimation options.

• Call the generated spe_msd_system function with a different set of parameters to estimate.

For details on how to write an objective/constraint function to use with the sdo.optimize command,
type help sdoExampleCostFunction at the MATLAB command prompt.

Close the model

2 Parameter Estimation

2-180

Improving Optimization Performance Using Fast Restart (GUI)
This example shows how to use the Fast Restart feature of Simulink® to speed up optimization of a
model. You use Fast Restart to estimate the parameters of an engine throttle model.

How Fast Restart Speeds up the Optimization

Simulation of Simulink models requires that the model be compiled before it is simulated. In this
context compilation of a model means analyzing and formatting the model so that it can be simulated.
The idea of Fast Restart is to perform the model compilation once and reuse the compiled information
for subsequent simulations, see "How Fast Restart Improves Iterative Simulations" in the Simulink
documentation for a description of Fast Restart.

During optimization the model is repeatedly simulated (often tens or hundreds of times) Fast Restart
means that the model is only compiled once for these simulation in comparison to non-fast restart
where the model is recompiled each time.

Models where compilation is a significant portion of overall simulation time benefit the most from
Fast Restart. Further once a model is compiled not all model parameters can be changed, specifically
only tunable parameters can be changed, see "Factors Affecting Fast Restart" in the Simulink
documentation for more information.

Open Model and Parameter Estimator

Load the model and click the "Parameter Estimation with preloaded data" block to load a
preconfigured parameter estimation problem. The goal is to tune the parameters of an engine throttle
model to match measured data. For details on the problem setup see the “Estimate Model Parameter
Values (GUI)” on page 2-143 example.

open_system('spe_engine_throttle')

 Improving Optimization Performance Using Fast Restart (GUI)

2-181

Estimate Without Using Fast Restart

To compare the estimation with and without fast restart, change the estimation options in the app to
not update the model with estimated values.

Click More Options in the Parameter Estimator and click General Options. Clear Update model
at end of estimation, and select Save estimated values as new estimation result.

2 Parameter Estimation

2-182

Click Estimate to estimate the model parameter values. The estimation progress report shows the
estimation start and end time.

 Improving Optimization Performance Using Fast Restart (GUI)

2-183

Estimate Using Fast Restart

To configure the model to use Fast Restart during simulation, click Enable Fast Restart in the
Simulink model.

Click Estimate in the Parameter Estimator. The estimation progress report shows the estimation
start and end time. Note the reduction in total estimation time compared to the estimation without
using fast restart, in this case around 28 seconds or 45% of the original estimation time.

2 Parameter Estimation

2-184

Related Examples

The Generate MATLAB Code feature of the Parameter Estimator and Response Optimizer will
generate the MATLAB® code to configure the model for fast restart if the app is configured to use
fast restart.

To learn how to use Fast Restart at the command line see “Improving Optimization Performance
Using Fast Restart (Code)” on page 2-187.

Close the model.

bdclose('spe_engine_throttle')

See Also

Related Examples
• “Improving Optimization Performance Using Fast Restart (Code)” on page 2-187
• “Use Fast Restart Mode During Response Optimization” on page 3-189
• “Use Fast Restart Mode During Sensitivity Analysis” on page 4-109

 Improving Optimization Performance Using Fast Restart (GUI)

2-185

More About
• “Ways to Speed Up Design Optimization Tasks”

2 Parameter Estimation

2-186

Improving Optimization Performance Using Fast Restart (Code)
This example shows how to use the Fast Restart feature of Simulink® to speed up optimization of a
model. You use Fast Restart to estimate the parameters of an engine throttle model.

How Fast Restart Speeds up the Optimization

Simulation of Simulink models requires that the model be compiled before it is simulated. In this
context compilation of a model means analyzing and formatting the model so that it can be simulated.
The idea of Fast Restart is to perform the model compilation once and reuse the compiled information
for subsequent simulations, see "How Fast Restart Improves Iterative Simulations" in the Simulink
documentation for a description of Fast Restart.

During optimization the model is repeatedly simulated (often tens or hundreds of times) Fast Restart
means that the model is only compiled once for these simulation in comparison to non-fast restart
where the model is recompiled each time.

Models where compilation is a significant portion of overall simulation time benefit the most from
Fast Restart. Further once a model is compiled not all model parameters can be changed, specifically
only tunable parameters can be changed, see "Factors Affecting Fast Restart" in the Simulink
documentation for more information.

Open Model

Load the engine throttle model. The goal is to tune the parameters of the model to match measured
data. For details on the problem setup see the “Estimate Model Parameter Values (GUI)” on page 2-
143 example.

open_system('spe_engine_throttle')

Define the Estimation Problem Data

This examples focuses on the command line interface for using Fast Restart during estimation. For a
detailed description of the estimation command line interface see “Estimate Model Parameter Values
(Code)” on page 2-58.

 Improving Optimization Performance Using Fast Restart (Code)

2-187

Specify the model parameter values to estimate and any parameter bounds.

p = sdo.getParameterFromModel('spe_engine_throttle',{'J','c','input_delay','k'});
p(1).Minimum = 0;
p(2).Minimum = 0;
p(3).Minimum = 0;
p(3).Maximum = 0.1;
p(4).Minimum = 0;

Define the estimation experiment. The measured experiment data is loaded from the
sdoFastRestart_ExperimentData MATLAB file. The MATLAB file contains a Input_SignalData
and Output_SignalData variable specifying the experiment input and output signal data.

load spe_engine_throttle_ExperimentData

Exp = sdo.Experiment('spe_engine_throttle');
Input = Simulink.SimulationData.Signal;
Input.Values = Input_SignalData;
Input.BlockPath = 'spe_engine_throttle/Input';
Input.PortType = 'inport';
Input.PortIndex = 1;
Input.Name = 'spe_engine_throttle/Input:1';
Exp.InputData = Input;
Output = Simulink.SimulationData.Signal;
Output.Values = Output_SignalData;
Output.BlockPath = 'spe_engine_throttle/Throttle';
Output.PortType = 'outport';
Output.PortIndex = 1;
Output.Name = 'spe_engine_throttle/Throttle:1';
Exp.OutputData = Output;

Create a model simulator from the experiment

Simulator = createSimulator(Exp);

Configure the Simulator for Fast Restart

The simulator controls whether the model is simulated using fast restart or not. The fastRestart
command is used to configure the simulator to use Fast Restart.

The spe_engine_throttle model uses a variable-step solver, and may not output values at the
times in the measured experiment data. To output values at the times of the measured data, use the
set_param command to specify the model logging output times as a workspace variable. In the
estimation objective function, the variable is then used to specify output times to be the same as the
measured experiment data. The model OutputTimes is set before configuring the simulator for fast
restart, as once the model is configured for fast restart, the model logging configuration can not
change.

set_param('spe_engine_throttle','OutputOption','SpecifiedOutputTimes','OutputTimes','OutputTimesValues');
Simulator = fastRestart(Simulator,'on');

The simulator can now be used during estimation, and the model will be simulated using fast restart.

Run the Estimation

Create an estimation objective function to evaluate how closely the simulation output, generated
using the estimated parameter values, matches the measured data. Use an anonymous function with

2 Parameter Estimation

2-188

one argument that calls the spe_engine_throttle_Objective function. The
spe_engine_throttle_Objective function includes the Simulator argument that has been
configured to use fast restart.

optimfcn = @(P) spe_engine_throttle_Objective(P,Simulator,Exp);

Set the optimization options, and run the optimization.

Options = sdo.OptimizeOptions;
Options.Method = 'lsqnonlin';
[pOpt,Info] = sdo.optimize(optimfcn,p,Options);

 Optimization started 25-Aug-2020 20:49:06

 First-order
 Iter F-count f(x) Step-size optimality
 0 9 32.048 1
 1 18 12.24 0.6495 18
 2 27 3.5944 0.3919 8.65
 3 36 1.11908 0.188 3.11
 4 45 0.648736 0.1968 1.25
 5 54 0.287517 1.093 1.12
 6 63 0.150691 0.3233 0.414
 7 72 0.0909367 0.5668 0.0794
 8 81 0.0705989 0.5692 0.154
 9 90 0.0705989 9.235 0.154
 10 99 0.070166 2.256 0.252
 11 108 0.0515291 0.3859 0.0676
 12 117 0.0481688 0.5612 0.214
 13 126 0.0378954 0.2593 0.0254
 14 135 0.0366916 0.3957 0.195
 15 144 0.028778 0.06182 0.0671
 16 153 0.0244849 2.036 0.087
 17 162 0.0210853 2.309 0.0435
 18 171 0.0177636 4.618 0.114
 19 180 0.0137155 4.973 0.114
 20 189 0.0107631 3.471 0.0684
 21 198 0.00861032 2.924 0.0603
 22 207 0.00771667 1.815 0.0461
Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

Restore the Model

Restore the simulator fast restart settings. This clears the logging and other settings used for the
optimization problem.

Simulator = fastRestart(Simulator,'off');
set_param('spe_engine_throttle','OutputOption','RefineOutputTimes','OutputTimes','[]');

Related Examples

You can also generate code to configure you model for fast restart in the Parameter Estimator and
the Response Optimizer. Configure the model for fast restart as described in “Improving
Optimization Performance Using Fast Restart (GUI)” on page 2-181. Then use the Generate MATLAB
Code feature of the app.

 Improving Optimization Performance Using Fast Restart (Code)

2-189

Close the model.

bdclose('spe_engine_throttle')

See Also
fastRestart | sdo.SimulationTest

Related Examples
• “Improving Optimization Performance Using Fast Restart (GUI)” on page 2-181
• “Use Fast Restart Mode During Response Optimization” on page 3-189
• “Use Fast Restart Mode During Sensitivity Analysis” on page 4-109

More About
• “Ways to Speed Up Design Optimization Tasks”

2 Parameter Estimation

2-190

Deployed Application of Parameter Estimation
This example shows how to monitor the condition of an electric vehicle battery in the field, with a
deployed version of parameter estimation in Simulink® Design Optimization™, together with
Simulink Compiler™.

Battery Monitoring

Batteries in electric vehicles are expensive to replace and need to be monitored and maintained
carefully, to ensure they function well for their intended lifetime. In this example, an electric car is
driven to work and back on a daily commute. At home, the car is plugged in to a smart charger that
monitors both the current and the battery voltage. The charger analyzes the battery data to estimate
the battery parameters, using a deployed version of parameter estimation in Simulink Design
Optimization, together with Simulink Compiler. The charger relays these parameters to the car
manufacturer through an Internet of Things (IoT) connection, so that the manufacturer can monitor
the battery health over time.

Battery Model

This example estimates parameters of a simple, rechargeable battery model, sdoBattery. The input
to sdoBattery is the battery current, and the model output is the battery terminal voltage which is
computed from the battery state of charge.

The battery model is based on the equation:

E = 1− Loss V − KQmax
1− s

s

where:

• E is the battery terminal voltage in Volts.
• V is the battery constant voltage in Volts.
• K is the battery polarization resistance in Ohms.
• Qmax is the maximum battery capacity in Ampere-hours. Q0 is the battery initial state of charge in

Ampere-hours.
• s is the battery charge state, with 1 being fully charged and 0 discharged. The battery state of

charge is computed from the integral of the battery current with a positive current indicating
discharge and a negative current indicating charging.

• Loss is the voltage drop when charging, expressed as a fraction of the battery constant voltage.

Use the following command to open the model.

open_system('sdoBattery')

Battery Characteristics

The following battery characteristics are known:

• Voltage,V = 400V
• Loss factor, Loss = 0.012
• Resistance, K = 0.32 Ohms.

 Deployed Application of Parameter Estimation

2-191

Qmax is known to be 250 Ampere-hours (100 kWh) when the battery is new. As the battery ages, Qmax
is expected to decrease, and this is monitored to track the health of the battery. The initial state of
charge Q0 and the new battery capacity Qmax need to be estimated.

Steps for Deployed Parameter Estimation

There are two main steps to run parameter estimation in deployed mode:

1 Make a setup file, to set up parameter estimation objects for use in deployed mode
2 Make a run file, which is a MATLAB function for parameter estimation that can be compiled and

run in deployed mode

It is recommended to create the setup and run files by starting with MATLAB code generated from
the Parameter Estimator. Copy, split, and modify the generated code to make the setup and run
files as demonstrated in the following section.

Parameter Estimation in Non-Deployed Mode

First generate MATLAB code to estimate Q0 and Qmax in non-deployed mode. Use the following
commands to load the pre-configured estimation session:

load sdoBattery_spesession_forDeployment
spetool(SDOSessionData)

This step loads and plots the experiment with measured voltage and current data and configures the
Parameter Estimator to estimate Q0 and Qmax.

Navigate to the Estimate button in the toolstrip and from the dropdown list, select Generate
MATLAB Function (see “Generate MATLAB Code for Parameter Estimation Problems (GUI)” on
page 2-178). This step generates a MATLAB function which is added to the MATLAB editor, and a
MAT-file parameterEstimation_sdoBattery_Data.mat. The generated code is available for you
in file parameterEstimationSdoBattery.m. You can use the generated code to estimate
parameters in non-deployed mode.

It is recommended to start with this generated code and copy, split and modify the code to create the
setup and run files described in the following sections.

Setup-File for Deployed Parameter Estimation

To estimate parameters in deployed mode, the code for non-deployed parameter estimation can be
split into a setup file to use in non-deployed mode, and a run file to use in deployed mode. The setup
file is available as parameterEstimationSdoBattery_setup.m and the main parts are:

1 Define parameters
2 Define experiments
3 Prepare for deployment and save

Define Parameters

Parameters are defined in parameterEstimationSdoBattery_setup.m in the same way as the
generated MATLAB code, parameterEstimationSdoBattery.m. Use the
sdo.getParameterFromModel command to create a parameter object, containing fields for
parameter value, minimum and maximum, and a field ("Free") indicating whether the parameter will
be tuned during estimation.

2 Parameter Estimation

2-192

In this example, parameter information is also stored in a database in which cars are identified by a
code akin to a pseudo vehicle identification number (VIN). The car manufacturer can use this to
monitor the health of the battery over time. The parameterEstimationSdoBattery_setup.m file
uses the VIN database to update battery parameter values. See the
parameterEstimationSdoBattery_setup.m file for more details.

The initial database is loaded from the MATLAB file sdoBatteryVinDatabase.mat which has the
VIN database stored in variable vinDatabase. This is a containers.Map object, and the VIN key
4DEF is used to look up parameters for the battery in this example.

Run

vinDatabase("4DEF")

to display the following table:

Define Experiments

Experiments are defined in parameterEstimationSdoBattery_setup.m in the same way as the
generated MATLAB code, parameterEstimationSdoBattery.m. Experiments have measured data
and information about specific ports or signals in the model that are associated with the data.

Prepare for Deployment and Save

At the end of the parameterEstimationSdoBattery_setup.m file, define a simulator which can
run the model and compare model output to measured data. Use the prepareToDeploy command to
configure the experiments and simulator so they can be used in deployed mode. Save these prepared
objects to a MAT-file.

When running these steps on another model and preparing for deployment, you may be prompted to
save the model to continue after running the setup function. Save the model to preserve logging
settings that need to be in place for deployed mode.

The run file parameterEstimationSdoBattery_run.m uses the objects saved in
sdoBatteryObjectsToDeploy.mat for parameter estimation in deployed mode.

Run-File for Deployed Parameter Estimation

The run file is available as parameterEstimationSdoBattery_run.m and the main parts are:

 Deployed Application of Parameter Estimation

2-193

1 Load preconfigured deployment objects
2 Update experiments and parameters
3 Run optimization
4 Update Parameter Database

Load Preconfigured Deployment Objects

The parameterEstimationSdoBattery_run.m needs a pragma so that the Simulink Compiler
includes the model in the compiled code as follows:

Load the preconfigured objects that were saved at the end of
parameterEstimationSdoBattery_setup.m file as follows:

Update Experiments and Parameters

The parameterEstimationSdoBattery_run.m file takes two input arguments:

• dataFilename − a data file name for experiment data
• vin − a vehicle identification number for parameter values

Read the data from the comma-separated-values (CSV) text file specified by dataFilename. Use the
updateIOData command to update the deployed experiments with new input and output data (current
and voltage data for this model). Since the data is from a CSV file, you do not need the getData
function that is present in the generated MATLAB code, parameterEstimationSdoBattery.m.

Use the VIN as a key to look up this car's battery parameters in the parameter database. Use the
current value from the database to update the initial parameter values prior to running the new
estimation. See the parameterEstimationSdoBattery_run.m file for more details.

Run Optimization

The next several steps in parameterEstimationSdoBattery_run.m are very similar to the code in
parameterEstimationSdoBattery.m (for non-deployed estimation). Define a handle to the
estimation objective function, specify optimization options, and use the sdo.optimize function. This
step runs the model and compares model output to experiment data. Parameters are tuned to achieve
a close match between the model and data.

2 Parameter Estimation

2-194

The objective function is defined in the subfunction sdoBattery_optFcn which is also like the
objective function in parameterEstimationSdoBattery.m. However, the name of the signal
logging variable needs to be specified since it cannot be queried from the model in deployed mode.

To determine the name of the variable ('logsout' in this case), query the model from MATLAB in
non-deployed mode:

get_param('sdoBattery','SignalLoggingName')

Alternatively, in Simulink use the Modeling tab in the toolstrip and click Model Settings. In the
configuration dialog, select Data Import/Export and find the variable name in the Signal logging
box.

Update Parameter Database

After calling sdo.optimize in the main function of parameterEstimationSdoBattery_run.m,
update the VIN database. For each parameter that is estimated, copy the CurrentValue to the
PreviousValue and then use the new parameter estimate to update the CurrentValue. See
parameterEstimationSdoBattery_run.m for more details.

Running Parameter Estimation in Deployed Mode

Use the mcc command to compile the parameterEstimationSdoBattery_run.m function from
either the MATLAB command window or the DOS or UNIX command prompt. You need to have
MATLAB Runtime installed to complete the following steps. For more information, see “Install and
Configure the MATLAB Runtime” (MATLAB Compiler).

Run parameter estimation in deployed mode.

 Deployed Application of Parameter Estimation

2-195

In MATLAB, run

vinDatabase("4DEF")

to display the following result:

Tracking Battery Parameters over Time

The table below shows estimates of battery parameters Q0 and Qmax over time. The file
sdoBattery_Data1.csv contains data for the battery when it was new, sdoBattery_Data2.csv
contains data for the battery when it was 1 year old and sdoBattery_Data3.csv contains data for
the battery when it was 2 years old.

Observe that there is degradation in battery capacity over time. There is a high rate of degradation in
the first year after which the rate of degradation reduces. When the battery was new, the round-trip
commute left the battery state of charge at 61% while after 2 years, the commute left the battery
state of charge at 47%. If the state of charge falls below 40%, this condition reduces the number of

2 Parameter Estimation

2-196

times the battery can be recharged. By tracking battery parameters over time, the manufacturer can
monitor the battery health, and determine if the car needs a new battery.

See Also
prepareToDeploy(Experiment) | prepareToDeploy(SimulationTest) | sdo.Experiment |
sdo.SimulationTest | updateIOData(Experiment)

 Deployed Application of Parameter Estimation

2-197

Muscle Reflex Parameter Estimation
This example shows how to estimate parameters of a muscle reflex model.

Simulink® Model of the Muscle Reflex

The Simulink® model for the muscle reflex system, spe_muscle, is shown below.

Muscle Reflex Model Description

For this example a simple knee reflex action of humans is modeled. When the patellar tendon is
excited, for example when a doctor strikes it with the nub of a small rubber hammer, the tendon
reacts with a small but quick reflex force. This in turn pulls the muscle and we observe that the leg
jerks forward slightly at the knee.

For this model we treat the tendon itself as a small torsional spring damper with inertia (J), stiffness
(K) and damping (B). When the tendon is excited a signal is sent through the nervous system to the
spinal cord reporting a structural change (i.e. tendon length). The nervous system then sends a signal
back to the tendon to produce a reflex. There are receptors on the muscle called spindles that have
their own dynamics, shown in the model as a transfer function in the feedback path. The spindles are
modeled as a spring (Kpe) and damper (Bpe) in parallel, and then with the pair in series with another
spring (Kse). The differential equation describing these dynamics is given by

For this model we supply two brief pulses, one stronger than the other, as input. This is similar to
what one might experience in a doctor's office.

2 Parameter Estimation

2-198

Estimation Data

There is a project already associated with this model. You can access it by double-clicking the orange
block in the lower left corner of the model. This opens the Parameter Estimator configured with
measured experiment data ReflexResponse and parameters J, B, K, Td, beta, alpha, and tau
selected for estimation. The measured data in the ReflexResponse experiment is shown in the plot.
There is only one data set used for this example.

The experiment data can be imported from various sources including MATLAB® variables, MAT files,
Excel® files, or comma-separated-value files.

Estimated Parameters

The estimation parameters are selected by clicking on Select Parameters in the Parameter
Estimation tab. We have already loaded the parameters for this model. These parameters are the
inertia, J; damping coefficient, B; the return spring constant, K; the neural transmission delay, Td as
well as the spindle dynamics parameters beta, alpha, and tau. Since we know from our physical
insight that none of these parameters can be negative we set their lower limits to zero. Based on
known neural transmission times, we set the lower limit of Td to 10 microseconds.

 Muscle Reflex Parameter Estimation

2-199

The experiment plot is also used to see how well the measured data matches the current model. Click
Plot Model Response to display simulated signal data on the experiment plots. The simulation
results show that the model does not match the measured data and that model parameters need to be
estimated.

2 Parameter Estimation

2-200

Estimation

With the parameters for estimation specified, we select experiments to use for estimation. Click
Select Experiments in the Parameter Estimation tab and select ReflexResponse for estimation.

We are now almost ready to start our estimation but first create another plot to monitor the
estimation progress. Click Add Plot and select Parameter Trajectory. This creates a plot that shows
how the parameter values change during estimation. Click the View tab to lay out the plots so that
the experiment plot and trajectory iteration plot are both visible.

Click the Estimate button in the Parameter Estimation tab to start the estimation. The estimation
will keep iterating the parameter values until the estimation converges and terminates. The plot
below shows the measured data overlaid with the simulated data. The simulated data comes from the
model with the estimated parameters. The results of the estimation appear satisfactory, the simulated
curve closely matches the measured results.

 Muscle Reflex Parameter Estimation

2-201

Validation

We can also view residuals of the estimation. Residuals are the error between the measured response
and simulated response at each time step.

Click the Validation tab and click Select Experiments. Select the ReflexResponse experiment for
validation. In the Validation tab, select Plot Residuals and click Validate. The plot below shows
that the residuals do not exhibit a correlation pattern. They are one or two orders of magnitude
smaller than the measured data and are essentially the noise from the experimental data, so we are
again satisfied that parameters in the model were estimated well.

2 Parameter Estimation

2-202

The parameters of the model have been tuned to match the experimental results very well and our
estimation error is only the original noise in the results. We can conclude that the parameters in the
model have been successfully estimated.

 Muscle Reflex Parameter Estimation

2-203

Close the model

See Also

More About
• “Specify Parameters for Estimation” on page 2-7
• “Validate Estimation Results” on page 2-25

2 Parameter Estimation

2-204

DC Servo Motor Parameter Estimation
This example shows how to estimate the parameters of a multi-domain DC servo motor model
constructed using various physical modeling products.

This example requires Simscape™ and Simscape™ Electrical™

Description of the DC Servo Motor System

A DC servo motor, with its electrical and mechanical components, provides a great example to
illustrate multi-domain modeling using first principles.

The DC servo motor is part of a larger system that contains the control electronics (H-Bridge) and a
disk attached to the motor shaft. The overall model, spe_servomotor, is shown below, where the
Input Signal (V) is the voltage signal applied to the H-bridge circuit, and the Output Signal (deg) is
the angular position of the motor shaft.

Open the DC motor system

We developed a first-principles model of the DC motor within the DC servo motor subsystem. We used
Simscape Electrical to model the electrical components and Simscape Driveline to model the
mechanical components of the motor. The figure below shows the content of the servo motor
subsystem.

Open the DC Servo Motor subsystem

 DC Servo Motor Parameter Estimation

2-205

The DC motor model shows a relationship from current to torque (the green line on the left). The
torque causes the shaft of the motor to spin and we have a relationship between this spinning to the
Back EMF (electromotive force). The rest of the parameters include a shaft inertia, viscous friction
(damping), armature resistance, and armature inductance.

While manufacturers may provide values for some of these quantities, they are only approximate. We
want to estimate these parameters as precisely as possible for our model to ascertain whether it is an
accurate representation of the actual DC servo motor system.

When we apply a series of voltage pulses to the motor input, the motor shaft turns in response.
However, if the model parameters do not match those of the physical system, the model response will
not match that of the actual system, either. This is where Simulink® Design Optimization™ plays a
pivotal role in estimating parameter values. A parameter estimation process consists of a number of
well-defined steps:

• Collect test data from your system (experiment).
• Specify the parameters to estimate (including initial guesses, parameter bounds, etc.).
• Configure your estimation and run a suitable estimation algorithm.
• Validate the results against other test data sets and repeat above steps if necessary.

Simulink Design Optimization provides Parameter Estimator app which is a user interface to help
you perform parameter estimation, organize your estimation project, and save it for future work.

Double-click the orange block in the lower right corner of the servomotor model to launch the
Parameter Estimator, pre-loaded with data for this project. This is configured with measured
experiment data EstimationData. For other uses you can import experimental data sets from
various sources including MATLAB® variables, MAT files, Excel® files, or comma-separated-value
files. The Parameter Estimator is also pre-loaded with parameters for the servomotor subsystem
selected for estimation: B, J, Km, La, and Ra. It is also configured with validation data
ValidationData which we will use later, after estimation. The measured data in EstimationData
is shown in the experiment plot. There is only one data set used for estimation in this example.

2 Parameter Estimation

2-206

The experiment plot is also used to see how well the measured data matches the current model. Click
Plot Model Response in the Parameter Estimation tab to display simulated signal data on the
experiment plots. The simulation does not match the measured data, showing that the model
parameters need to be estimated.

 DC Servo Motor Parameter Estimation

2-207

Selecting Parameters for Estimation

Simulink Design Optimization lets you estimate some or all of the parameters in your model in a
manner that best suits your application. The estimation parameters are selected by clicking Select
Parameters in the Parameter Estimation tab. For our DC motor example, we have already loaded
the five parameters of the motor model: B, J, Km, La, and Ra. Since we know from our physical insight
that none of these parameters can be negative we set their lower limits to zero.

2 Parameter Estimation

2-208

Estimating Parameters of the DC Motor Model

With the parameters for estimation specified, we select experiments to use for estimation. Click
Select Experiments in the Parameter Estimation tab and select EstimationData for estimation.

We are now almost ready to start our estimation but first create another plot to monitor the
estimation progress. Click Add Plot and select Parameter Trajectory. This creates a plot that shows
how the parameter values change during estimation. Click the View tab to lay out the plots so that
the experiment plot and trajectory iteration plot are both visible.

Click the Estimate button in the Parameter Estimation tab to start the estimation. The estimation
will keep iterating the parameter values until the estimation converges and terminates. Parameter
Estimation provides various state-of-the-art estimation methods. The most common selections include
the nonlinear least-squares and Nelder-Mead optimization methods. More information on these
methods is available in the Optimization Toolbox™ documentation. You can also use the pattern
search method in the Global Optimization Toolbox for parameter estimation.

The plot below shows the measured data overlaid with the simulated data. The simulated data comes
from the model with the estimated parameters. Comparing the response of the system before and

 DC Servo Motor Parameter Estimation

2-209

after the estimation process clearly shows that the estimation successfully identified the model
parameters and the simulated response accurately matches the experimental data.

Validation

After completing the estimation, it is important to validate the results against other data sets. A
successful estimation should match not only the experimental data that we used for estimation, but
also the other data sets that we collected in our experiments.

We used our second data set in ValidationData for validating the estimation results. As the next
figure shows, the match between the model response and the data set is very good. In fact, the two
curves are almost identical for this example.

2 Parameter Estimation

2-210

Summary

Engineers and scientists across disciplines and industries are well acquainted with the benefits of
modeling dynamic systems. They may use either first-principles mathematics or test-data based
methods. First-principles models provide important insight into system behavior, but may lack
accuracy. Data-driven models provide accurate results, but tend to offer limited understanding of the
physics of the system. This article showed the use of Parameter Estimation to improve the accuracy of
a DC Servo Motor model by estimating the model parameters using experimental data.

Close the model

 DC Servo Motor Parameter Estimation

2-211

Engine Speed Model Parameter Estimation
This example shows how to estimate the coefficients of a nonlinear (quadratic) function to
approximate the dynamic behavior of a system component.

Description of the Engine Speed Model

The Simulink® model for the engine system, spe_speed, is shown below. Take a few moments to
explore this model.

The throttle angle from the block labeled "Throttle" on the left side of the diagram drives the
simulation. The output of interest in the model is the engine speed, which can be monitored by
opening the Scope block labeled "Engine Speed (rpm)".

Open the engine speed model

Modeling Air Charge Using a Nonlinear Function

Among other dynamic components in the model, the "Intake Manifold" subsystem is used to model
the dynamics of the air intake manifold in the engine.

Open the Intake Manifold subsystem

2 Parameter Estimation

2-212

In particular, the "Convert to mass charge" block above defines a quadratic multi-variable polynomial
to approximate the relationship between the Air Charge, the Manifold Pressure, and the Engine
Speed. This approximation has the following form:

The Parameter Estimation Problem

When measured data for various signals in your model are available, you can use Simulink® Design
Optimization™ to compute the unknown parameters.

The parameter estimation problem in our case is to compute the coefficients

using measured data.

You can launch a pre-configured parameter estimation task in the Parameter Estimator by first
opening the model and by double-clicking on the orange block in the lower corner of the model.

Close the model

 Engine Speed Model Parameter Estimation

2-213

Clutch Friction Coefficient Estimation
This example shows how to use Simulink® Design Optimization™ to estimate parameters of a clutch
model created using Simscape™ Driveline™ library blocks.

Requires Simscape Driveline

Description of Clutch Model

The Simulink® model of the clutch system, simple_clutch, is shown below.

This model consists of two inertias coupled by a clutch. Initially, the pressure applied to the clutch
plates is zero and Inertia 2 has zero velocity. A constant torque is also applied to Inertia 1. Once the
clutch pressure starts increasing, Inertia 2 starts rotating. However, the friction between the clutch
plates causes slippage so that the two inertias accelerate at different rates and have different
velocities.

The clutch system consists of two rotational inertias and a clutch. Pressure is applied to the clutch
plates, which then couples the two inertias. A Simscape Driveline block is used to model the clutch,
which has a speed-dependent friction coefficient linearly varying from C1 at 0 rad/s to C2 at 10 rad/s.

The coefficients of friction (C1, C2) in the Controllable Friction Clutch block are unknown and are
estimated using experimental data for the output velocities of Inertia 1 and Inertia 2.

Using Simulink® Design Optimization™

In the Apps tab, click Parameter Estimator under Control Systems to launch the Parameter
Estimator app.

2 Parameter Estimation

2-214

The launched Parameter Estimation UI consists of projects where we store our experimental data sets
and estimation results. These projects can be saved and reused later.

Alternatively, you can double-click the orange colored block at the lower left corner of the Simulink
diagram. This will reload a project that has already been saved.

In general, estimating model parameters consists of three main steps: importing experimental data
sets into the project, selecting the model parameters for estimation, and running an estimation and
analyzing the results.

Experimental Data for Estimation

We have two sets of output data on this clutch system. The first one, EstimationData, will be used
for parameter estimation and the other one, ValidationData, for validating the response of the
Simulink model with the estimated parameters.

In the first experiment the clutch pressure follows the profile of Signal 1 supplied by the Clutch
Pressure block in the Simulink model. This signal applies a ramp-up and a ramp-down pressure on
the clutch plates. Click Add Plot in the Parameter Estimation UI, and select EstimationData to view
the output velocities of the inertias in response to this input. Such data sets could also be imported
from various sources including MATLAB® variables, MAT files, Excel® files, or comma-separated-
value files.

 Clutch Friction Coefficient Estimation

2-215

The parameter values for the friction coefficients are not known accurately. Clicking Plot Model
Response provides a look at the response of this system, and shows that it does not match the
experimental data, hence the parameters need to be estimated for a better fit.

Setting up and Running the Estimation

We will use the experimental data set EstimationData to estimate friction parameters of the clutch
system.

The first step is to define the variables to be estimated. This establishes which parameters of the
simulation can be adjusted, and any rules governing their values. Click Select Parameters to specify
parameters to be estimated. Here we wish to estimate the friction coefficients C1 and C2 in the
Controllable Friction Clutch block of the Simulink model. In the pre-loaded parameter estimation
example, these parameters have already been specified for estimation. If there are known bounds on
the parameter values, they can be set in the minimum and maximum fields.

2 Parameter Estimation

2-216

Next, click Select Experiments to specify which experiments are to be used for estimation. It is
possible to use one or more data sets at once in a given estimation. For our example, we will use the
data set called EstimationData.

You are now ready to run the estimation. Click Estimate to start the estimation process. We provide a
number of estimation methods, including nonlinear least-squares minimization, gradient descent,
pattern search, or simplex search. Running estimation will vary the model parameters in order to
reduce the error between the simulation outputs and the experimental data. During estimation, the
experiment plot showing measured data and simulation response will updated. As the parameter
values improve, the simulation curve should get closer to the experimental data curve. Also, a
trajectory plot will show the parameter values at each iteration. These curves should reach steady-
state as the parameter values get closer to their physical values.

 Clutch Friction Coefficient Estimation

2-217

In addition, the table in the Estimation Progress Report will show data regarding the estimation
process such as the number of iterations, the number of simulations, and the cost function. The cost
function value represents the degree of fit between the simulation response and the estimation data.
This value would decrease at each iteration, indicating the amount of improvement in the fit.

Validation

Once we complete the estimation, it is important to validate the results against other data sets. A
successful estimation should be able to not only match the experimental data that we used for
estimation, but also the other data sets that we collected in our experiments.

In the second set of experimental data we have for the clutch system, the clutch pressure follows the
profile of Signal 2 supplied by the Clutch Pressure block in the Simulink model. This signal applies
a periodic pressure on the clutch plates. To use this, first double-click on the Manual Switch
block to change the input signal to the one used for validation data (Signal 2). Then in the
Parameter Estimation UI, click the Validation tab, click Select Experiments and select the
experiment ValidationData for validation. This contains output data corresponding to input from
Signal 2. Finally, click Validate to carry out the validation. An experiment plot will compare the
simulation response against experimental data. We see that the match is very good.

2 Parameter Estimation

2-218

In summary, we have carried out estimation by specifying an experiment with measured output data,
and designating certain parameters to be estimated. We then checked the parameter values by
validating with a different data set, giving confidence in the parameter values.

Close the model

 Clutch Friction Coefficient Estimation

2-219

Inverted Pendulum Parameter Estimation
This example shows how to use Simulink® Design Optimization™ to estimate multiple parameters of
a model by iterated estimations.

Requires Simscape™ Multibody™

Simscape Multibody Model of the Inverted Pendulum System

The Simulink® model for the inverted pendulum, spe_mech_invpend, is shown below.

Inverted Pendulum Model Description

The pendulum system has an arm that swings in the horizontal plane, driven by a DC motor. The
purpose of the arm is to provide a balancing torque to a swinging pendulum, to keep the pendulum in
an upright position. The angle of both the arm and pendulum is monitored and used as feedback to
control the motion of the system. For this example we will only concentrate on estimating parameters
of the uncontrolled system shown below.

2 Parameter Estimation

2-220

The system is modeled using Simscape Multibody. There are two bodies modeled in this system. The
machine consists of one body representing the rotational arm and the other representing the
pendulum. The bodies are connected by revolute joints that constrain the motion of the bodies
relative to each other. An input voltage is delivered to a DC motor that provides the torque to the
rotational arm.

The motor is modeled as a torque gain Kt. The arm of the pendulum has mass Ma, inertia Jb and
length r. The pendulum has length lp and mass mp. For this example damping is modeled in the
revolute joints using gains Kda and Kdp. The outputs of the system are the angles of the arm and the
pendulum.

For this example we will run two estimations using different parameter sets for each estimation. This
allows us to customize our estimation and can result in a more efficient solution.

Estimation Data

Double-click the orange block in the upper left corner of the inverted pendulum model to launch the
Parameter Estimator, pre-loaded with data for this project. This is configured with measured
experiment data Estimation. For other uses you can import experimental data sets from various
sources including MATLAB® variables, MAT files, Excel® files, or comma-separated-value files. It is
also configured with validation data Validation which we will use later, after estimation. The
measured data in Estimation is shown in the experiment plot. There is only one data set used for
estimation in this example.

 Inverted Pendulum Parameter Estimation

2-221

The experiment plot is also used to see how well the measured data matches the current model. Click
Plot Model Response in the Parameter Estimation tab to display simulated signal data on the
experiment plots. The simulation does not match the measured data, showing that the model
parameters need to be estimated.

2 Parameter Estimation

2-222

Define Variables

The next step is to define the variables for the estimation. This establishes which parameters of the
simulation can be adjusted, and any rules governing their values. Click Select Parameters in the
Parameter Estimation tab. For our inverted pendulum example, we have already selected the
torque gain parameter, Kt, for estimation. Since we know from our physical insight that this
parameter can not be negative we set its lower limit to zero.

 Inverted Pendulum Parameter Estimation

2-223

First Estimation

With the parameters for estimation specified, we select experiments to use for estimation. Click
Select Experiments in the Parameter Estimation tab and select the experiment named
Estimation for estimation.

We are now ready to start our estimation. Click Estimate in the Parameter Estimation tab to start
the estimation. The estimation will keep iterating the parameter value until the estimation converges
and terminates.

2 Parameter Estimation

2-224

The plot below shows the experimental data overlaid with the simulated data. The simulated data
comes from the model with the estimated parameter Kt. The results of the estimation show that the
first output (the position of the arm) matches, however we can see that the second output (the
position of the pendulum) does not show very satisfactory results. It is clear that additional estimation
is needed to obtain better results.

Running an Additional Estimation

This time we will leave the torque gain, Kt, constant and estimate the other parameters of the model.
Click Select Parameters in the Parameter Estimation tab. Uncheck Kt, and check the other
parameters as shown below.

 Inverted Pendulum Parameter Estimation

2-225

Click Estimate to start the new estimation. The results of the second estimation are shown below.

2 Parameter Estimation

2-226

This is clearly a better result. This shows that in order to complete an estimation task it is not
necessary to estimate all the parameters in the model at the same time. We can run multiple
estimations keeping some parameters constant while varying others.

Validation

It is important to validate the results against other data sets. A successful estimation will not only
match the experimental data that was used for estimation, but also the other data sets that were
collected in experiments. An experiment named Validation has already been created for this
project. Click Add Plot in the Parameter Estimation tab and select Validation to view the data.

Click Plot Model Response to see the simulation output overlaid on the data. The figure below
shows how the inverted pendulum system responds to the validation input data. The validation shows
that this model does handle the lower frequencies of the input validation data well and the model
parameters were successfully estimated.

 Inverted Pendulum Parameter Estimation

2-227

Conclusion

This example shows the flexibility of Parameter Estimation for segmenting an estimation task into
multiple estimations. This allows for estimations to be run on different parameter sets which can help
in the speed of estimating a given model.

Close the model

2 Parameter Estimation

2-228

Simplified Alternator Parameter Estimation
This example shows how to use parameter bounds to improve estimation performance. This is
illustrated by estimating the power rating, P, of a synchronous machine.

Requires Simscape™ and Simscape™ Electrical™

Simulink® Model of the Simplified Alternator

The Simulink® model for the alternator system, spe_psbloadshed_machine, is shown below.

Model Description

A three-phase, four-wire alternator rated 2000 kVA, 1600 kW, 0.8 power factor, 600 V, 1800 rpm is
connected to a 1600 kW, 400 kvar inductive load. The stator neutral point is grounded. The internal
impedance of the generator (Zg = 0.0036 + j*0.16 pu) represents the armature winding resistance Ra
and direct axis transient reactance X'd. The total inertia constant of the generator and prime mover is
H = 0.6 s, corresponding to J = 67.5 kg.m^2.

 Simplified Alternator Parameter Estimation

2-229

A three-phase breaker is used to switch out a 800 kW resistive load. The breaker is initially closed
and it is opened at t = 0.2 s, resulting in a 50% load shedding.

The machine is excited with a constant voltage. The mechanical torque is modeled as a two-step
signal. The first step has a magnitude of 1.0 and a duration of 0.18s. The second step has a
magnitude of -0.5 for a duration of 0.2s.

Estimation Data

Double-click the orange block on the left side of the model to open the Parameter Estimator already
loaded with experimental data, NewData. The input and output data from this experiment are shown
in the plot. There is only one data set used for this example.

Define Variables

Click Select Parameters in the Parameter Estimation tab to specify parameters for estimation.
Here, we have already loaded the parameters for this model. There is only one parameter in this
model that we are interested in estimating, the nominal power, P, of the Simplified Synchronous
Machine.

We know from the specs that this value should be around 2000kW but here we assume that we only
have an initial guess of 3000kW. We also set the minimum value of the nominal power to be 3000kW,
and the maximum value to be 4000kW.

2 Parameter Estimation

2-230

The Estimation Task

With the parameters for estimation specified, we select experiments to use for estimation. Click
Select Experiments in the Parameter Estimation tab and select NewData for estimation.

Click Estimate to start the estimation. The estimation will keep iterating the parameter value and
the experiment plot will continue to update, until the estimation converges and terminates.

The plot below shows the experimental data overlaid with the simulated data. The simulated data
comes from the model with the estimated parameters. As expected the estimation terminated quickly
and the results were not so good because of our initial guess and bounds of the parameter P.

 Simplified Alternator Parameter Estimation

2-231

Running the Estimation with a Different Initial Guess

Since we are not satisfied with our results, we will choose a different initial guess. This is quite
simple to do with the Simulink® Design Optimization™ Parameter Estimator. Click Select
Parameters in the Parameter Estimation tab and change the value to 1000 kV and the Minimum
and Maximum bounds to 0 kV and 3000 kV respectively.

2 Parameter Estimation

2-232

Click Estimate to run another estimation. Once the estimation is complete we can verify that our
results are more accurate by looking once again at the measured vs. simulated response.

 Simplified Alternator Parameter Estimation

2-233

Conclusion

Placing inappropriate bounds on your parameters can lead to inaccurate results and most often the
estimation will not converge successfully. However, with the parameter estimation GUI, it is simple to
change these bounds to run another estimation without creating a new estimation project.

Close the model

2 Parameter Estimation

2-234

Response Optimization

• “How the Optimization Algorithm Formulates Minimization Problems” on page 3-3
• “Specify Signals to Log” on page 3-10
• “Specify Custom Requirements in the App” on page 3-11
• “Move Constraints” on page 3-14
• “Specify Time-Domain Design Requirements in the App” on page 3-16
• “Edit Design Requirements” on page 3-29
• “Specify Variable Requirements in the App” on page 3-31
• “Specify Frequency-Domain Design Requirements in the App” on page 3-43
• “Specify Design Variables” on page 3-56
• “Update Model with Design Variables Set” on page 3-60
• “Specify Optimization Options” on page 3-62
• “Create Linearization I/O Sets” on page 3-64
• “Interact with Plots” on page 3-67
• “Compare Requirements and Design Variables Using Spider Plot” on page 3-71
• “Save Design Variable Values for Specific Iteration” on page 3-74
• “Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)” on page 3-76
• “Design Optimization Tuning Parameters in Referenced Models (GUI)” on page 3-88
• “Design Optimization Tuning Parameters in Referenced Models (Code)” on page 3-95
• “Specify Steady-State Operating Point for Response Optimization” on page 3-101
• “Design Optimization to Meet a Custom Objective (GUI)” on page 3-103
• “Design Optimization to Meet a Custom Objective (Code)” on page 3-118
• “Design Optimization to Meet Custom Signal Requirements (GUI)” on page 3-125
• “Design Optimization to Meet Frequency-Domain Requirements (GUI)” on page 3-129
• “Specify Custom Signal Objective with Uncertain Variable (GUI)” on page 3-143
• “Design Optimization with Uncertain Variables (Code)” on page 3-152
• “Generate MATLAB Code for Design Optimization Problems (GUI)” on page 3-160
• “Skip Model Simulation Based on Parameter Constraint Violation (GUI)” on page 3-163
• “Optimizing Parameters for Robustness” on page 3-170
• “Use Accelerator Mode During Simulations” on page 3-179
• “Speed Up Response Optimization Using Parallel Computing” on page 3-180
• “Use Parallel Computing for Response Optimization” on page 3-183
• “Use Fast Restart Mode During Response Optimization” on page 3-189
• “Optimization Does Not Make Progress” on page 3-191
• “Optimization Convergence” on page 3-192
• “Optimization Speed and Parallel Computing” on page 3-194

3

• “Undesirable Parameter Values” on page 3-196
• “Reverting to Initial Parameter Values” on page 3-198
• “Save and Load Optimization Sessions” on page 3-199
• “Improving Optimization Performance Using Parallel Computing” on page 3-200
• “Optimizing Time-Domain Response of Simulink® Models Using Parallel Computing”

on page 3-209
• “Design Optimization to Meet Frequency-Domain Requirements (Code)” on page 3-216
• “PID Tuning with Actuator Constraints” on page 3-222
• “PID Tuning with Reference Tracking and Plant Uncertainty” on page 3-227
• “Engine Design and Cost Tradeoffs” on page 3-232
• “Magnetic Levitation Controller Tuning” on page 3-240
• “LQG Controller Tuning” on page 3-248
• “Inverted Pendulum Controller Tuning” on page 3-252
• “Pitch Rate Controller Tuning” on page 3-256
• “Tuning of Airframe Autopilot Gains” on page 3-260
• “Distillation Controller Tuning” on page 3-264
• “Heat Exchanger Controller Tuning” on page 3-268
• “Power Converter Tuning” on page 3-272
• “Servomechanism Tuning” on page 3-276
• “Stewart Platform Controller Tuning” on page 3-280
• “Phase Lock Loop Tuning” on page 3-284

3 Response Optimization

3-2

How the Optimization Algorithm Formulates Minimization
Problems

When you optimize parameters of a Simulink model to meet design requirements, Simulink Design
Optimization software automatically converts the requirements into a constrained optimization
problem and then solves the problem using optimization techniques. The constrained optimization
problem iteratively simulates the Simulink model, compares the results of the simulations with the
constraint objectives, and uses optimization methods to adjust tuned parameters to better meet the
objectives.

This topic describes how the software formulates the constrained optimization problem used by the
optimization algorithms. For each optimization algorithm, the software formulates one of the
following types of minimization problems:

• Feasibility on page 3-3
• Tracking on page 3-5
• Mixed feasibility and tracking

For more information on how each optimization algorithm formulates these problems, see:

• “Gradient Descent Method Problem Formulations” on page 3-6
• “Simplex Search Method Problem Formulations” on page 3-7
• “Pattern Search Method Problem Formulations” on page 3-7
• “Gradient Computations” on page 3-8

Feasibility Problem and Constraint Formulation
Feasibility means that the optimization algorithm finds parameter values that satisfy all constraints to
within specified tolerances but does not minimize any objective or cost function in doing so.

In the following figure, x1, x3, and xn represent a combination of parameter values P1 and P2 and are
feasible solutions because they do not violate the lower bound constraint.

In a Simulink model, you constrain a signal by specifying lower and upper bounds in a Check block
(Check Step Response Characteristics, ...) or a requirement object
(sdo.requirements.StepResponseEnvelope, ...), as shown in the following figure.

 How the Optimization Algorithm Formulates Minimization Problems

3-3

These constraints are piecewise linear bounds. A piecewise linear bound ybnd with n edges can be
represented as:

ybnd(t) =

y1(t) t1 ≤ t ≤ t2
y2(t) t2 ≤ t ≤ t3
⋮ ⋮

yn(t) tn ≤ t ≤ tn + 1

,

The software computes the signed distance between the simulated response and the edge. The signed
distance for lower bounds is:

c =

max
t1 ≤ t ≤ t2

ybnd− ysim

max
t2 ≤ t ≤ t3

 ybnd− ysim

max
tn ≤ t ≤ tn + 1

ybnd− ysim

,

where ysim is the simulated response and is a function of the parameters being optimized.

The signed distance for upper bounds is:

c =

max
t1 ≤ t ≤ t2

ysim− ybnd

max
t2 ≤ t ≤ t3

ysim− ybnd

max
tn ≤ t ≤ tn + 1

ysim− ybnd

.

At the command line, opt_fcn supplies c directly from the Cleq field of vals.

If all the constraints are met (c ≤ 0) for some combination of parameter values, then that solution is
said to be feasible. In the following figure, x1 and x3 are feasible solutions.

3 Response Optimization

3-4

When your model has multiple requirements or vector signals feeding a requirement, the constraint
vector is extended with the constraint violations for each signal and bound:

C = c1; c2;⋯; cn .

Tracking Problem
In addition to lower and upper bounds, you can specify a reference signal in a Check Against
Reference block or sdo.requirements.SignalTracking object, which the Simulink model output
can track. The tracking objective is a sum-squared-error tracking objective.

You specify the reference signal as a sequence of time-amplitude pairs:

yref (tref), tref ∈ Tref0, Tref1,⋯, Tref N .

The software computes the simulated response as a sequence of time-amplitude pairs:

ysim(tsim), tsim ∈ Tsim0, Tsim1,⋯, TsimN ,

where some values of tsim may match the values of tref.

A new time base, tnew, is formed from the union of the elements of tref and tsim. Elements that are not
within the minimum-maximum range of both tref and tsim are omitted:

tnew = t: tsim∪ tref

Using linear interpolation, the software computes the values of yref and ysim at the time points in tnew
and then computes the scaled error:

e(tnew) =
ysim(tnew)− yref (tnew)

max
tnew

yref
.

Finally, the software computes the weighted, integral square error:

f =∫w t e(t)2dt .

Note The weight w(t) is 1 by default. You can specify a different value of weight only at the command
line.

When your model has requirements or vector signals feeding a requirement, the tracking objective
equals the sum of the individual tracking integral errors for each signal:

 How the Optimization Algorithm Formulates Minimization Problems

3-5

F = ∑ f i .

Gradient Descent Method Problem Formulations
The Gradient Descent method uses the function fmincon to optimize model parameters to meet
design requirements.

Problem Type Problem Formulation
Feasibility Problem The software formulates the constraint C(x) as described in “Feasibility

Problem and Constraint Formulation” on page 3-3.

• If you select the maximally feasible solution option (i.e., the optimization
continues after an initial feasible solution is found), the software uses the
following problem formulation:

min
x, γ

 γ

s . t . C(x) ≤ γ
 x ≤ x ≤ x
 γ ≤ 0

γ is a slack variable that permits a feasible solution with C(x) ≤ γ rather
than C(x) ≤ 0.

• If you do not select the maximally feasible solution option (i.e., the
optimization terminates as soon as a feasible solution is found), the
software uses the following problem formulation:

min
x

 0

 s . t . C(x) ≤ 0
 x ≤ x ≤ x

Tracking Problem The software formulates the tracking objective F(x) as described in “Tracking
Problem” on page 3-5 and minimizes the tracking objective:

min
x

 F(x)

s . t . x ≤ x ≤ x
Mixed Feasibility and
Tracking Problem

The software minimizes following problem formulation:

min
x

 F(x)

s . t . C(x) ≤ 0
 x ≤ x ≤ x

Note When tracking a reference signal, the software ignores the maximally
feasible solution option.

3 Response Optimization

3-6

Simplex Search Method Problem Formulations
The Simplex Search method uses the function fminsearch and fminbnd to optimize model
parameters to meet design requirements. fminbnd is used if one scalar parameter is being
optimized, otherwise fminsearch is used. You cannot use parameter bounds x ≤ x ≤ x with
fminsearch.

Problem Type Problem Formulation
Feasibility Problem The software formulates the constraint C(x) as described in “Feasibility

Problem and Constraint Formulation” on page 3-3 and then minimizes the
maximum constraint violation:

min
x

 max C x

Tracking Problem The software formulates the tracking objective F(x) as described in “Tracking
Problem” on page 3-5 and then minimizes the tracking objective:

min
x

 F(x)

Mixed Feasibility and
Tracking Problem

The software formulates the problem in two steps:

1 Finds a feasible solution.

min
x

 max C x

2 Minimizes the tracking objective. The software uses the results from step
1 as initial guesses and maintains feasibility by introducing a
discontinuous barrier in the optimization objective.

min
x

 Γ x

where

Γ(x) =
∞ ifmax C(x) > 0
F(x) otherwise.

Pattern Search Method Problem Formulations
The Pattern Search method uses the function patternsearch to optimize model parameters to meet
design requirements.

Problem Type Problem Formulation
Feasibility Problem The software formulates the constraint C(x) as described in “Feasibility

Problem and Constraint Formulation” on page 3-3 and then minimizes the
maximum constraint violation:

min
x

 max C x

s . t . x ≤ x ≤ x

 How the Optimization Algorithm Formulates Minimization Problems

3-7

Problem Type Problem Formulation
Tracking Problem The software formulates the tracking objective F(x) as described in “Tracking

Problem” on page 3-5 and then minimizes the tracking objective:

min
x

 F(x)

s . t . x ≤ x ≤ x
Mixed Feasibility and
Tracking Problem

The software formulates the problem in two steps:

1 Finds a feasible solution.

min
x

 max C x

s . t . x ≤ x ≤ x
2 Minimizes the tracking objective. The software uses the results from step

1 as initial guesses and maintains feasibility by introducing a
discontinuous barrier in the optimization objective.

min
x

Γ(x)

s . t . x ≤ x ≤ x
where

Γ(x) =
∞ ifmax C(x) > 0
F(x) otherwise.

Gradient Computations
For the Gradient descent (fmincon) optimization solver, the gradients are computed using
numerical perturbation:

dx = eps3 × max x , 1
10xtypical

dL = max x− dx, xmin
dR = min x + dx, xmax
FL = opt_ f cn(dL)
FR = opt_ f cn(dR)

dF
dx =

FL− FR
dL− dR

• x is a scalar design variable.
• xmin is the lower bound of x.
• xmax is the upper bound of x.
• xtypical is the scaled value of x.
• opt_fcn is the objective function.

dx is relatively large to accommodate simulation solver tolerances.

3 Response Optimization

3-8

If you want to compute the gradients in any other way, you can do so in the cost function you write for
performing design optimization programmatically. See sdo.optimize and GradFcn of
sdo.OptimizeOptions for more information.

 How the Optimization Algorithm Formulates Minimization Problems

3-9

Specify Signals to Log
Design requirements require logged model signals. During optimization, the model is simulated using
the current value of the design variables and the logged signal is used to evaluate the design
requirements.

1 In the Response Optimizer, select Signal in the New drop-down list. A window opens where
you select a signal to log.

2 In the Simulink model window, click the signal to which you want to add a requirement.

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

3
Select the signal and click to add it to the signal set.

4 In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Data area of the Response
Optimizer.

See Also

• “Design Optimization to Track Reference Signal (GUI)”
• sdo.SimulationTest

3 Response Optimization

3-10

Specify Custom Requirements in the App
This topic shows how to specify custom requirements in the Response Optimizer.

You can specify custom requirements, such as minimizing system energy. To specify custom
requirements:

1 In the Response Optimizer, in New drop-down menu, select Custom Requirement. The
Create Requirement dialog box opens where you specify the custom requirement.

2 Specify a requirement name in Name.
3 Specify the requirement type in the Type drop-down menu.
4 Specify the name of the function that contains the custom requirement in Function. The field

must be specified as a function handle using @. The function must be on the MATLAB path. Click

 to review or edit the function.

If the function does not exist, clicking opens a template MATLAB file. Use this file to
implement the custom requirement. The default function name is myCustomRequirement.

5 (Optional) To prevent the solver from considering specific parameter combinations, select Error
if constraint is violated. Use this option for parameter-only constraints.

During an optimization iteration, the solver first evaluates requirements with this option
selected.

• If the constraint is violated, the solver skips evaluating any remaining requirements and
proceeds to the next iteration.

• If the constraint is not violated, the solver evaluates the remaining requirements for the
current iteration. If any of the remaining requirements bound signals or systems, then the
solver simulates the model.

For more information, see “Skip Model Simulation Based on Parameter Constraint Violation
(GUI)” on page 3-163.

Note If you select this check box, then do not specify signals or systems to bound. If you do
specify signals or systems, then this check box is ignored.

6 (Optional) Specify the signal or system, or both, to be bound.

You can apply this requirement to model signals, or a linearization of your Simulink model
(requires Simulink Control Design), or both.

Click Select Signals and Systems to Bound (Optional) to view the signal and linearization I/O
selection area.

• To apply this requirement to a model signal:

In the Signal area, select a logged signal to which you will apply the requirement.

If you have already selected a signal to log, as described in “Specify Signals to Log” on page
3-10, it appears in the list. Select the corresponding check box.

If you have not selected a signal to log:

 Specify Custom Requirements in the App

3-11

a
Click . A Create Signal Set dialog box opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a requirement.

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

c
Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Data area of the
Response Optimizer.

• To apply this requirement to a linear system:

a Specify the simulation time at which the model is linearized in Snapshot Times. For
multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select
the corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box. For more information on using this dialog box, see
“Create Linearization I/O Sets” on page 3-64.

For more information on linearization, see “What Is Linearization?” (Simulink Control
Design).

7 Click OK.

A new variable, with the specified name, appears in the Data area of the Response Optimizer.
A graphical display of the requirement also appears in the Response Optimizer app window.

See Also

Related Examples
• “Design Optimization to Meet a Custom Objective (GUI)” on page 3-103

3 Response Optimization

3-12

• “Design Optimization to Meet Custom Signal Requirements (GUI)” on page 3-125
• “Specify Time-Domain Design Requirements in the App” on page 3-16
• “Specify Frequency-Domain Design Requirements in the App” on page 3-43

 Specify Custom Requirements in the App

3-13

Move Constraints
Constraint-bound edges define time-domain constraints you would like to place on a particular signal
in your model. You can position these edges, which appear as a yellow shaded region bordered by a
black line, graphically on page 3-14 or exactly on page 3-15.

Move Constraints Graphically
Use the mouse to click and drag edges in the amplitude versus time plot, as shown in the following
figure.

• To move a constraint edge boundary or to change the slope of a constraint edge, position the
pointer over a constraint edge endpoint, and press and hold down the left mouse button. The
pointer should change to a hand symbol. While still holding the button down, drag the pointer to
the target location, and release the mouse button. Note that the edges on either side of the
boundary might not maintain their slopes.

• To move an entire constraint edge up, down, left, or right, position the mouse pointer over the
edge and press and hold down the left mouse button. The pointer should change to a four-way
arrow. While still holding the button down, drag the pointer to the target location, and release the
mouse button. Note that the edges on either side of the boundary might not maintain their slopes.

To move a constraint edge to a perfectly horizontal or vertical position, hold down the Shift key while
clicking and dragging the constraint edge. This causes the constraint edge to snap to a horizontal or
vertical position.

When moving constraint bound edges, it is sometimes helpful to display gridlines on the axes for
careful alignment of the constraint bound edges. To turn the gridlines on or off, right-click within the
axes and select Grid.

Note You can move a lower bound constraint edge above an upper bound constraint edge, or vice
versa, but this produces an error when you attempt to run the optimization.

3 Response Optimization

3-14

Position Constraints Exactly
To position a constraint edge exactly:

1 Position the pointer over the edge you want to move and right-click. Select Edit to open the Edit
Design Requirement dialog box.

2 Specify the position of each constraint edge in the Time and Amplitude columns.

See Also

More About
• “Specify Time-Domain Design Requirements in the App” on page 3-16
• “Specify Frequency-Domain Design Requirements in the App” on page 3-43

 Move Constraints

3-15

Specify Time-Domain Design Requirements in the App
In the Response Optimizer, you can specify the following time-domain requirements:

• Signal Bound — “Specify Piecewise-Linear Lower and Upper Bounds” on page 3-16
• Signal Property — “Specify Signal Property Requirements” on page 3-17
• Step Response Envelope — “Specify Step Response Characteristics” on page 3-19
• Signal Tracking — “Track Reference Signals” on page 3-21
• Ellipse Region Constraint — “Impose Elliptic Bound on Phase Plane Trajectory of Two Signals”

on page 3-22
• Custom Requirement — “Specify Custom Requirements” on page 3-24

After you specify the constraints, you can see if the requirements are satisfied by optimizing the
design variables. For more information, see “Specify Optimization Options” on page 3-62.

Specify Piecewise-Linear Lower and Upper Bounds
To specify upper and lower bounds on a signal:

1 In the Response Optimizer , select Signal Bound in the New drop-down list. A window opens
where you specify upper or lower bounds on a signal.

2 Specify a requirement name in the Name box.
3 Select the requirement type using the Type list.
4 Specify the edge start and end times and corresponding amplitude in the Time (s) and

Amplitude columns.
5

Click to specify additional bound edges.

Select a row and click to delete a bound edge.
6 In the Select Signals to Bound area, select a logged signal to apply the requirement to.

If you have already selected signals, as described in “Specify Signals to Log” on page 3-10, they
appear in the list. Select the corresponding check-box.

If you have not selected a signal to log:

a
Click . A Create Signal Set dialog box opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a requirement.

3 Response Optimization

3-16

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

c
Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Data area of the
Response Optimizer.

7 Click OK.

A variable with the specified requirement name appears in the Data area of the app. A graphical
display of the requirement also appears in the Response Optimizer app window.

8 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-14
• “Position Constraints Exactly” on page 3-15

Alternatively, you can add a Check Custom Bounds block to your model to specify piecewise-linear
bounds.

Specify Signal Property Requirements
To specify signal property requirements:

1 In the Response Optimizer, select Signal Property in the New drop-down list. A Create
Requirement window opens where you specify signal property requirements.

2 In the Name box, specify a requirement name.
3 In the Specify Property area, specify a signal property requirement using the Property and

Type lists and the Bound box.

Property List

Property Description Time weighting
available

Signal minimum Minimum of the signal No
Signal maximum Maximum of the signal No

 Specify Time-Domain Design Requirements in the App

3-17

Property Description Time weighting
available

Signal final value Last signal value No
Signal mean Average of signal value Yes
Signal median Middle value of signal Yes
Signal variance Variance of signal Yes
Signal interquartile
range

Difference between the 75th and 25th
percentiles of signal values

No

Signal sum
∑

i = t0

tN
S(i), where S(t0), …, S(tN) is the

signal to constrain.

Yes

Signal sum square
∑

i = t0

tN
S(i)2

Yes

Signal sum absolute
∑

i = t0

tN
S(i)

Yes

For signal properties where the Time-Weighted option is available, you can select it to weight
the property computation by the time intervals between samples.

Custom Signal Property

You can add a custom signal property to the Property list by editing the function
sdo.requirements.signalPropertyFcns.

a At the MATLAB command prompt, enter edit
sdo.requirements.signalPropertyFcns.

b Add your signal property function to the FcnData cell array.

Your signal property function must be on the path.
4 In the Select Signals to Bound area, select the logged signal to which you want to apply the

requirement.

The signal selected must have numeric type data (either floating-point or integer). Also, if the
property selected is Signal median, Signal variance, or Signal interquartile range,
then the signal data must be floating-point (either double or single).

If you have already selected a signal, as described in “Specify Signals to Log” on page 3-10, the
signal appears in the list. Select the corresponding check box for that signal.

If you have not selected a signal to log:

a
Click . A Create Signal Set dialog box opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a requirement.

3 Response Optimization

3-18

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

c
Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Data area of the
Response Optimizer.

5 Click OK.

A variable with the specified requirement name appears in the Data area of the app. An iteration
plot depicting the signal property for each iteration also appears in the Response Optimizer
app window.

Specify Step Response Characteristics
To apply a step response requirement to a signal in your model, specify the step response
characteristics as follows:

1 Select a step response requirement from the Response Optimizer.

In the New drop-down menu of the app, in the New Time Domain Requirement section, select
Step Response Envelope.

A Create Requirement dialog box opens where you specify the step response requirements on a
signal.

2 Specify a requirement name in the Name field of the dialog box.
3 Specify the step response characteristics:

• Initial value — Input level before the step occurs
• Step time — Time at which the step takes place
• Final value — Input level after the step occurs
• Rise time — The time taken for the response signal to reach a specified percentage of the

step range. The step range is the difference between the final and initial values.
• % Rise — The percentage of the step range used with Rise time to define the overall rise

time characteristics.

 Specify Time-Domain Design Requirements in the App

3-19

• Settling time — Time taken until the response signal settles within a specified region around
the final value. This settling region is defined as the final step value plus or minus the
specified percentage of the final value.

• % Settling — The percentage of the final value that defines the settling range of settling time
characteristic specified in Settling time.

• % Overshoot — The amount by which the response signal can exceed the final value. This
amount is specified as a percentage of the step range. The step range is the difference
between the final and initial values.

• % Undershoot — The amount by which the response signal can undershoot the initial value.
This amount is specified as a percentage of the step range. The step range is the difference
between the final and initial values.

4 Specify the signal to be bound.

To apply this requirement to a model signal, in the Select Signals to Bound area, select a
logged signal to which you will apply the requirement.

If you have already selected a signal to log, as described in “Specify Signals to Log” on page 3-
10, it appears in the list. Select the corresponding check-box.

If you have not selected a signal to log:

a
Click . The Create Signal Set dialog box opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a requirement.

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

c
Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Data area of the
Response Optimizer.

Alternatively, you can use the Check Step Response Characteristics block to specify step response
bounds for a signal.

See Also

“Design Optimization to Meet Step Response Requirements (GUI)”

3 Response Optimization

3-20

Track Reference Signals
Use reference tracking to force a model signal to match a desired signal. To track a reference signal:

1 In the Response Optimizer, select Signal Tracking in the New drop-down list. A window
opens where you specify the reference signal to track.

2 Specify a requirement name in the Name box.
3 Define the reference signal by entering vectors, or variables from the workspace, in the Time

vector and Amplitude fields.

Click Update reference signal data to use the new amplitude and time vector as the reference
signal.

4 Specify how the optimization solver minimizes the error between the reference and model signals
using the Tracking Method list:

• SSE — Reduces the sum of squared errors
• SAE — Reduces the sum of absolute errors

5 In the Specify Signal to Track Reference Signal area, select a logged signal to apply the
requirement to.

If you already selected a signal to log, as described in “Specify Signals to Log” on page 3-10, they
appear in the list. Select the corresponding check-box.

If you have not selected a signal to log:

a
Click . A Create Signal Set dialog box opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a requirement.

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

c
Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Data area of the
Response Optimizer.

e Select the check-box corresponding to the signal and click OK.

 Specify Time-Domain Design Requirements in the App

3-21

A variable with the specified requirement name appears in the Data area of the app. A graphical
display of the signal bound also appears in the Response Optimizer app window.

Note When tracking a reference signal, the software ignores the maximally feasible solution option.
For more information on this option, in the Response Optimization tab, click Options >
Optimization Options, and click Help.

Alternatively, you can use the Check Against Reference block to specify a reference signal to track.

See Also

“Design Optimization to Track Reference Signal (GUI)”

Impose Elliptic Bound on Phase Plane Trajectory of Two Signals
You can impose an elliptic bound on the phase plane trajectory of two signals in your Simulink model.
The phase plane trajectory is a plot of the two signals against each other. You specify the radii, center,
and rotation of the bounding ellipse. You also specify whether you require the trajectory of the two
signals to lie inside or outside the ellipse.

The following image shows the bounding ellipse and an example of the phase plane trajectory of two
signals.

The X-Y plane is the phase plane defined by the two signals. rx and ry are the radii of the bounding
ellipse along the x and y axes, and θR is the rotation of the ellipse about the center. The ellipse center
is at (x0,y0). In the image, the phase plane trajectory of the signals lies within the bounding ellipse for
all time points t1 to tn.

To specify the elliptical bound requirement:

1 In the Response Optimizer, in New drop-down list, select Ellipse Region Constraint.

3 Response Optimization

3-22

In the Create Requirement dialog box, specify the requirement.

2 Specify a requirement name in Name.

1 Specify the two signals that you want to impose the requirement on. The signals define the X-Y
plane of the bounding ellipse. To specify the signals, click the corresponding Select buttons.

When you click Select, the Create Signal Set dialog box opens.

 Specify Time-Domain Design Requirements in the App

3-23

In the Simulink model window, click the signal to which you want to add the requirement. The
Create Signal Set dialog box updates with the name of the block and the port number where the

selected signal is located. Select the signal, and click to add it to the signal set.

Once you have specified the logged signal in the Create Signal Set dialog box, the signal appears
in the Create Requirement dialog box.

2 Specify the radii of the bounding ellipse as real positive finite values in Semi-axis length. You
specify rx and ry that are the x-axis and y-axis radii before any rotation about the ellipse center.

3 Specify the location of the center of the bounding ellipse in Center. You specify x0 and y0, the x
and y coordinates of the center, as real finite values.

4 Specify the angle of rotation of the ellipse about its center as a real finite scalar in Angle (rad).
5 Specify the bound Type as one of the following:

• '<=' — Ellipse is an upper bound. The phase plane trajectory of the two signals should lie
inside or on the ellipse.

• '>=' — Ellipse is a lower bound. The phase plane trajectory of the two signals should lie
outside or on the ellipse.

1 (Optional) To create an iteration plot that shows the evaluated requirement value for each
optimization iteration, select Create Plot. The plot is populated when you perform optimization.
During optimization, the software computes the signed minimum distance of each point in the
phase plane trajectory to the bounding ellipse. The maximum of these signed distances is
returned and plotted at each iteration. A positive value indicates that the requirement has been
violated and at least one of the trajectory points lies outside the bounding region.

2 Click OK.

A new variable, with the specified requirement name, appears in the Data area of the Response
Optimizer. A graphical display of the requirement also appears in the Response Optimizer app
window.

Specify Custom Requirements
You can specify custom requirements, such as minimizing system energy. To specify custom
requirements:

1 In the Response Optimizer, in New drop-down menu, select Custom Requirement. The
Create Requirement dialog box opens where you specify the custom requirement.

3 Response Optimization

3-24

2 Specify a requirement name in Name.
3 Specify the requirement type in the Type drop-down menu.
4 Specify the name of the function that contains the custom requirement in Function. The field

must be specified as a function handle using @. The function must be on the MATLAB path. Click

 to review or edit the function.

If the function does not exist, clicking opens a template MATLAB file. Use this file to
implement the custom requirement. The default function name is myCustomRequirement.

5 (Optional) To prevent the solver from considering specific parameter combinations, select Error
if constraint is violated. Use this option for parameter-only constraints.

During an optimization iteration, the solver first evaluates requirements with this option
selected.

• If the constraint is violated, the solver skips evaluating any remaining requirements and
proceeds to the next iteration.

• If the constraint is not violated, the solver evaluates the remaining requirements for the
current iteration. If any of the remaining requirements bound signals or systems, then the
solver simulates the model.

For more information, see “Skip Model Simulation Based on Parameter Constraint Violation
(GUI)” on page 3-163.

Note If you select this check box, then do not specify signals or systems to bound. If you do
specify signals or systems, then this check box is ignored.

6 (Optional) Specify the signal or system, or both, to be bound.

You can apply this requirement to model signals, or a linearization of your Simulink model
(requires Simulink Control Design), or both.

Click Select Signals and Systems to Bound (Optional) to view the signal and linearization I/O
selection area.

• To apply this requirement to a model signal:

In the Signal area, select a logged signal to which you will apply the requirement.

If you have already selected a signal to log, as described in “Specify Signals to Log” on page
3-10, it appears in the list. Select the corresponding check box.

If you have not selected a signal to log:

a
Click . A Create Signal Set dialog box opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a requirement.

 Specify Time-Domain Design Requirements in the App

3-25

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

c
Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Data area of the
Response Optimizer.

• To apply this requirement to a linear system:

a Specify the simulation time at which the model is linearized in Snapshot Times. For
multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select
the corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box. For more information on using this dialog box, see
“Create Linearization I/O Sets” on page 3-64.

For more information on linearization, see “What Is Linearization?” (Simulink Control
Design).

7 Click OK.

A new variable, with the specified name, appears in the Data area of the Response Optimizer.
A graphical display of the requirement also appears in the Response Optimizer app window.

See Also

• “Design Optimization to Meet a Custom Objective (GUI)” on page 3-103
• “Design Optimization to Meet a Custom Objective (Code)” on page 3-118

Edit Design Requirements
The Edit Design Requirement dialog box allows you to exactly position constraint segments and to
edit other properties of these constraints. The dialog box has two main components:

3 Response Optimization

3-26

• An upper panel to specify the constraint you are editing
• A lower panel to edit the constraint parameters

The upper panel of the Edit Design Requirement dialog box resembles the image in the following
figure.

In the Control System Designer app in Control System Toolbox™, you can edit design requirements
from the analysis plots. The Design requirement drop-down list will contain all the requirements on
that plot.

Edit Design Requirement Dialog Box Parameters

The particular parameters shown within the lower panel of the Edit Design Requirement dialog box
depend on the type of constraint/requirement. In some cases, the lower panel contains a grid with
one row for each segment and one column for each constraint parameter. The following table
summarizes the various constraint parameters.

Edit Design Requirement Dialog Box Parameters

Parameter Found in Description
Time Upper and lower time response

bounds on step and impulse
response plots

Defines the time range of a segment within
a constraint/requirement.

Amplitude Upper and lower time response
bounds on step and impulse
response plots

Defines the beginning and ending amplitude
of a constraint segment.

Slope (1/s) Upper and lower time response
bounds

Defines the slope, in 1/s, of a constraint
segment. It is an alternative method of
specifying the magnitude values. Entering a
new Slope value changes any previously
defined magnitude values.

Final value Step response bounds Defines the input level after the step occurs.
Rise time Step response bounds Defines a constraint segment for a

particular rise time.
% Rise Step response bounds The percentage of the step's range used to

describe the rise time.
Settling time Step response bounds Defines a constraint segment for a

particular settling time.
% Settling Step response bounds The percentage of the final value that

defines the settling region used to describe
the settling time.

% Overshoot Step response bounds The percentage amount by which the signal
can exceed the final value before settling.

% Undershoot Step response bounds Defines the constraint segments for a
particular percent undershoot.

 Specify Time-Domain Design Requirements in the App

3-27

See Also

Related Examples
• “Specify Design Variables” on page 3-56
• “Specify Variable Requirements in the App” on page 3-31
• “Specify Frequency-Domain Design Requirements in the App” on page 3-43
• “Specify Optimization Options” on page 3-62
• “Design Optimization Using Lookup Table Requirements for Gain Scheduling (GUI)” on page 6-

59

3 Response Optimization

3-28

Edit Design Requirements
The Edit Design Requirement dialog box allows you to exactly position constraint segments and to
edit other properties of these constraints. The dialog box has two main components:

• An upper panel to specify the constraint you are editing
• A lower panel to edit the constraint parameters

The upper panel of the Edit Design Requirement dialog box resembles the image in the following
figure.

In the context of the Control System Designer app in Control System Toolbox, Design
requirement is associated with both the analysis plot or editor that contains the requirement and
the particular requirement itself. To edit other constraints within the app, select another design
requirement from the drop-down menu.

Edit Design Requirement Dialog Box Parameters
The particular parameters shown within the lower panel of the Edit Design Requirement dialog box
depend on the type of constraint/requirement. In some cases, the lower panel contains a grid with
one row for each segment and one column for each constraint parameter. The following table
summarizes the various constraint parameters.

 Edit Design Requirements

3-29

Edit Design Requirement Dialog Box Parameters

Parameter Found in Description
Time Upper and lower time response

bounds on step and impulse
response plots

Defines the time range of a segment within
a constraint/requirement.

Amplitude Upper and lower time response
bounds on step and impulse
response plots

Defines the beginning and ending amplitude
of a constraint segment.

Slope (1/s) Upper and lower time response
bounds

Defines the slope, in 1/s, of a constraint
segment. It is an alternative method of
specifying the magnitude values. Entering a
new Slope value changes any previously
defined magnitude values.

Final value Step response bounds Defines the input level after the step occurs.
Rise time Step response bounds Defines a constraint segment for a

particular rise time.
% Rise Step response bounds The percentage of the step's range used to

describe the rise time.
Settling time Step response bounds Defines a constraint segment for a

particular settling time.
% Settling Step response bounds The percentage of the final value that

defines the settling region used to describe
the settling time.

% Overshoot Step response bounds The percentage amount by which the signal
can exceed the final value before settling.

% Undershoot Step response bounds Defines the constraint segments for a
particular percent undershoot.

3 Response Optimization

3-30

Specify Variable Requirements in the App
In the Response Optimizer, you can specify the following constraints on Simulink model parameters
that are specified as variables:

• Monotonic Variable — “Impose Monotonic Constraint Requirement on Variable” on page 3-31
• Smoothness Constraint — “Impose Upper Bound on Gradient Magnitude of Variable” on page 3-

33
• Function Matching — “Specify Linear or Quadratic Function Matching Constraint” on page 3-

36
• Vector Property — “Specify Requirement on a Vector Property” on page 3-39
• Relational Constraint — “Impose Relational Constraint Between Two Variables” on page 3-41

For information about how to specify a model parameter as a variable, see “Add Model Parameters as
Variables for Optimization” on page 3-56. After you specify the constraints, you can see if the
requirements are satisfied by optimizing the design variables. For more information, see “Specify
Optimization Options” on page 3-62.

Impose Monotonic Constraint Requirement on Variable
You can impose a monotonic constraint requirement on a design variable in your Simulink model. For
example, constrain a variable to be monotonically increasing. The variable can be a vector, matrix, or
multidimensional array that is a parameter in your model, such as the breakpoints of a lookup table.

To specify the requirement:

1 In the Response Optimizer, in New drop-down menu, select Monotonic Variable.

In the Create Requirement dialog box, specify the requirement.

 Specify Variable Requirements in the App

3-31

2 Specify a requirement name in Name.
3 Specify the name of the variable in Variable. The variable must be a vector, matrix, or

multidimensional array of data type double or single.

You can type the name of a nonscalar variable, or select the variable from the drop-down list. The
list is prepopulated with all the nonscalar variables in your model. To choose a subset of an array
or matrix variable V, type an expression. For example, specify Variable as V(1,:) to use the first
row of the variable. To use a numeric nonscalar field x of a structure S, type S.x. You cannot use
mathematical expressions such as a + b.

Sometimes, models have parameters that are not explicitly defined in the model itself. For
example, a gain k could be defined in the MATLAB workspace as k = a + b, where a and b are
not defined in the model but k is used. To add these independent parameters as variables in the
Response Optimizer, see “Add Model Parameters as Variables for Optimization” on page 3-56.

1 Specify the monotonicity for each dimension of the variable.

After you select the variable, the dialog updates to show Dimension 1 to Dimension n,
corresponding to the n dimensions of the variable. For example, for a 2-dimensional variable K of
size 3-by-5, the dialog updates as shown.

Specify the monotonicity for the first dimension in Dimension 1 and for the nth-dimension in
Dimension n as one of the following options:

• Strictly increasing — Each element of the variable is greater than the previous element
in that dimension.

• Increasing — Each element of the variable is greater than or equal to the previous element
in that dimension.

• Decreasing — Each element of the variable is less than or equal to the previous element in
that dimension.

• Strictly decreasing — Each element of the variable is less than the previous element in
that dimension.

3 Response Optimization

3-32

• Not constrained — No constraint exists between the elements of the variable in that
dimension.

1 (Optional) To create an iteration plot that shows the evaluated requirement value for each
optimization iteration, select Create Plot. The plot is populated when you perform optimization.
The plot shows the evaluated requirement value corresponding to each dimension of the variable.
A positive value indicates that the requirement has been violated.

2 Click OK.

A new variable, with the specified requirement name, appears in the Data area of the Response
Optimizer app.

Impose Upper Bound on Gradient Magnitude of Variable
You can impose an upper bound on the gradient magnitude of a variable in your Simulink model. The
variable can be a vector, matrix, or multidimensional array that is a parameter in your model, such as
the data of a lookup table. For example, consider a car engine controller whose gain changes under
different operating conditions determined by the car speed. You can use a gradient bound constraint
to limit the rate at which the controller gain changes per unit change in vehicle speed.

For an N-dimensional variable F that is a function of independent variables x1,..., xN, the gradient
magnitude is defined as:

∇F = ∂F
∂x1

2
+ ∂F
∂x2

2
+⋯+ ∂F

∂xN

2

To compute the gradient magnitude, the software computes the partial derivative in each dimension
by computing the difference between successive F data in that dimension and dividing by the spacing
between the data in that dimension. You specify F and the spacing between the data. The software
checks whether the gradient magnitude of the variable data is less than or equal to a specified bound.
If the gradient magnitude of the data is greater than the required bound, the variable data is not
smooth.

To specify the requirement:

1 In the Response Optimizer, in New drop-down list, select Smoothness Constraint.

In the Create Requirement dialog box, specify the requirement.

 Specify Variable Requirements in the App

3-33

2 Specify a requirement name in Name.
3 Specify the gradient magnitude bound as a nonnegative finite real scalar in Gradient maximum

magnitude.
4 Specify the variable F that you want to impose the requirement on in Dependent Variable. The

variable must be a vector, matrix, or multidimensional array of data type double or single. The
variable must be a parameter in your model or a constant that you enter.

You can type the name of a nonscalar variable or constant, or select the variable from the drop-
down list. The list is prepopulated with all the nonscalar variables in your model. To choose a
subset of an array or matrix variable V, type an expression. For example, specify Variable as
V(1,:) to use the first row of the variable. To use a numeric nonscalar field x of a structure S,
type S.x. You cannot use mathematical expressions such as a + b.

Sometimes, models have parameters that are not explicitly defined in the model itself. For
example, a gain k could be defined in the MATLAB workspace as k = a + b, where a and b are
not defined in the model but k is used. To add these independent parameters as variables in the
Response Optimizer, see “Add Model Parameters as Variables for Optimization” on page 3-56.

1 Specify the spacing between points of Dependent Variable data in each dimension in
Independent Variable.

After you select the Dependent Variable, the dialog updates to show Dimension 1 to
Dimension n, corresponding to the n dimensions of the dependent variable. For example, for a
1-dimensional variable K, the dialog updates as shown.

3 Response Optimization

3-34

The first dimension specifies the spacing going down the dependent variable data rows, and the
second specifies spacing across the columns. The Nth dimension specifies the spacing along
the Nth dimension of dependent variable data. You can specify the independent variables in each
dimension as scalars or vectors.

• Scalars — Specify the spacing between dependent variable data F in the corresponding
dimension as a nonzero scalar. For example, suppose that Dependent Variable is two-
dimensional, and the spacing between data in the first dimension is 5 and in the second
dimension is 2. In the Independent Variable section, specify Dimension 1 as 5 and
Dimension 2 as 2.

• Vectors — Specify the coordinates of F data in the corresponding dimension as real, numeric,
monotonic vectors. The software uses the coordinates to compute the spacing between the
dependent variable data points in the corresponding dimension. The length of the vector must
match the length of F in the corresponding dimension. You do not have to specify coordinates
with uniform spacing. For example, suppose that F is two-dimensional, and the length of the
data in the first and second dimension is 3 and 5, respectively. The coordinates of the data in
the first dimension are [1 2 3]. In the second dimension, the spacing is not uniform and the
coordinates of the data are [1 2 10 20 30]. In the Independent Variable section,
specify Dimension 1 as [1 2 3] and Dimension 2 as [1 2 10 20 30].

You can also specify the independent variables by typing the name of a variable, or selecting a
variable from the drop-down list. The list is prepopulated with all the variables in your model that
have the appropriate size. To choose a subset of an array or matrix variable V, type an
expression. For example, specify as V(1,:) to use the first row of the variable. To use a numeric
field x of a structure S, type S.x. You cannot use mathematical expressions such as a + b.

1 (Optional) To create an iteration plot that shows the evaluated requirement value for each
optimization iteration, select Create Plot. The plot is populated when you perform optimization.
A positive value indicates that the requirement has been violated.

2 Click OK.

A new variable, with the specified requirement name, appears in the Data area of the Response
Optimizer.

 Specify Variable Requirements in the App

3-35

Specify Linear or Quadratic Function Matching Constraint
In the app, you can constrain a variable's values to match a linear or quadratic function. The variable
can be a vector, matrix, or a multidimensional array that is a parameter in your model, such as the
data of a lookup table in your model. To specify the requirement:

1 In Response Optimizer, from the New drop-down list, select Function Matching.

In the Create Requirement dialog box, specify the requirement. A new requirement with the
name specified in Name appears in the Requirements area of the app.

3 Response Optimization

3-36

2 Specify the function to be matched. To do so, set Functional Relation to one of the following
values:

• Linear — Data from variable V are fit to a linear function. For example, for a two-dimensional
variable with independent variables, X1 and X2, the linear function has the form:

V = a0 + a1X1 + a2X2

The software calculates the fit coefficients a0, a1, and a2 and then calculates the sum of
squares of the error between the data and the linear function.

• Quadratic with no cross-terms — Data are fit to a quadratic function with no cross-
terms. For a two-dimensional variable, the pure quadratic function has the form:

V = a0 + a1X1 + a2X1
2 + a3X2 + a4X2

2

• Quadratic with all cross-terms — Variable data are fit to a quadratic function that
includes cross-terms. For a two-dimensional variable, the quadratic function has the form:

 Specify Variable Requirements in the App

3-37

V = a0 + a1X1 + a2X1
2 + a3X2 + a4X2

2 + a5X1X2

If the variable is one-dimensional, there are no cross-terms and so the computation is the
same as when Functional relation is Quadratic with no cross-terms.

3 Specify the variable V to which you want to apply the requirement in Dependent Variable. The
variable must be a vector, matrix, or multidimensional array of data type double or single that
is a parameter in your model.

Type the name of a nonscalar variable, or select a variable from the drop-down list. The list is
prepopulated with all the nonscalar variables in your model. To see where the selected variable is
used on your model, click Show in Model. To choose a subset of an array or matrix variable A,
type an expression. For example, specify A(1,:) to use the first row of the variable. To use a
numeric nonscalar field x of a structure S, type S.x. You cannot use mathematical expressions
such as a + b.

Sometimes models have parameters that are not explicitly defined in the model itself. For
example, a gain k could be defined in the MATLAB workspace as k = a + b, where a and b are
not defined in the model but k is used. To add these independent parameters as design variables
in the app, see “Add Model Parameters as Variables for Optimization” on page 3-56.

4 Specify the independent variable vectors used for computing the function in Independent
Variable. The independent variables are specified as real, numeric, monotonic vectors.

The number of independent variables must equal the number of dimensions of the dependent
variable V. For example, you specify two independent variables when V is a matrix, and use three
independent variables when V is three-dimensional. The first independent variable vector
specifies coordinates going down the rows of V, and the second independent variable vector
specifies coordinates going across the columns of V. The nth independent variable vector specifies
coordinates along the nth dimension of V. The number of elements in each independent variable
vector must match the size of V in the corresponding dimension. The independent variable
vectors must be monotonically increasing or decreasing.

You can also specify the independent variables by typing the name of a variable, or selecting a
variable from the drop-down list. The list is prepopulated with all the variables in your model that
have the appropriate size. To choose a subset of an array or matrix variable A, type an
expression. For example, specify A(1,:) to use the first row of the variable. To use a numeric
field x of a structure S, type S.x. You cannot use mathematical expressions such as a + b. To
use an equally spaced vector, select [1 2 ...N] from the drop-down menu.

5 Specify whether you want to center and scale the independent variables. When you select the
Center and scale independent variables option, the independent variable vectors you specify
are divided by a scale value after subtracting a center value. Centering can improve numerical
conditioning when one or more independent variable vectors have a mean that differs from 0 by
several orders of magnitude. Scaling can improve numerical conditioning when independent
variable vectors differ from each other by several orders of magnitude.

To specify the center and scale values for each independent variable, expand the Center and
Scale Settings section, and select one of the following:

• Use automatic centers and scales - The center and scale values are the mean and standard
deviation for each independent variable. Using the mean and standard deviation values to
center and scale the independent variables is the default option.

3 Response Optimization

3-38

• Use custom centers and scales - Specify the Center and Scale values for each
independent variable. The independent variable vectors are divided by the corresponding
Scale value after subtracting the value you specify in Center.

6 (Optional) Select the Create Plot option to create an iteration plot that shows the evaluated
requirement value for each optimization iteration. The software computes an error signal that is
the difference between the dependent variable data and the specified function of the independent
variables. The sum of squares of this error is plotted when you perform optimization. A positive
value indicates that the requirement has been violated, and 0 value indicates that the
requirement is satisfied. The closer the value is to 0, the better the match between the function
and dependent variable data.

7 Close the Create Requirement dialog box.

The requirement created in the Requirements area of the app is updated with the specified
characteristics.

Specify Requirement on a Vector Property
You can specify a requirement on a vector property, such as the mean value of the vector. The vector
must be a parameter in your model. To specify the requirement:

1 In the Response Optimizer, in New drop-down list, select Vector Property.

In the Create Requirement dialog box, specify the requirement.

 Specify Variable Requirements in the App

3-39

2 Specify a requirement name in Name.

1 Specify the vector property in Property. For a vector V with N elements, you can specify one of
the following properties:

• Vector mean — mean(V)
• Vector median — median(V)
• Vector variance — variance(V)
• Vector inter-quartile range — Difference between the 75th and 25th percentiles of

the vector values.
•

Vector sum — ∑
i = 1

N
V(i)

•
Vector sum of squares — ∑

i = 1

N
V(i)2

•
Vector sum of absolute values — ∑

i = 1

N
V(i)

• Vector minimum — min(V)
• Vector maximum — max(V)

2 Specify the type of requirement you want to impose on the vector property in Type. You can set
an upper or lower bound on the vector property, or require the property to equal a particular
value. You can also choose to maximize or minimize the vector property. For example, to
maximize the mean value of your vector, specify Property as Vector mean and Type as
Maximize the property.

3 Specify the value of the bound imposed on the vector property in Bound. Specify the bound as a
finite real scalar value. For example, if for a vector variable V you require mean(V) = 5, specify
Property as Vector mean, Type as Constrain property to be == the bound, and
Bound as 5.

1 Specify the name of the variable in Variable. The variable must be a vector, matrix, or
multidimensional array of data type double or single.

You can type the name of a nonscalar variable, or select the variable from the drop-down list. The
list is prepopulated with all the nonscalar variables in your model. To choose a subset of an array
or matrix variable V, type an expression. For example, specify Variable as V(1,:) to use the first
row of the variable. To use a numeric nonscalar field x of a structure S, type S.x. You cannot use
mathematical expressions such as a + b.

Sometimes, models have parameters that are not explicitly defined in the model itself. For
example, a gain k could be defined in the MATLAB workspace as k = a + b, where a and b are
not defined in the model but k is used. To add these independent parameters as variables in the
Response Optimizer, see “Add Model Parameters as Variables for Optimization” on page 3-56.

2 (Optional) To create an iteration plot that shows the evaluated requirement value for each
optimization iteration, select Create Plot. The plot is populated when you perform optimization.
A positive value indicates that the requirement has been violated.

3 Click OK.

A new variable, with the specified requirement name, appears in the Data area of the Response
Optimizer app.

3 Response Optimization

3-40

Impose Relational Constraint Between Two Variables
You can impose a relational constraint requirement on a pair of variables in your Simulink model. For
example, require that variable a is always greater than variable b. To specify the requirement:

1 In the Response Optimizer, in New drop-down list, select Relational Constraint.

In the Create Requirement dialog box, specify the requirement.

2 Specify a requirement name in Name.
3 Specify the name of the two variables in Variable. The variables can be vectors or arrays but

must be the same size.

Type the names of two variables, or select the variables from the drop-down lists. The lists are
prepopulated with all the variables in your model. To see where a selected variable is used on
your model, click Show in Model. To choose a subset of an array or matrix variable V, type an
expression. For example, specify Variable as V(1,:) to use the first row of the variable. To use a
numeric field x of a structure S, type S.x. You cannot use mathematical expressions such
as a + b.

Sometimes, models have parameters that are not explicitly defined in the model itself. For
example, a gain k could be defined in the MATLAB workspace as k = a + b, where a and b are
not defined in the model but k is used. To add these independent parameters as variables in the
Response Optimizer, see “Add Model Parameters as Variables for Optimization” on page 3-56.

1 Specify the relation between the elements of the two variables as one of the following in
Relationship:

 Specify Variable Requirements in the App

3-41

• '<' — Each data element in the first variable is less than the corresponding element in the
second variable.

• '<=' — Each data element in the first variable is less than or equal to the corresponding
element in the second variable.

• '>' — Each data element in the first variable is greater than the corresponding element in
the second variable.

• '>=' — Each data element in the first variable is greater than or equal to the corresponding
element in the second variable.

• '==' — Each data element in the first variable is equal to the corresponding element in the
second variable.

• '~=' — Each data element in the first variable is not equal to the corresponding element in
the second variable.

1 (Optional) To create an iteration plot that shows the evaluated requirement value for each
optimization iteration, select Create Plot. The plot is populated when you perform optimization.
The plot shows the evaluated requirement value corresponding to each element of the variables.
The interpretation of the evaluated requirement value depends on the requirement Type.

Type Evaluated Requirement Value
Requirement is Satisfied Requirement is Violated

'>' or '<' Negative number Positive number, or 0 if the
elements are equal

'>=' or '<=' Negative number, or 0 if the
elements are equal

Positive number

'==' 0 Non-zero number
'~=' 0 1

2 Click OK.

A new variable, with the specified requirement name, appears in the Data area of the Response
Optimizer app.

See Also

Related Examples
• “Specify Design Variables” on page 3-56
• “Specify Time-Domain Design Requirements in the App” on page 3-16
• “Specify Frequency-Domain Design Requirements in the App” on page 3-43
• “Specify Optimization Options” on page 3-62
• “Design Optimization Using Lookup Table Requirements for Gain Scheduling (GUI)” on page 6-

59

3 Response Optimization

3-42

Specify Frequency-Domain Design Requirements in the App

Specify Lower Bounds on Gain and Phase Margin
To specify lower bounds on the gain and phase margin of a linear system:

1 In the Response Optimizer, select Gain and Phase Margin in the New list. A window opens
where you specify lower bounds on the gain and phase margin of your linear system.

2 Specify a requirement name in Name.
3 Specify bounds on the gain margin or phase margin, or both.

• Gain margin — Amount of gain increase or decrease required to make the loop gain unity at
the frequency where the phase angle is –180°.

• Phase margin — Amount of phase increase or decrease required to make the phase angle –
180° when the loop gain is 1.0

To specify a lower bound on the gain margin or phase margin, or both, select the corresponding
check box and enter the lower bound value.

4 In the Select Systems to Bound section, select the linear systems to which this requirement
applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

 Specify Frequency-Domain Design Requirements in the App

3-43

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
5 Click OK.

A variable with the specified requirement name appears in the Data area of the app. A graphical
display of the requirement also appears in the Response Optimizer app window.

6 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-14
• “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Gain and Phase Margins block to specify bounds on the gain and
phase margin. (Requires Simulink Control Design.)

Specify Piecewise-Linear Lower and Upper Bounds on Frequency
Response
To specify upper or lower bounds on the magnitude of a system response:

1 In the Response Optimizer, select Bode Magnitude in the New list. A window opens where
you specify the lower or upper bounds on the magnitude of the system response.

2 Specify a requirement name in the Name box.
3 Specify the requirement type using the Type list.
4 Specify the edge start and end frequencies and corresponding magnitude in the Frequency and

Magnitude columns.
5 Insert or delete bound edges.

Click to specify additional bound edges.

Select a row and click to delete a bound edge.
6 In the Select Systems to Bound section, select the linear systems to which this requirement

applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

3 Response Optimization

3-44

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
7 Click OK.

A new variable with the specified name appears in the Data area of the Response Optimizer
app window. A graphical display of the requirement also appears in the Response Optimizer
app window.

8 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-14
• “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Bode Characteristics block to specify bounds on the magnitude
of the system response. (Requires Simulink Control Design.)

Specify Bound on Closed-Loop Peak Gain
To specify an upper bound on the closed-loop peak response of a system:

1 In the Response Optimizer, select Closed-Loop Peak Gain in the New list. A window opens
where you specify an upper bound on the closed-loop peak gain of the system.

2 Specify a requirement name in the Name box.
3 Specify the upper bound on the closed-loop peak gain in the Closed-Loop peak gain box.
4 In the Select Systems to Bound section, select the linear systems to which this requirement

applies.

 Specify Frequency-Domain Design Requirements in the App

3-45

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
5 Click OK.

A new variable with the specified name appears in the Data area of the Response Optimizer
app window. A graphical display of the requirement also appears in the Response Optimizer
app window.

6 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-14
• “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Nichols Characteristics block to specify bounds on the
magnitude of the system response. (Requires Simulink Control Design.)

3 Response Optimization

3-46

Specify Lower Bound on Damping Ratio
To specify a lower bound on the damping ratio of the system:

1 In the Response Optimizer, select Damping Ratio in the New list. A window opens where you
specify a lower bound on the damping ratio of the system.

2 Specify a requirement name in the Name box.
3 Specify the lower bound on the damping ratio in the Damping ratio box.
4 In the Select Systems to Bound section, select the linear systems to which this requirement

applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
5 Click OK.

A new variable with the specified name appears in the Data area of the Response Optimizer
app. A graphical display of the requirement also appears in the Response Optimizer app
window.

 Specify Frequency-Domain Design Requirements in the App

3-47

6 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-14
• “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Pole-Zero Characteristics block to specify a bound on the
damping ratio. (Requires Simulink Control Design.)

Specify Upper and Lower Bounds on Natural Frequency
To specify a bound on the natural frequency of the system:

1 In the Response Optimizer, select Natural Frequency in the New list. A window opens where
you specify a bound on the natural frequency of the system.

2 Specify a requirement name in the Name box.
3 Specify a lower or upper bound on the natural frequency in the Natural frequency box.
4 In the Select Systems to Bound section, select the linear systems to which this requirement

applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

3 Response Optimization

3-48

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
5 Click OK.

A new variable with the specified name appears in the Data area of the Response Optimizer
app. A graphical display of the requirement also appears in the Response Optimizer app
window.

6 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-14
• “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Pole-Zero Characteristics block to specify a bound on the natural
frequency. (Requires Simulink Control Design.)

Specify Upper Bound on Approximate Settling Time
To specify an upper bound on the approximate settling time of the system:

1 In the Response Optimizer, select Settling Time in the New list. A window opens where you
specify an upper bound on the approximate settling time of the system.

2 Specify a requirement name in the Name box.

 Specify Frequency-Domain Design Requirements in the App

3-49

3 Specify the upper bound on the approximate settling time in the Settling time box.
4 In the Select Systems to Bound section, select the linear systems to which this requirement

applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
5 Click OK.

A new variable with the specified name appears in the Data area of the Response Optimizer
app. A graphical display of the requirement also appears in the Response Optimizer app
window.

6 (Optional) In the graphical display, you can:

3 Response Optimization

3-50

• “Move Constraints Graphically” on page 3-14
• “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Pole-Zero Characteristics block to specify the approximate
settling time. (Requires Simulink Control Design.)

Specify Piecewise-Linear Upper and Lower Bounds on Singular Values
To specify piecewise-linear upper and lower bounds on the singular values of a system:

1 In the Response Optimizer, select Singular Values in the New list. A window opens where you
specify the lower or upper bounds on the singular values of the system.

2 Specify a requirement name in the Name box.
3 Specify the requirement type using the Type list.
4 Specify the edge start and end frequencies and corresponding magnitude in the Frequency and

Magnitude columns, respectively.
5 Insert or delete bound edges.

Click to specify additional bound edges.

Select a row and click to delete a bound edge.
6 In the Select Systems to Bound section, select the linear systems to which this requirement

applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
7 Click OK.

A new variable with the specified name appears in the Data area of the Response Optimizer
app. A graphical display of the requirement also appears in the Response Optimizer app
window.

 Specify Frequency-Domain Design Requirements in the App

3-51

8 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-14
• “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Singular Value Characteristics block to specify bounds on the
singular value. (Requires Simulink Control Design).

Specify Step Response Characteristics
To apply a step response requirement to a linearization of your model (requires Simulink Control
Design), specify the step response characteristics as follows:

1 Select a step response requirement from the Response Optimizer.

In the New drop-down menu of the app, in the New Frequency Domain Requirement section,
select Step Response Envelope.

A Create Requirement dialog box opens where you specify the step response requirements.
2 Specify a requirement name in the Name field of the dialog box.
3 Specify the step response characteristics:

• Initial value — Input level before the step occurs
• Step time — Time at which the step takes place
• Final value — Input level after the step occurs
• Rise time — The time taken for the response signal to reach a specified percentage of the

step range. The step range is the difference between the final and initial values.

3 Response Optimization

3-52

• % Rise — The percentage of the step range used with Rise time to define the overall rise
time characteristics.

• Settling time — Time taken until the response signal settles within a specified region around
the final value. This settling region is defined as the final step value plus or minus the
specified percentage of the final value.

• % Settling — The percentage of the final value that defines the settling range of settling time
characteristic specified in Settling time.

• % Overshoot — The amount by which the response signal can exceed the final value. This
amount is specified as a percentage of the step range. The step range is the difference
between the final and initial values.

• % Undershoot — The amount by which the response signal can undershoot the initial value.
This amount is specified as a percentage of the step range. The step range is the difference
between the final and initial values.

4 Specify the systems to be bound.

To apply this requirement to a linearization of your Simulink model:

a In the Select Systems to Bound area, specify the simulation time at which the model is
linearized in Snapshot Times. For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).

Alternatively, you can use the Check Step Response Characteristics block to specify step response
bounds for a signal.

Specify Custom Requirements
You can specify custom requirements, such as minimizing system energy. To specify custom
requirements:

1 In the Response Optimizer, in New drop-down menu, select Custom Requirement. The
Create Requirement dialog box opens where you specify the custom requirement.

2 Specify a requirement name in Name.
3 Specify the requirement type in the Type drop-down menu.
4 Specify the name of the function that contains the custom requirement in Function. The field

must be specified as a function handle using @. The function must be on the MATLAB path. Click

 to review or edit the function.

 Specify Frequency-Domain Design Requirements in the App

3-53

If the function does not exist, clicking opens a template MATLAB file. Use this file to
implement the custom requirement. The default function name is myCustomRequirement.

5 (Optional) To prevent the solver from considering specific parameter combinations, select Error
if constraint is violated. Use this option for parameter-only constraints.

During an optimization iteration, the solver first evaluates requirements with this option
selected.

• If the constraint is violated, the solver skips evaluating any remaining requirements and
proceeds to the next iteration.

• If the constraint is not violated, the solver evaluates the remaining requirements for the
current iteration. If any of the remaining requirements bound signals or systems, then the
solver simulates the model.

For more information, see “Skip Model Simulation Based on Parameter Constraint Violation
(GUI)” on page 3-163.

Note If you select this check box, then do not specify signals or systems to bound. If you do
specify signals or systems, then this check box is ignored.

6 (Optional) Specify the signal or system, or both, to be bound.

You can apply this requirement to model signals, or a linearization of your Simulink model
(requires Simulink Control Design), or both.

Click Select Signals and Systems to Bound (Optional) to view the signal and linearization I/O
selection area.

• To apply this requirement to a model signal:

In the Signal area, select a logged signal to which you will apply the requirement.

If you have already selected a signal to log, as described in “Specify Signals to Log” on page
3-10, it appears in the list. Select the corresponding check box.

If you have not selected a signal to log:

a
Click . A Create Signal Set dialog box opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a requirement.

3 Response Optimization

3-54

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

c
Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Data area of the
Response Optimizer.

• To apply this requirement to a linear system:

a Specify the simulation time at which the model is linearized in Snapshot Times. For
multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select
the corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box. For more information on using this dialog box, see
“Create Linearization I/O Sets” on page 3-64.

For more information on linearization, see “What Is Linearization?” (Simulink Control
Design).

7 Click OK.

A new variable, with the specified name, appears in the Data area of the Response Optimizer.
A graphical display of the requirement also appears in the Response Optimizer app window.

See Also

• “Design Optimization to Meet a Custom Objective (GUI)” on page 3-103
• “Design Optimization to Meet a Custom Objective (Code)” on page 3-118

See Also

Related Examples
• “Specify Design Variables” on page 3-56
• “Specify Time-Domain Design Requirements in the App” on page 3-16
• “Specify Variable Requirements in the App” on page 3-31
• “Specify Optimization Options” on page 3-62

 Specify Frequency-Domain Design Requirements in the App

3-55

Specify Design Variables
This topic shows how to specify design variables for optimization.

Before running the optimization, you must specify the model parameters to optimize. These
parameters form the design variables set for optimization. By tuning these parameters, Simulink
Design Optimization software attempts to make the signals meet the requirements. Simulink Design
Optimization software optimizes the response signals of the model by varying the tuned parameters
so that the response signals lie within the constraint bound segments or closely match a specified
reference signal. The design variables can be scalar, vector, matrix, or an expression that evaluates to
one of these values.

You can also use sensitivity analysis for finding the parameters that most influence the optimization
problem and use these as design variables. To open the Sensitivity Analyzer, in the Response

Optimization tab, click Sensitivity Analysis. In the Sensitivity Analyzer app, you can explore
the response optimization design space by altering the design variables, identify the parameters that
most influence the optimization problem, and compute initial values.

Add Model Parameters as Variables for Optimization
The software can only optimize variables that are in use by the Simulink model. Create variables for
optimization in the MATLAB or model workspace, and specify your model or block parameters using
these variables.

In this figure, the Proportional (P) and Integral (I) gain parameters of a PID Controller block are
specified as numerical values.

To optimize the gain parameters, specify them as variables Kp and Ki:

3 Response Optimization

3-56

1 Create the variables Kp and Ki in one of the following ways:

• Add the variables to the model workspace, and specify initial values.

• Write initialization code in the PreloadFcn callback of the model. For more information, see
“Model Callbacks”.

Kp = 1;
Ki = 1;

2 Specify the gain parameters as the variables Kp and Ki in the PID Controller block dialog box.

You can now select Kp and Ki for optimization. See, “Specify Design Variables” on page 3-58.

Specify Independent Parameters for Optimization

You can also specify independent parameters that do not appear explicitly in the model as variables
for optimization. However, you cannot use this workflow with Simulink fast restart.

Suppose that a model parameter Kint is related to independent parameters x and y such that Kint
= x+y. To optimize x and y instead of Kint:

• Create the independent variables x and y by adding them to the model workspace and specifying
initial values.

 Specify Design Variables

3-57

• The software only allows tuning of variables that are used by model blocks. To ensure that the
software detects x and y for tuning, add a Constant block to your model, and specify the
Constant value of the block as [x y]. Connect the block to a Display block.

• Write code in the InitFcn callback of the model that defines the relationship between Kint, x,
and y. You must first use the get_param function to get the variables x and y from the model
workspace before you can use them to define Kint.

wks = get_param(gcs,'ModelWorkspace')
x = evalin(wks,'x')
y = evalin(wks,'y')
Kint = x+y;

You can now select x and y for optimization. Do not optimize the independent and dependent
parameters simultaneously. Doing so can lead to incorrect results. For example, do not optimize
Kint, x and y together.

Specify Design Variables
To specify the parameters to be tuned using the Response Optimizer:

1 In the Design Variables Set list, select New.

A window opens where you specify design variables. All parameters in use by the model are
displayed in this window.

2 Select one or more parameter names and click

to add the selected parameters to a design variables set.

Note You can add the same parameter to multiple design variable sets.
3 (Optional) Specify design variable settings.

Setting Description Default
Variable The name of the parameter. Not an editable field
Value Value of the model parameter. This value is used by the

optimization method as the initial value and is
modified during optimization.

Current value of the parameter in
the model. If you edit this column,
click Update model variable
values to update the values in the
model.

Minimum The minimum value or lower bound for the parameter.
You can edit this field to provide an alternate minimum
value.

-Inf

3 Response Optimization

3-58

Setting Description Default
Maximum The maximum value or upper bound for the parameter.

You can edit this field to provide an alternate
maximum value.

Inf

Scale During optimization, the design variables are scaled,
or normalized, by dividing their current value by a
scale value. You can edit this field to provide an
alternate scaling factor.

Next power of 2 greater than the
current value of the parameter

The check-box indicates whether the parameter is selected as a design variable in the set. Select
it if you want this parameter to be tuned during the optimization. Deselect if you do not want this
parameter to be tuned during the optimization but you would like to keep it on the list of tuned
parameters (for a subsequent optimization).

Expand Variable Detail to see the block in the model that contains this parameter.
4 Click OK to create a design variable set.

If your model contains referenced models, you can select the referenced variables from the Create
Design Variables Set dialog box. For example, the first variable in the dialog box, Slew, is listed as
sdoRateLimitedController:Slew. sdoRateLimitedController is the name of the referenced
model with the variable Slew. The Slew variable has the same value for all instances of the
sdoRateLimitedController model. In contrast, the variable Kd can have a different value for each
instance of the referenced model containing it. For example, the second variable in the dialog box is
listed as sdoMultipleMotors/Control_1:Kd. The upper-level model sdoMultipleMotors has
block Control_1, which is a referenced model that has variable Kd. The value of this variable can be
different than Kd in block Control_2, which is the third variable in the dialog box. To enable
instance-specific values, Kd is specified as a model argument in the referenced model workspace.

See Also

Related Examples
• “Optimize Parameters for Robustness (GUI)” on page 3-172
• “Update Model with Design Variables Set” on page 3-60
• “Save Design Variable Values for Specific Iteration” on page 3-74

 Specify Design Variables

3-59

Update Model with Design Variables Set
This example shows how to update a model with a set of design variables.

Open the Simulink model and load the pre-configured Response Optimizer session.

load('pidtune_demo_sdosession_update_dv.mat')
sdotool(SDOSessionData)

The Response Optimizer opens and loads the preconfigured session. In the Data area,
DesignVars1 is a set of tuned design variables.

In the Design Variables Set list, select the design variable set, DesignVars1.

Open the Edit dialog box.

Click for the Design Variable Set list.

Select the variables you want to update in the model.

For this example, select Kd, Ki, and Kp.

3 Response Optimization

3-60

Click Update model variables.

Plot the model response.

In the Response Optimization tab, click Plot Current Response.

See Also

Related Examples
• “Save Design Variable Values for Specific Iteration” on page 3-74

 Update Model with Design Variables Set

3-61

Specify Optimization Options
This topic shows how to specify optimization options in the Response Optimizer, after you have
configured the design variables and design requirements.

After you have configured the design variables and design requirements, specify the following
optimization options:

1 Optimization progress and result options for optimization task

To specify these options, in the Response Optimization tab, click Options to open the
Response Optimization Options dialog box. In the General Options tab, specify the optimization
progress and result options. For details about the options, click the Help button.

2 Optimization method and termination options

Specify these options in the Optimization Options tab of the Response Optimization Options
dialog box.

3 Parallel computing options

Specify these options in the Parallel Options tab of the Response Optimization Options dialog
box. For details about the options, see “Optimize Design Using Parallel Computing (GUI)” on
page 3-184.

4 Linearization options

3 Response Optimization

3-62

Specify these options in the Linearization Options tab of the Response Optimization Options
dialog box.

See Also

Related Examples
• “Specify Design Variables” on page 3-56
• “Specify Time-Domain Design Requirements in the App” on page 3-16
• “Specify Frequency-Domain Design Requirements in the App” on page 3-43
• “Specify Custom Requirements in the App” on page 3-11

More About
• “How the Optimization Algorithm Formulates Minimization Problems” on page 3-3

 Specify Optimization Options

3-63

Create Linearization I/O Sets
This example shows how to create a linearization input/output set in the Response Optimizer or
Sensitivity Analyzer.

To create a linearization I/O set:

1 Open the Create Linearization I/O Set dialog box using one of the following methods:

•
In a requirement dialog box, in the Select Systems to Bound section, click .

• In the Response Optimizer, in the New drop-down list, select Linearization I/Os.

1 In your Simulink model, select one or more signals that you want to define as analysis points.

The selected signals appear in the Create linearization I/O set dialog box under Currently
selected signals.

2 Under Currently selected signals, click the signal you want to add. To select multiple signals,
hold Ctrl and click each signal you want to add.

To add a signal from within a bus signal, expand the bus and select the signal. For example,
select the data signal within the COUNTERBUS signal.

3 Response Optimization

3-64

3 To add the signal to list of Analysis I/Os, click Add.

4 In the Configuration drop-down list for the signal, select the type of analysis point you want to
define:

•
 Input Perturbation — Specifies an additive input to a signal.

•
 Output Measurement — Takes a measurement at a signal.

•
 Loop Break — Specifies a loop opening.

•
 Open-Loop Input — Specifies a loop break followed by an input perturbation.

•
 Open-Loop Output — Specifies an output measurement followed by a loop break.

•
 Loop Transfer — Specifies an output measurement before a loop break followed by an

input perturbation.
•

 Sensitivity — Specifies an input perturbation followed by an output measurement.
•

 Complementary Sensitivity — Specifies an output measurement followed by an input
perturbation.

For more information on the different types of analysis points, see “Specify Portion of Model to
Linearize” (Simulink Control Design).

5 Repeat steps 1–4 for any other signals you want to define as analysis points.

Tip To highlight the source block of an analysis point in the Simulink model, in the Analysis I/Os
list, select the analysis point, and click Highlight.

6 In the Variable name box, enter a name for the I/O set.
7 Click OK.

 Create Linearization I/O Sets

3-65

See Also

Related Examples
• “Design Optimization to Meet Frequency-Domain Requirements (GUI)” on page 3-129

More About
• “What Is Linearization?” (Simulink Control Design)

3 Response Optimization

3-66

Interact with Plots
This topic shows how to interact with plots in the Response Optimizer.

Response Plots
View model signals and the requirements applied to the signal using a response plot. You can also
plot the frequency response of a system (requires Simulink Control Design software).

The response plot shows the system response as it varies during optimization. You can also view the
uncertain system responses in the plot.

To plot a response plot:

1 In the Response Optimization tab of the app, in the Data to Plot drop-down list, choose a
signal, linear system, or requirement.

2 Select a response plot in the Add Plot drop-down list.

You can add to an existing plot, or create a plot. The drop-down list has entries for the supported
plot types for the given plot variable.

3 Display the current model response.

Click Plot Model Response. The current response appears as a thick line on the response plot.

 Interact with Plots

3-67

4 Configure the plot display.

• To select the signal or systems to display, right-click within the white space in the plot, and
choose from Signals and Systems in the menu.

• To control whether the response signal displays at intermediate steps during optimization,
right-click within the white space in the plot and select Responses > Show Iteration
Responses. The response at an intermediate step is based on parameter values at that
intermediate step in the optimization.

• Modify plot properties.

You can change plot properties such as plot title, axis labels, axes limits, and units. Right-click
the white space in a plot and select Axes Properties to open the Property Editor dialog box.

Spider Plots
Compare the values of design variable sets or evaluated requirements using a spider plot.

Spider plots depict multivariate data using a separate axis for each variable. The various axes are
arranged clockwise and have a common intersecting point.

To plot a spider plot for a design variable set or evaluated requirements:

1 In the Response Optimization tab of the app, in Data to Plot, choose design variables, or
evaluated requirements.

2 Select a Spider plot in the Add Plot drop-down list.

You can add to an existing plot, or create a new one. The drop-down list has entries for the
supported plot types for the given plot variable.

3 Configure the plot display.

To view only some of the variables or requirement values in a given plot, right-click the plot, and
select the variables or requirements in the Show list.

3 Response Optimization

3-68

For information on using a spider plot to compare design variables sets or evaluated requirements,
see “Compare Requirements and Design Variables Using Spider Plot” on page 3-71

Iteration Plots
Plot the values of design variables and requirements as they vary during optimization using an
iteration plot.

Iteration plots depict the value of the plot variables for each iteration. The x-axis represents the
iteration number.

To plot an iteration plot for a design variable set or requirements:

1 In the Response Optimization tab of the app, in Data to Plot, choose design variables or
requirements.

2 Select an iteration plot in the Add Plot drop-down list.

You can add to an existing plot, or create a plot. The drop-down list has entries for the supported
plot types for the given plot variable.

3 Configure the plot display.

To view scaled values of the plotted variables, right-click the plot, and select Show scaled
values.

4 Save design variables and requirements values for a given iteration using the iteration plots.

For more information, see “Save Design Variable Values for Specific Iteration” on page 3-74.

See Also

Related Examples
• “Save Design Variable Values for Specific Iteration” on page 3-74

 Interact with Plots

3-69

• “Compare Requirements and Design Variables Using Spider Plot” on page 3-71

3 Response Optimization

3-70

Compare Requirements and Design Variables Using Spider Plot
This example shows how to use a spider plot to compare requirement evaluations before and after
optimizing the response. You can use a similar procedure to compare the values of sets of design
variables.

Open the Simulink model and load the pre-configured Response Optimizer App session.

For this example, which uses a distillation column model, the step response requirements are
preconfigured and loaded in the model workspace.

1 Open the distillation model.

sys = 'distillation_demo';
open_system(sys)

2 Open the Response Optimizer.

In the Simulink model window, from the Apps tab, in the gallery, under Control Systems select
Response Optimizer.

Alternatively, click the Response Optimization GUI with preloaded data block in the
model and skip the next step.

3 Load the preconfigured Response Optimizer session.

Click the Response Optimization tab. In the Open Session drop-down list, select Open from
model workspace. A window opens where you select the Response Optimizer session to load.
Select distillation_optim and click OK.

The preconfigured step response requirements are loaded in the Response Optimizer.

Evaluate the requirement before optimization.

In the Response Optimization tab, click Evaluate Requirements.

A new variable, ReqValues, containing the evaluation of the requirements appears in the Data area.

When optimizing the model response, you create a set of requirements that it must satisfy. If the
requirements are violated, meaning that they evaluate to non-negative values, the design variables
must be optimized. After the optimization, you can compare the original requirement value with the
requirement evaluated using the optimized design variable values.

Plot the requirement value before optimization.

1 In the Data to Plot list, select ReqValues.
2 In the Add Plot list, select Spider plot.

 Compare Requirements and Design Variables Using Spider Plot

3-71

The plot has an axis for each edge-and-signal combination defined in the distillation_demo/
Desired Step Response check block. Points on each axis represent the violation for that signal-
edge combination and the plot connects these points to form a closed polygon representing the initial
design. Note that some points are negative, representing satisfied constraints, and some positive,
representing violated constraints.

Optimize the model.

Click Optimize.

A new variable, ReqValues1, containing the evaluation of the requirements using the optimized
design variables appears in the Data area.

Compare the requirement values before and after optimization.

1 In the Data to Plot list, select ReqValues1.
2 In the Add Plot list, select Spider plot 1.

3 Response Optimization

3-72

The optimized requirement values, ReqValues1, are all negative or zero, indicating that all the
constraints are satisfied.

See Also

More About
• “Save Design Variable Values for Specific Iteration” on page 3-74

 Compare Requirements and Design Variables Using Spider Plot

3-73

Save Design Variable Values for Specific Iteration
This example shows how to save the design variable values for specific optimization iterations.

During optimization, the optimization solver simulates the model using a different set of design
variables at each iteration. After the optimization completes, you can export the values for an
iteration from the iteration plot of the design variable set.

For this example, load a preconfigured Response Optimizer session. Optimize the model, and export
the design variable set values for the third iteration.

Open the Simulink model and load the preconfigured Response Optimizer session.

load('distillation_demo_sdosession_export_iter_dv.mat')
sdotool(SDOSessionData)

The Response Optimizer opens and loads the preconfigured session. Iteration Plot 1 is configured
to plot the values of DesignVars for each optimization iteration.

Click Optimize.

The optimization completes after four iterations.

Select the iteration plot of the design variable set.

Click Iteration plot 1.

Open the Save Iteration Data dialog box.

Right-click on the iteration plot, and select Save Iteration Data.

You can also access the Save Iteration Data dialog box from the Optimization Progress Report. To do
so, in the progress report, click Save Iteration.

Specify details about the design variable data to save:

• In the Data to save list, select DesignVars.
• In Iteration(s) to save, enter 3.

To specify multiple iterations, use a vector of integers. For example, [0 2 5].
• In Save to a variable named, enter DesignVars_iter.

Export the design variable values set.

3 Response Optimization

3-74

Click OK. The exported data variable, DesignVars_iter_3, appears in the Data area of the app.

Note The iteration number is added as a suffix to the saved data variable name.

See Also

Related Examples
• “Update Model with Design Variables Set” on page 3-60
• “Compare Requirements and Design Variables Using Spider Plot” on page 3-71

More About
• “Interact with Plots” on page 3-67

 Save Design Variable Values for Specific Iteration

3-75

Design Optimization to Meet Time- and Frequency-Domain
Requirements (GUI)

This example shows how to tune a controller to satisfy time-domain and frequency-domain design
requirements using the Response Optimizer.

The example requires Simulink® Control Design™.

Aircraft Longitudinal Flight Control Model

Open the Simulink model.

sys = 'sdoAircraft';
open_system(sys);

The aircraft model is based on the Simulink slexAircraftExample model. The model includes:

• Subsystems to model aircraft dynamics (Aircraft Dynamics Model), wind gusts (Dryden
Wind Gust Models), and pilot G-forces (Pilot G-force calculation).

• A step change applied to the aircraft joystick at 1 second into the simulation that causes the
aircraft to pitch upward.

Controller Design Problem

You tune the controller gains to meet the following time- and frequency-domain design requirements:

3 Response Optimization

3-76

• Angle-of-attack alpha response to a step change in the joystick has a rise time of less than 1
second, less than 1% overshoot, and settles to within 1% of steady state within less than 5 seconds

• Pitch-rate control loop has good tracking below 1 rad/s and 20 dB noise rejection above 100 rad/s

• Closed loop response from joystick to pilot G-Force is below 0 dB above 5 rad/s.

These requirements reduce the high frequency G-forces experienced by the pilot in response to
joystick changes while still maintaining flight performance.

The model includes the following blocks (from Simulink® Design Optimization™ and Simulink
Control Design Model Verification libraries):

• Alpha Response specifies the alpha step response requirement.

• Pitch Rate Loop specifies the pitch-rate performance requirement.

The linearization inputs/outputs are already selected in the Linearizations tab. The pitch-rate loop
starts from the input of the controller (the controller error signal) and ends at the output of the pitch-
rate sensor. The angle-of-attack loop is opened signal so that the block only computes the pitch-rate
loop response. The linear system is computed at a simulation time of 0.

 Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)

3-77

The Bounds tab specifies the following pitch-rate loop shape requirements:

• Greater than 20 dB over the range 0.01 rad/s to 0.1 rad/s

• Greater than 0 dB over the range 0.1 rad/s to 1 rad/s

• Less than -20 dB over the range 100 rad/s to 1000 rad/s

3 Response Optimization

3-78

• Pilot G Response specifies the G-force requirement.

The linearization inputs/outputs are already selected in the Linearizations tab. The linear system is
computed at a simulation time of 0.

 Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)

3-79

The Bounds tab specifies the G-force requirements of less than 0 dB over the range 5 rad/s 100
rad/s.

3 Response Optimization

3-80

Open the Response Optimizer

Open the Response Optimizer to configure and run design optimization problems interactively.
Click Response Optimization on the Block Parameters dialog of Alpha Response, Pitch Rate
Loop or Pilot G Response block. Alternatively, type sdotool('sdoAircraft'). To show
multiple requirement plots at the same time, use the View tab in the app.

 Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)

3-81

The app detects the requirements specified in the Model Verification blocks and automatically
includes them as requirements to satisfy.

Specify Design Variables

Specify the following model parameters as design variables for optimization:

• Controller gains Ki and Kf

• Pitch-rate sensor gain Kq

• Alpha sensor gain Ka

In the Design Variables Set drop-down list, select New. A dialog to select model parameters for
optimization opens.

3 Response Optimization

3-82

Select Ki, Kf, Kq and Ka. Click << to add the selected parameters to the design variables set.

Specify minimum and maximum gain values, the Ki and Kf values must remain negative while Ka and
Kq must remain positive.

Press Enter after you enter the values.

Click OK. A new variable DesignVars appears in the Response Optimizer browser.

Evaluate the Initial Design

Click Plot Model Response to simulate the model and check how well the initial design satisfies the
design requirements.

 Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)

3-83

The plots indicate that the current design does not satisfy the pilot G-force requirement and the alpha
step response overshoot requirement is violated.

Optimize the Design

Create a plot to display how the controller variables are modified during the optimization. In the
Data To Plot drop-down list, select DesignVars, which contains the optimization design variables
Ki, Kf, Kq and Ka. In the Add Plot drop-down list, select Iteration plot.

3 Response Optimization

3-84

Click Optimize.

 Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)

3-85

3 Response Optimization

3-86

To load a pre-configured file and run the optimization, click Open in the Response Optimization tab
and select sdoAircraft_sdosession.mat. Alternatively load the project by typing:

>> load sdoAircraft_sdosession

>> sdotool(SDOSessionData)

The optimization progress window updates at each iteration and shows that the optimization
converged after 5 iterations.

The Alpha Response and Pilot G Response plots indicate that the design requirements are
satisfied. The DesignVars plot shows that the controller gains converged to new values.

To view the optimized design variable values, click DesignVars in the Response Optimizer
browser. The optimized values of the design variables are automatically updated in the Simulink
model.

% Close the model
bdclose('sdoAircraft')

 Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)

3-87

Design Optimization Tuning Parameters in Referenced Models
(GUI)

This example shows how to tune parameters in referenced models, using the Response Optimizer.

Motor Control Model

The model shows the control of angular position for two motors. Open the Simulink Model.

open_system('sdoMultipleMotors')

Model references are used for the two controllers, which are instances of the same model. Open the
controller.

open_system('sdoRateLimitedController')

3 Response Optimization

3-88

Each controller has PID gains Kp, Ki, and Kd, and a slew rate, Slew. The Slew value limits the rate at
which the control signal changes, so that currents drawn from the power supply stay within the
power supply's limits. The Slew value is common to both instances of the controller. In contrast, the
PID gains need to be different for each instance of the controller, since the motors being controlled
have different characteristics. Therefore, the PID gains are specified as model arguments in the
controller's model workspace. The PID gain values are set at the level of the sdoMultipleMotors
model.

Design Problem

The control reference signal is a step change in position, which occurs at 1 second. Each motor's
angular position should follow the reference signal, but the first motor has a smaller moment of
inertia and can respond more quickly to changes in the reference signal. We want the angular
position of the first motor to satisfy the following requirements:

• Rise time: 2 seconds

• Settling time: 7 seconds

The second motor has a larger moment of inertia so it can't respond as quickly. We want the angular
position of the second motor to satisfy the following requirements:

• Rise time: 8 seconds

• Settling time: 10 seconds

Also, the derivative of each controller signal is required to be in the range from -5 to 5, so that
currents drawn from the power supply stay within the power supply's limits.

All these requirements are specified using blocks in the Simulink model.

Open the Response Optimizer

In the Simulink model from the Apps tab, click Response Optimizer under Control Systems to
launch the Response Optimizer app. With the current settings of the controller variables, observe
that neither step response requirement is satisfied.

 Design Optimization Tuning Parameters in Referenced Models (GUI)

3-89

Specify Design Variables

In the Design Variables Set list, select New. The dialog shows tunable variables. The Slew variable
is listed as sdoRateLimitedController:Slew, indicating that the variable is set at the level of the
sdoRateLimitedController model. The colon is a delimiter between the model and variable. The
Slew variable has the same value for all instances of the controller model. In contrast, the derivative
gain for the first controller is listed as sdoMultipleMotors/Control_1:Kd, indicating that the
variable is set at the level of the sdoMultipleMotors model, where it appears in the Control_1
block. The forward slash is the delimiter for Simulink blockpaths.

Select the common Slew variable, as well as the Kd, Ki, and Kp parameters for each model. Add
these variables to the design variable set. Specify the minimum value for the Slew variable as 0.

3 Response Optimization

3-90

Click OK. A new variable, DesignVars, appears in the Response Optimizer browser. Create a plot
of the design variables to see how they evolve during optimization. Under Data to Plot, select
DesignVars. Click Add Plot and add an iteration plot. You can use the View tab to arrange the plots
so they are all visible.

Optimize the Design

To optimize the design, click Optimize. The plots are updated during optimization. When
optimization is complete, observe that all design requirements are satisfied. The step responses are
within the prescribed bounds, as are the controller output signal derivatives.

 Design Optimization Tuning Parameters in Referenced Models (GUI)

3-91

3 Response Optimization

3-92

Close the models.

 Design Optimization Tuning Parameters in Referenced Models (GUI)

3-93

bdclose('sdoMultipleMotors')
bdclose('sdoRateLimitedController')

See Also

More About
• “Design Optimization Tuning Parameters in Referenced Models (Code)” on page 3-95

3 Response Optimization

3-94

Design Optimization Tuning Parameters in Referenced Models
(Code)

This example shows how to tune parameters in referenced models, using the sdo.optimize
command.

Motor Control Model

The model shows the control of angular position for two motors. Open the Simulink Model.

open_system('sdoMultipleMotors')

Two motors are controlled. Model references are used for the controllers, which are instances of the
same model. Open the controller.

open_system('sdoRateLimitedController')

 Design Optimization Tuning Parameters in Referenced Models (Code)

3-95

Design Problem

The two motors in the main model have different characteristics, so each controller needs to be
tailored to its motor. Each controller has PID gains Kp, Ki, and Kd, and a slew rate, Slew. The Slew
value limits the rate at which the control signal changes. The Slew value is common to both instances
of the controller. In contrast, the PID gains need to be different for each instance of the controller,
since the motors being controlled have different characteristics. Therefore, the PID gains are
specified as model arguments in the controller's model workspace. The PID gain values are set at the
level of the sdoMultipleMotors model.

The control reference signal is a step change in position, which occurs at 1 second. Each motor's
angular position should follow the reference signal, but the first motor has a smaller moment of
inertia and can respond more quickly to changes in the reference signal. Also, the derivative of each
controller signal must be limited, so that currents drawn from the power supply stay within the power
supply's limits.

Specify Design Variables

Specify the design variables to be tuned by the optimization routine in order to satisfy the
requirements. The Slew variable is specified as sdoRateLimitedController:Slew, indicating that
the variable is set at the level of the sdoRateLimitedController model. The colon is a delimiter
between the model and variable. The Slew variable has the same value for all instances of the
controller model. In contrast, the proportional gain for the first controller is specified as
sdoMultipleMotors/Control_1:Kp, indicating that the variable is set at the level of the
sdoMultipleMotors model, where it appears in the Control_1 block. The forward slash is the
delimiter for Simulink blockpaths.

Specify that design variables include the gains Kp, Ki, and Kd, for both PID controllers. Also include
the slew rate, Slew, which is common to both controllers. Finally, specify that the slew rate cannot be
negative.

DesignVars = sdo.getParameterFromModel('sdoMultipleMotors', ...
 {'sdoRateLimitedController:Slew', ...
 ...
 'sdoMultipleMotors/Control_1:Kp', ...
 'sdoMultipleMotors/Control_1:Ki', ...
 'sdoMultipleMotors/Control_1:Kd', ...
 ...
 'sdoMultipleMotors/Control_2:Kp', ...
 'sdoMultipleMotors/Control_2:Ki', ...
 'sdoMultipleMotors/Control_2:Kd' });
DesignVars(1).Minimum = 0;

Specify Design Requirements

Each motor's angular position angle should follow the reference signal, but the first motor has a
smaller moment of inertia and can respond more quickly to changes in the reference signal. We want
the angular position of the first motor to satisfy the following requirements:

• Rise time: 2 seconds

3 Response Optimization

3-96

• Settling time: 7 seconds

This requirement is specified in a step response check block in the Simulink model. We can refer to
the block and include the requirement in a variable, to be passed to the optimization objective
function.

Requirements = struct;
bnds = getbounds('sdoMultipleMotors/Motor1_Step_Response');
Requirements.Motor1_StepResponse = bnds{1};

The second motor has a larger moment of inertia, so it can't respond as quickly. We want the angular
position of the second motor to satisfy the following requirements:

• Rise time: 8 seconds

• Settling time: 10 seconds

This requirement is also specified in a step response check block in the Simulink model, and we refer
to the block to include the requirement in a variable, to be passed to the optimization objective
function.

bnds = getbounds('sdoMultipleMotors/Motor2_Step_Response');
Requirements.Motor2_StepResponse = bnds{1};

Also, the derivative of each controller signal is required to be in the range from -5 to 5, so that
currents drawn from the power supply stay within the power supply's limits. These requirements are
specified in bound check blocks in the Simulink model, and these requirements should also be
collected among requirements to be passed to the optimization objective function.

bnds = getbounds('sdoMultipleMotors/ReqBounds_Derivative_Controller1');
Requirements.Controller1_DerivBound1 = bnds{1};
Requirements.Controller1_DerivBound2 = bnds{2};
bnds = getbounds('sdoMultipleMotors/ReqBounds_Derivative_Controller2');
Requirements.Controller2_DerivBound1 = bnds{1};
Requirements.Controller2_DerivBound2 = bnds{2};

Prevent check block assertions during optimization.

CheckBlockStatus = sdo.setCheckBlockEnabled('sdoMultipleMotors','off');

Simulation Definition

The cost function requires a simulation scenario to run the model. Create a simulation scenario and
add model signals to log, so their values are available to the cost function.

Simulator = sdo.SimulationTest('sdoMultipleMotors');

The motor angular positions need to be logged during optimization, to evaluate the requirements on
their step responses.

Motor1_Position = Simulink.SimulationData.SignalLoggingInfo;
Motor1_Position.BlockPath = 'sdoMultipleMotors/Motor1_Step_Response/u';
Motor1_Position.LoggingInfo.LoggingName = 'Motor1_Position';
Motor1_Position.LoggingInfo.NameMode = 1;

Motor2_Position = Simulink.SimulationData.SignalLoggingInfo;
Motor2_Position.BlockPath = 'sdoMultipleMotors/Motor2_Step_Response/u';

 Design Optimization Tuning Parameters in Referenced Models (Code)

3-97

Motor2_Position.LoggingInfo.LoggingName = 'Motor2_Position';
Motor2_Position.LoggingInfo.NameMode = 1;

The controller signal derivatives also need to be logged, to evaluate the bound requirements on them.

Controller1_Derivative = Simulink.SimulationData.SignalLoggingInfo;
Controller1_Derivative.BlockPath = 'sdoMultipleMotors/ReqBounds_Derivative_Controller1/u';
Controller1_Derivative.LoggingInfo.LoggingName = 'Controller1_Derivative';
Controller1_Derivative.LoggingInfo.NameMode = 1;

Controller2_Derivative = Simulink.SimulationData.SignalLoggingInfo;
Controller2_Derivative.BlockPath = 'sdoMultipleMotors/ReqBounds_Derivative_Controller2/u';
Controller2_Derivative.LoggingInfo.LoggingName = 'Controller2_Derivative';
Controller2_Derivative.LoggingInfo.NameMode = 1;

To log these signals during optimization, collect them into the simulation scenario, Simulator.

Simulator.LoggingInfo.Signals = [...
 Motor1_Position ; ...
 Motor2_Position ; ...
 Controller1_Derivative ; ...
 Controller2_Derivative];

Create Optimization Objective Function

Create an objective function, which will be called at each optimization iteration, to evaluate the
design requirements as the design variables are tuned. This cost function has input arguments for the
design variables, simulation scenario, and design requirements.

type sdoMultipleMotors_Design

function Vals = sdoMultipleMotors_Design(P,Simulator,Requirements)
%SDOMULTIPLEMOTORS_DESIGN Objective function for multiple motors
%
% Function called at each iteration of the optimization problem.
%
% The function is called with the model named mdl, a set of parameter
% values, P, a Simulator, and the design Requirements to evaluate. It
% returns the objective value and constraint violations, Vals, to the
% optimization solver.
%
% See the sdoExampleCostFunction function and sdo.optimize for a more
% detailed description of the function signature.
%
% See also sdoMultipleMotors_cmddemo

% Copyright 2018 The MathWorks, Inc.

%% Model Evaluation

% Simulate the model.
Simulator.Parameters = P;
Simulator = sim(Simulator);

% Retrieve logged signal data.
SimLog = find(Simulator.LoggedData, get_param('sdoMultipleMotors','SignalLoggingName'));
Motor1_Position = find(SimLog,'Motor1_Position');

3 Response Optimization

3-98

Motor2_Position = find(SimLog,'Motor2_Position');
Controller1_Derivative = find(SimLog,'Controller1_Derivative');
Controller2_Derivative = find(SimLog,'Controller2_Derivative');

% Evaluate the design requirements.
Cleq_Motor1_StepResponse = evalRequirement(Requirements.Motor1_StepResponse, Motor1_Position.Values);
Cleq_Motor2_StepResponse = evalRequirement(Requirements.Motor2_StepResponse, Motor2_Position.Values);
Cleq_Controller1_DerivBound1 = evalRequirement(Requirements.Controller1_DerivBound1, Controller1_Derivative.Values);
Cleq_Controller1_DerivBound2 = evalRequirement(Requirements.Controller1_DerivBound2, Controller1_Derivative.Values);
Cleq_Controller2_DerivBound1 = evalRequirement(Requirements.Controller2_DerivBound1, Controller2_Derivative.Values);
Cleq_Controller2_DerivBound2 = evalRequirement(Requirements.Controller2_DerivBound2, Controller2_Derivative.Values);

%% Return Values.
%
% Collect the evaluated design requirement values in a structure to
% return to the optimization solver.
Vals.Cleq = [...
 Cleq_Motor1_StepResponse(:); ...
 Cleq_Motor2_StepResponse(:); ...
 Cleq_Controller1_DerivBound1(:); ...
 Cleq_Controller1_DerivBound2(:); ...
 Cleq_Controller2_DerivBound1(:); ...
 Cleq_Controller2_DerivBound2(:)];

end

To optimize, define a handle to the cost function that uses the Simulator and Requirements
defined above. Use an anonymous function that takes one argument (the design variables) and calls
the objective function. Finally, call sdo.optimize to optimize the design variables to try to meet the
requirements.

optimfcn = @(P) sdoMultipleMotors_Design(P, Simulator, Requirements);
[Optimized_DesignVars, Info] = sdo.optimize(optimfcn, DesignVars);

 Optimization started 25-Aug-2020 21:07:43

 max First-order
 Iter F-count f(x) constraint Step-size optimality
 0 15 0 211.8
 1 30 0 8.464 2.92 26.5
 2 50 0 6.531 0.396 15.1
 3 70 0 1.931 0.675 15.7
 4 85 0 0.241 1.67 41.1
 5 100 0 0.04523 0.273 1.02e+03
 6 110 0 0.04523 0.00396 0
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Restore check block assertions.

sdo.setCheckBlockEnabled('sdoMultipleMotors', CheckBlockStatus);

Update Model

Update the model with the optimized parameter values.

 Design Optimization Tuning Parameters in Referenced Models (Code)

3-99

sdo.setValueInModel('sdoMultipleMotors',Optimized_DesignVars);

Close the models.

bdclose('sdoMultipleMotors')
bdclose('sdoRateLimitedController')

See Also

More About
• “Design Optimization Tuning Parameters in Referenced Models (GUI)” on page 3-88

3 Response Optimization

3-100

Specify Steady-State Operating Point for Response
Optimization

What is a Steady-State Operating Point?
An operating point of a dynamic system defines the states and root-level input signals of the model at
a specific time. For example, in a car engine model, variables such as engine speed, throttle angle,
engine temperature, and surrounding atmospheric conditions typically describe the operating point.

A steady-state operating point of a model, also called an equilibrium or trim condition, includes state
variables that do not change with time.

A model can have several steady-state operating points. For example, a hanging damped pendulum
has two steady-state operating points at which the pendulum position does not change with time. A
stable steady-state operating point occurs when a pendulum hangs straight down. When the
pendulum position deviates slightly, the pendulum always returns to equilibrium. In other words,
small changes in the operating point do not cause the system to leave the region of good
approximation around the equilibrium value.

When using optimization search to compute operating points for nonlinear systems, your initial
guesses for the states and input levels must be near the desired operating point to ensure
convergence.

When linearizing a model with multiple steady-state operating points, it is important to have the right
operating point. For example, linearizing a pendulum model around the stable steady-state operating
point produces a stable linear model, whereas linearizing around the unstable steady-state operating
point produces an unstable linear model.

For more information on operating points, see “What Is an Operating Point?” (Simulink Control
Design) and “What Is a Steady-State Operating Point?” (Simulink Control Design).

Setting up a Steady-State Operating Point
This topic shows how to setup a steady-state operating point in Response Optimizer. To improve the
fit between the model and measured data, the model must be set to steady-state before optimization.

1 Open the Response Optimizer and specify your requirements using the steps outlined in
“Design Optimization to Meet Frequency-Domain Requirements (GUI)” on page 3-129.

2 In the toolstrip, click Options and select Operating Point Options from the drop down
menu.

3 The following Operating Point dialog box opens.

 Specify Steady-State Operating Point for Response Optimization

3-101

The Optimize at steady-state option is checked by default when you open the operating point
dialog. Use the States, Inputs and Outputs tabs to specify the known parameters, bounds and
deviations. For instance, there is one state in the above figure. Use the operating point dialog to
specify that this state should be treated as an unknown, and it should be set to steady state.
During response optimization, the operating point computation will vary this state to set it at
steady-state.

You can also sync operating point specifications from your Simulink model using the
button.

4 The Simulink Design Optimization software uses optimization methods to search for operating
points in a model. Use the Options tab of the dialog to specify these optimization methods. These
options specify the optimization algorithm, tolerances, and stopping conditions. For instance, the
option Gradient descent with projection is often used to find the operating point for
systems that use physical modeling. For more information, click on the button.

5 Having specified the operating point parameters, continue with the optimization workflow as
described in “Design Optimization to Meet Frequency-Domain Requirements (GUI)” on page 3-
129.

See Also

More About
• “What Is an Operating Point?” (Simulink Control Design)
• “What Is a Steady-State Operating Point?” (Simulink Control Design)
• “Set Model to Steady-State When Estimating Parameters (GUI)” on page 2-117
• “Set Model to Steady-State When Estimating Parameters (Code)” on page 2-97

3 Response Optimization

3-102

Design Optimization to Meet a Custom Objective (GUI)
This example shows how to optimize a design to meet a custom objective using the Response
Optimizer. You optimize the cylinder parameters to minimize the cylinder geometry and satisfy
design requirements.

Hydraulic Cylinder Model

The hydraulic cylinder model is based on the Simulink model sldemo_hydcyl. The model includes:

• Pump and Cylinder Assembly subsystems. For more information on the subsystems, see “Single
Hydraulic Cylinder Simulation”.

• A step change applied to the cylinder control valve orifice area that causes the cylinder piston
position to change.

Hydraulic Cylinder Design Problem

You tune the cylinder cross-sectional area and piston spring constant to meet the following design
requirements:

• Ensure that the piston position has a step response rise time of less than 0.04 seconds and setting
time of less than 0.05 seconds.

• Limit the maximum cylinder pressures to 1.75e6 N/m.

• Minimize the cylinder cross-sectional area.

Open the Response Optimizer

Open the Response Optimizer to configure and run design optimization problems interactively
using the command

sdotool('sdoHydraulicCylinder')

 Design Optimization to Meet a Custom Objective (GUI)

3-103

Specify Design Variables

Specify the following model parameters as design variables for optimization:

• Cylinder cross-sectional area Ac

• Piston spring constant K

In the Design Variables Set drop-down list, select New. A dialog to select model parameters for
optimization opens.

3 Response Optimization

3-104

Select Ac and K. Click <- to add the selected parameters to the design variables set.

Limit the cylinder cross-sectional area to circular area with radius between 1 and 2 centimeters and
the piston spring constant to a range of 1e4 to 10e4 N/m. To do so, specify the maximum and
minimum for the corresponding variable in the Maximum and Minimum columns.

Because the variable values are different orders of magnitude, scale Ac by 1e-3 and K by 1e5.

Press Enter after you specify the values.

Click OK. A new variable DesignVars appears in the Response Optimizer browser.

Specify Design Requirements

The design requirements require logged model signals. During optimization, the model is simulated
using the current value of the design variables and the logged signal is used to evaluate the design
requirements.

Log the cylinder pressures, which is the first output port of the Cylinder Assembly block.

In the New drop-down list, select Signal. A dialog to select model signals to log opens.

 Design Optimization to Meet a Custom Objective (GUI)

3-105

Enter Pressures as the signal name in the Signal set field. Then, in the Simulink model, click the
first output port of the Cylinder Assembly block named Pressure. The dialog updates to display
the selected signal.

Select the signal in the dialog and click -> to add it to the signal set.

3 Response Optimization

3-106

Click OK. A new variable Pressures appears in the Response Optimizer browser.

Similarly, log the piston position, which is the second output of the Cylinder Assembly block, in a
variable named PistonPosition.

Specify the maximum cylinder pressure requirement of less than 1.75e6 N/m.

In the New drop-down list, select Signal Bound. A dialog to create a signal bound requirement
opens.

 Design Optimization to Meet a Custom Objective (GUI)

3-107

Designate the Requirement Name as MaxPressure. In both the start and end Amplitude columns,
enter the maximum pressure requirement of 1.75e6 N/m, and set the Edge End Time to 0.1 s. In the
Select Signals to Bound area, select Pressures, the signal on which this requirement applies.

3 Response Optimization

3-108

Click OK.

• A new MaxPressure variable appears in the Response Optimizer browser.

• A graphical view of the maximum pressure requirement is automatically created.

 Design Optimization to Meet a Custom Objective (GUI)

3-109

Specify the piston position step response requirement of rise time of less than 0.04 seconds and a
settling time of less than 0.05 seconds.

In the New drop-down list of the Response Optimization tab, select Step Response Envelope. A
dialog to create a step response requirement opens.

Specify a requirement named PistonResponse, and the required rise and settling time bounds.
Select PistonPosition as the signal to apply the step response requirement to.

3 Response Optimization

3-110

Click OK.

Specify Custom Objective

The custom objective is to minimize the cylinder cross-sectional area.

In the New drop-down list, select Custom Requirement. A dialog to create custom requirement
opens.

 Design Optimization to Meet a Custom Objective (GUI)

3-111

Specify a function to call during optimization in the Requirement Function field. At each
optimization iteration, the software calls the function and passes the current design variable values.
You can also optionally pass logged signals to the custom requirement. Here, you use
sdoHydraulicCylinder_customObjective as the custom requirement function, which returns
the value of the cylinder cross-sectional area.

In the Requirement Type drop-down list, specify whether the requirement is an objective to
minimize (min), an inequality constraint (<=), or an equality constraint (==).

3 Response Optimization

3-112

type sdoHydraulicCylinder_customObjective

function objective = sdoHydraulicCylinder_customObjective(data)
%SDOHYDRAULICCYLINDER_CUSTOMOBJECTIVE
%
% The sdoHydraulicCylinder_customObjective function is used to define a
% custom requirement that can be used in the graphical SDTOOL environment.
%
% The |data| input argument is a structure with fields containing the
% design variable values chosen by the optimizer.
%
% The |objective| return argument is the objective value to be minimized by
% the SDOTOOL optimization solver.
%

% Copyright 2011 The MathWorks, Inc.

%For the cylinder design problem we want to minimize the cylinder
%cross-sectional area so return the cylinder cross-sectional area as an
%objective value.
Ac = data.DesignVars(1);
objective = Ac.Value;
end

Evaluate the Initial Design

Click Plot Model Response to simulate the model and check how well the initial design satisfies the
design requirements. To show both requirement plots at the same time, use the plot layout widgets in
the View tab.

 Design Optimization to Meet a Custom Objective (GUI)

3-113

From the plots, see that the maximum pressure requirement is satisfied but the piston position step
response requirement is not satisfied.

Optimize the Design

Create a plot to display how the cylinder cross-sectional area and piston spring constant are modified
during optimization.

In the Data to Plot drop-down list, select DesignVars, which contains the optimization design
variables Ac and K. In the Add Plot drop-down, create a new iteration plot to show the design
variable trajectories. For this new plot, click Show scaled values in the Iteration Plot tab, to
facilitate viewing the two trajectories on the same axes.

3 Response Optimization

3-114

Click Optimize in the Response Optimization tab.

 Design Optimization to Meet a Custom Objective (GUI)

3-115

3 Response Optimization

3-116

The optimization progress window updates at each iteration and shows that the optimization
converged after 4 iterations.

The Pressures and PistonPosition plots indicate that the design requirements are satisfied. The
MinimizeAC plot shows that the cylinder cross-sectional area Ac is minimized.

To view the optimized design variable values, click the variable name in the Response Optimizer
browser. The optimized values of the design variables are automatically updated in the Simulink
model.

Related Examples

To learn how to optimize the cylinder design using the sdo.optimize command, see “Design
Optimization to Meet a Custom Objective (Code)” on page 3-118.

 Design Optimization to Meet a Custom Objective (GUI)

3-117

Design Optimization to Meet a Custom Objective (Code)
This example shows how to optimize a design to meet custom objective using sdo.optimize. You
optimize the cylinder parameters to minimize the cylinder geometry and satisfy design requirements.

Hydraulic Cylinder Model

Open the Simulink model.

sys = 'sdoHydraulicCylinder';
open_system(sys);

The hydraulic cylinder model is based on the Simulink model sldemo_hydcyl. The model includes:

• Pump and Cylinder Assembly subsystems. For more information on the subsystems, see “Single
Hydraulic Cylinder Simulation”.

• A step change applied to the cylinder control valve orifice area that causes the cylinder piston
position to change.

Hydraulic Cylinder Design Problem

You tune the cylinder cross-sectional area and piston spring constant to meet the following design
requirements:

• Ensure that the piston position has a step response rise time of less than 0.04 seconds and setting
time of less than 0.05 seconds.

• Limit the maximum cylinder pressures to 1.75e6 N/m.

• Minimize the cylinder cross-sectional area.

Specify Design Variables

Select the following model parameters as design variables for optimization:

3 Response Optimization

3-118

• Cylinder cross-sectional area Ac

• Piston spring constant K

Ac = sdo.getParameterFromModel('sdoHydraulicCylinder','Ac');
K = sdo.getParameterFromModel('sdoHydraulicCylinder','K');

Limit the cylinder cross-sectional area to a circular area with radius between 1 and 2 centimeters.

Ac.Minimum = pi*1e-2^2; % m^2
Ac.Maximum = pi*2e-2^2; % m^2

Limit the piston spring constant to a range of 1e4 to 10e4 N/m.

K.Minimum = 1e4; % N/m
K.Maximum = 10e4; % N/m

Specify Design Requirements

The design requirements require logged model signals. During optimization, the model is simulated
using the current value of the design variables and the logged signal is used to evaluate the design
requirements.

Log the following signals:

• Cylinder pressures, available at the first output port of the Cylinder Assembly block

Pressures = Simulink.SimulationData.SignalLoggingInfo;
Pressures.BlockPath = 'sdoHydraulicCylinder/Cylinder Assembly';
Pressures.OutputPortIndex = 1;

• Piston position, available at the second output port of the Cylinder Assembly block

PistonPosition = Simulink.SimulationData.SignalLoggingInfo;
PistonPosition.BlockPath = 'sdoHydraulicCylinder/Cylinder Assembly';
PistonPosition.OutputPortIndex = 2;

Create an object to store the logging information and use later to simulate the model

simulator = sdo.SimulationTest('sdoHydraulicCylinder');
simulator.LoggingInfo.Signals = [PistonPosition,Pressures];

Specify the piston position step response requirement of rise time of less than 0.04 seconds and
settling time less than of 0.05 seconds.

PistonResponse = sdo.requirements.StepResponseEnvelope;
set(PistonResponse, ...
 'RiseTime', 0.04, ...
 'FinalValue', 0.04, ...
 'SettlingTime', 0.05, ...
 'PercentSettling', 1);

Specify the maximum cylinder pressure requirement of less than 1.75e6 N/m.

MaxPressure = sdo.requirements.SignalBound;
set(MaxPressure, ...
 'BoundTimes', [0 0.1], ...
 'BoundMagnitudes', [1.75e6 1.75e6], ...
 'Type', '<=');

 Design Optimization to Meet a Custom Objective (Code)

3-119

For convenience, collect the performance requirements into a single structure to use later.

requirements = struct(...
 'PistonResponse', PistonResponse, ...
 'MaxPressure', MaxPressure);

Create Objective/Constraint Function

To optimize the cylinder cross-sectional area and piston spring constant, create a function to evaluate
the cylinder design. This function is called at each optimization iteration.

Here, use an anonymous function with one argument that calls the
sdoHydraulicCylinder_design function.

evalDesign = @(p) sdoHydraulicCylinder_design(p,simulator,requirements);

The function:

• Has one input argument that specifies the cylinder cross-sectional area and piston spring constant
values.

• Returns the optimization objective value and optimization constraint violation values.

The optimization solver minimizes the objective value and attempts to keep the optimization
constraint violation values negative. Type help sdoExampleCostFunction for more details on how
to write the objective/constraint function.

The sdoHydraulicCylinder_design function uses the simulator and requirements objects to
evaluate the design. Type edit sdoHydraulicCylinder_design to examine the function in more
detail.

type sdoHydraulicCylinder_design

function design = sdoHydraulicCylinder_design(p,simulator,requirements)
%SDOHYDRAULICCYLINDER_DESIGN
%
% The sdoHydraulicCylinder_design function is used to evaluate a cylinder
% design.
%
% The |p| input argument is the vector of cylinder design parameters.
%
% The |simulator| input argument is a sdo.SimulinkTest object used to
% simulate the |sdoHydraulicCylinder| model and log simulation signals
%
% The |requirements| input argument contains the design requirements used
% to evaluate the cylinder design
%
% The |design| return argument contains information about the design
% evaluation that can be used by the |sdo.optimize| function to optimize
% the design.
%
% see also sdo.optimize, sdoExampleCostFunction

% Copyright 2011 The MathWorks, Inc.

%% Simulate the model
%

3 Response Optimization

3-120

% Use the simulator input argument to simulate the model and log model
% signals.
%
% First ensure that we simulate the model with the parameter values chosen
% by the optimizer.
%
simulator.Parameters = p;
% Simulate the model and log signals.
%
simulator = sim(simulator);
% Get the simulation signal log, the simulation log name is defined by the
% model |SignalLoggingName| property
%
logName = get_param('sdoHydraulicCylinder','SignalLoggingName');
simLog = get(simulator.LoggedData,logName);

%% Evaluate the design requirements
%
% Use the requirements input argument to evaluate the design requirements
%
% Check the PistonPosition signal against the stepresponse requirement
%
PistonPosition = get(simLog,'PistonPosition');
cPiston = evalRequirement(requirements.PistonResponse,PistonPosition.Values);
% Check the Pressure signals against the maximum requirement
%
Pressures = find(simLog,'Pressures');
cPressure = evalRequirement(requirements.MaxPressure,Pressures.Values);
% Use the PistonResponse and MaxPressure requirements as non-linear
% constraints for optimization.
design.Cleq = [cPiston(:);cPressure(:)];
% Add design objective to minimize the Cylinder cross-sectional area
Ac = p(1); %Since we called sdo.optimize(evalDesign,[Ac;K])
design.F = Ac.Value;
end

Evaluate the Initial Design

Call the objective function with the initial cylinder cross-sectional area and initial piston spring
constant.

initDesign = evalDesign([Ac;K]);

The function simulates the model and evaluates the design requirements. The scope shows that the
maximum pressure requirement is satisfied but the piston position step response requirement is not
satisfied.

initDesign is a structure with the following fields:

• Cleq shows that some of the inequality constraints are positive indicating they are not satisfied by
the initial design.

initDesign.Cleq

ans =

 -0.3839

 Design Optimization to Meet a Custom Objective (Code)

3-121

 -0.1861
 -0.1836
 -1.0000
 0.3033
 0.2909
 0.1671
 0.2326
 -0.0480
 -0.0480

• F shows the optimization objective value (in this case the cylinder cross-sectional area). The initial
design cross-sectional area, as expected, has the same value as the initial cross-sectional area
parameter Ac.

initDesign.F

ans =

 1.0000e-03

Optimize the Design

Pass the objective function, initial cross-sectional area and piston spring constant values to
sdo.optimize.

[pOpt,optInfo] = sdo.optimize(evalDesign,[Ac;K]);

 Optimization started 25-Aug-2020 21:07:10

 max First-order
 Iter F-count f(x) constraint Step-size optimality
 0 5 0.001 0.3033
 1 11 0.00057281 0.07293 0.48 85.4
 2 17 0.000391755 0 0.128 28
 3 22 0.000387832 0 0.00277 0.00461
 4 27 0.000382514 0 0.00372 0.00183
 5 32 0.000376867 0 0.00395 0.00125
 6 37 0.000373784 0 0.00225 0.000908
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

The optimization repeatedly evaluates the cylinder design by adjusting the cross-sectional area and
piston spring constant to meet the design requirements. From the scope, see that the maximum
pressure and piston response requirements are met.

The sdo.optimize function returns:

• pOpt shows the optimized cross-sectional area and piston spring constant values.

pOpt

3 Response Optimization

3-122

pOpt(1,1) =

 Name: 'Ac'
 Value: 3.7378e-04
 Minimum: 3.1416e-04
 Maximum: 0.0013
 Free: 1
 Scale: 0.0020
 Info: [1x1 struct]

pOpt(2,1) =

 Name: 'K'
 Value: 1.5665e+04
 Minimum: 10000
 Maximum: 100000
 Free: 1
 Scale: 65536
 Info: [1x1 struct]

2x1 param.Continuous

• optInfo is a structure that contains optimization termination information such as number of
optimization iterations and the optimized design.

optInfo

optInfo =

 struct with fields:

 Cleq: [10x1 double]
 F: 3.7378e-04
 Gradients: [1x1 struct]
 exitflag: 1
 iterations: 6
 SolverOutput: [1x1 struct]
 Stats: [1x1 struct]

For example, the Cleq field shows the optimized non-linear inequality constraints are all non-positive
to with-in optimization tolerances, indicating that the maximum pressure and piston response
requirements are satisfied.

optInfo.Cleq

ans =

 -0.0992
 -0.0156
 -0.0156
 -1.0000

 Design Optimization to Meet a Custom Objective (Code)

3-123

 -0.2064
 -0.0024
 -0.0043
 -0.0003
 -0.0476
 -0.0476

The F field contains the optimized cross-sectional area. The optimized cross-sectional area value is
nearly 50% less that the initial value.

optInfo.F

ans =

 3.7378e-04

Update the Model Variable Values

By default, the model variables Ac and K are not updated at the end of optimization. Use the
setValueInModel command to update the model variable values.

sdo.setValueInModel('sdoHydraulicCylinder',pOpt)

Related Examples

To learn how to optimize the cylinder design using the Response Optimizer, see “Design
Optimization to Meet a Custom Objective (GUI)” on page 3-103.

% Close the model
bdclose('sdoHydraulicCylinder')

3 Response Optimization

3-124

Design Optimization to Meet Custom Signal Requirements
(GUI)

This example shows how to optimize a design to meet a custom signal requirement. You optimize the
controller parameters to minimize the plant actuation signal energy while satisfying step response
requirements.

1 Load a saved Response Optimizer session.

load sldo_model1_custom_signal_session
sdotool(SDOSessionData);

The following Simulink model opens.

The Response Optimizer, configured with the following settings, also opens:

• Step response characteristics, specified on the output of the Plant block, that the model
output must satisfy:

• Maximum overshoot of 5%
• Maximum rise time of 10 seconds
• Maximum settling time of 30 seconds

• Design variable set with the controller parameters Kp, Ki and Kd. These parameters have a
minimum value of 0.

• The variables for step requirements (PlantResponse), logged signal (PlantOutput) and
design variables (DesignVars) which appear in the Data area.

 Design Optimization to Meet Custom Signal Requirements (GUI)

3-125

2 Specify a signal to log. You apply the custom requirement on this logged signal.

a Select New > Signal.

A window opens where you select a signal to log.
b In the Simulink model window, click the output of the Controller block.

The window updates to display the selected signal.
c

Select the signal and click to add it to the signal set.
d In Signal set, enter PlantActuator.

Click OK. A new variable PlantActuator appears in the Data area.
3 Specify the custom requirement to apply to the signal.

The custom requirement calls the objective function sldo_model1_minimize_energy which
returns the energy in the PlantActuator signal. The signal energy is minimized. This function
accepts:

• An input argument data which is a structure with fields for the design variables in the Data
area. Signals are logged for the nominal and uncertain parameter values if there are any.

• Returns the objective value to be minimized.

3 Response Optimization

3-126

Tip To see the contents of this function, type edit sldo_model1_minimize_energy .

a Select New > Custom Requirement.

A window opens where you specify the custom requirement.
b Specify MinimizeEnergy as the Name.
c Specify @sldo_model1_minimize_energy as the Function.
d Select Minimize the function output as the Type.

4 In the Select Signals and Systems to Bound area, select the PlantActuator check box to
associate the custom requirement with that signal.

Click OK. A new variable appears in the Data area of the app. The window also updates to
graphically display the custom signal requirement.

5 Click Optimize.

 Design Optimization to Meet Custom Signal Requirements (GUI)

3-127

After a few iterations, the optimization converges to meet both the custom signal and step
response requirements.

6 Close the model.

setOption(sdotool('sldo_model1'),'NoPromptClose',true)
bdclose('sldo_model1')

See Also

Related Examples
• “Design Optimization Using Frequency-Domain Check Blocks (GUI)”

3 Response Optimization

3-128

Design Optimization to Meet Frequency-Domain Requirements
(GUI)

This example shows how to tune model parameters to meet frequency-domain requirements using the
Response Optimizer.

This example requires Simulink® Control Design™.

Suspension Model

Open the Simulink Model.

open_system('sdoSimpleSuspension')

Mass-spring-damper models represent simple suspension systems and for this example we tune the
system to meet typical suspension requirements. The model implements the second order system
representing a mass-spring-damper using Simulink blocks and includes:

• a Mass gain block parameterized by the total suspended mass, m0+mLoad. The total mass is the
sum of a nominal mass,|m0|, and a variable load mass, mLoad.

• a Damper gain block parameterized by the damping coefficient, b.

• a Spring gain block parameterized by the spring constant, k.

• two integrator blocks to compute the mass velocity and position.

• a Band-Limited Disturbance Force block applying a disturbance force to the mass. The
disturbance force is assumed to be band-limited white noise.

 Design Optimization to Meet Frequency-Domain Requirements (GUI)

3-129

Simulate the model to view the system response to the applied disturbance force.

Design Problem

The initial system has a bandwidth that is too high. This can be seen from the spiky position signal.
You tune the spring and damper values to meet the following requirements:

• The -3dB system bandwidth must not exceed 10 rad/s.

• The damping ratio of the system must be less than 1/sqrt(2). This ensures that no frequencies in
pass band are amplified by the system.

• Minimize the expected failure rate of the system. The expected failure rate is described by a
Weibull distribution dependent on the mass, spring, and damper values.

• These requirements must all be satisfied as the load mass ranges from 0 to 20.

Open the Response Optimizer

In the Apps tab, click Response Optimizer under Control Systems.

Specify Design Variables

In the Design Variables Set list, select New. Add the b and k model variables to the design variable
set.

• Specify the Minimum and Maximum values for the b variable as 100 and 10000 respectively.

• Specify the Minimum and Maximum values for the k variable as 10000 and 100000 respectively.

3 Response Optimization

3-130

Click OK. A new variable, DesignVars, appears in the Response Optimizer browser.

In the Uncertain Variables Set list, select New. Add the mLoad variable to the uncertain variables
set.

• Specify the Uncertain Values value for the mLoad variable as [10 15 20]

Click OK. A new variable, UncVars, appears in the Response Optimizer browser.

Specify Linear Analysis Input/Output Points

Specify the input/output points defining the linear system used to compute the bandwidth and
damping ratio.

To specify the input/output points:

• In the New list, select Linearization I/Os.

• In the Simulink model, click the signal at the output of the Band-Limited Disturbance Force
block. The Create linearization I/O set dialog box is updated and the chosen signal appears in
it.

• In the Create linearization I/O dialog box, select the signal and click Add.

 Design Optimization to Meet Frequency-Domain Requirements (GUI)

3-131

• In the Configuration list for the selected signal, choose Input Perturbation to specify it as an
input signal.

• Similarly, add the pos signal from the Simulink model. Specify this signal as an output. In the
Configuration list, select Output Measurement.

• Click OK. A new variable, IOs, appears in the Response Optimizer browser.

3 Response Optimization

3-132

Add Bandwidth and Damping-Ratio Requirements

Tune the spring and damper values to satisfy bandwidth and damping ratio requirements.

To specify the bandwidth requirement:

• Open a dialog to specify bounds on the Bode magnitude. In the New list, select Bode Magnitude.

• Specify the requirement name as Bandwidth.

• Specify the edge start frequency and magnitude as 10 rad/s and -3db, respectively.

• Specify the edge end frequency and magnitude as 100 rad/s and -3db, respectively.

• Specify the input/output set to which the requirement applies by clicking Select Systems to
Bound. Select the IOs check box .

• Click OK. A new requirement, Bandwidth, appears in the Response Optimizer browser and a
graphical view of the bandwidth requirement is automatically created.

 Design Optimization to Meet Frequency-Domain Requirements (GUI)

3-133

To specify the damping ratio requirement:

• Open a dialog to specify bounds on the damping ratio. In the New list, select Damping Ratio.

• Specify the damping ratio bound value as 0.7071.

• Specify the input/output set to which the requirement applies by clicking Select Systems to
Bound. Select the IOs check box .

• Click OK. A new requirement, DampingRatio, appears in the Response Optimizer browser and
a graphical view of the damping ratio requirement is automatically created.

Add a Reliability Requirement

Tune the spring and damper values to minimize the expected failure rate over a lifetime of 100e3
miles. The failure rate is computed using a Weibull distribution on the damping ratio of the system. As
the damping ratio increases the failure rate is expected to increase.

Specify the reliability requirement as a custom requirement:

• Open a dialog box to specify the custom requirements. In the New list, select Custom
Requirement.

• Specify the custom requirement name as MinFailureRate.

3 Response Optimization

3-134

• In the Specify Function area, select Minimize the function output from the Type list.

• Specify the function as @sdoSuspension_FailureRate.

• Click OK. A new requirement, MinFailureRate, appears in the Response Optimizer browser
and a graphical view of the custom requirement is automatically created.

The @sdoSuspension_FailureRate function returns expected failure rate for a lifetime of 100e3 miles.

type sdoSuspension_FailureRate

function pFailure = sdoSuspension_FailureRate(data)
%SDOSUSPENDION_FAILURERATE
%
% The sdoSuspension_FailureRate function is used to define a custom
% requirement that can be used in the graphical SDTOOL environment.
%
% The |data| input argument is a structure with fields containing the
% design variable values chosen by the optimizer.
%
% The |pFailure| return argument is the failure rate to be minimized by the
% SDOTOOL optimization solver. The failure rate is given by a Weibull
% distribution that is a function of the mass, spring and damper values.
% The design minimizes the failure rate for a 100e3 mile lifetime.
%

% Copyright 2012 The MathWorks, Inc.

%Get the spring and damper design values
allVarNames = {data.DesignVars.Name};
idx = strcmp(allVarNames,'k');

 Design Optimization to Meet Frequency-Domain Requirements (GUI)

3-135

k = data.DesignVars(idx).Value;
idx = strcmp(allVarNames,'b');
b = data.DesignVars(idx).Value;

%Get the nominal mass from the model workspace
wksp = get_param('sdoSimpleSuspension','ModelWorkspace');
m = evalin(wksp,'m0');

%The expected failure rate is defined by the Weibull cumulative
%distribution function, 1-exp(-(x/l)^k), where k=3, l is a function of the
%mass, spring and damper values, and x the lifetime.
d = b/2/sqrt(m*k);
pFailure = 1-exp(-(100e3*d/250e3)^3);
end

Optimize the Design

Before running the optimization be sure to have completed the earlier steps. Alternatively, you can
load the sdoSimpleSuspension_sdosession from the model workspace into the Response
Optimizer.

To save the initial design variable values and later compare them with the optimized values configure
the optimization.

• Click Options.

• Select the Save optimized variable values as new design variable set option.

To study how the design variable values change during optimization:

• In the Data to Plot list, select DesignVars.

• In the Add Plot list, and select Iteration Plot.

• View the design variables in an appropriately scaled manner. Right-click on the DesignVars plot
and select Show scaled values.

To evaluate the requirements at the initial design point, click Evaluate Requirements . The
requirement plots are updated and a ReqValues variable is added to the Response Optimizer
browser.

3 Response Optimization

3-136

To optimize the design, click Optimize. The plots are updated during optimization. At the end of
optimization, the optimal design values are written to the DesignVars1 variable. The requirement
values for the optimized design are written to the ReqValues1 variable.

 Design Optimization to Meet Frequency-Domain Requirements (GUI)

3-137

3 Response Optimization

3-138

Analyze the Design

To compare design variables before and after optimization:

• In the Data to Plot list, select DesignVars.

• In the Add Plot list, select Spider Plot.

• To add the optimized design variables to the same plot, select DesignVars1 in the Response
Optimizer browser and drag it onto the Spider plot. Alternatively, in the Data to Plot list, select
DesignVars1. Then, in the Add Plot list, select Spider plot 1 from the Add to Existing Plot
section.

 Design Optimization to Meet Frequency-Domain Requirements (GUI)

3-139

The plot shows that the optimizer reduced both the k and b values for the optimal design.

To compare requirements before and after optimization:

• In the Data to Plot list, select ReqValues.

• In the Add Plot list, select Spider Plot.

• To add the optimized requirement values to the same plot, select ReqValues1 in the Response
Optimizer browser and drag it onto the Spider plot. Alternatively, in the Data to Plot list, select
ReqValues1. Then, in the Add Plot list, select Spider plot 2 from the Add to Existing Plot
section.

3 Response Optimization

3-140

The plot shows that the optimal design has a lower failure rate (the MinFailureRate axis) and better
satisfies the bandwidth requirement. The value plotted on the bandwidth axis is the difference
between the bandwidth bound and the bandwidth value. The optimization satisfies the bound by
keeping this value negative; a more negative value indicates better satisfaction of the bound.

The improved reliability and bandwidth are achieved by pushing the damping ratio closer to the
damping ratio bound. The plot has two axes for the damping ratio requirement, one for each system
pole, and the plotted values are the difference between the damping ratio bound and the damping
ratio value. The optimization satisfies the bound by keeping this value negative.

Finally the simulated mass position is smoother than the initial position response (indication of a
lower bandwidth as required) at the expense of larger position deflection.

 Design Optimization to Meet Frequency-Domain Requirements (GUI)

3-141

Related Examples

To learn how to optimize the suspension design using the sdo.optimize command, see “Design
Optimization to Meet Frequency-Domain Requirements (Code)” on page 3-216.

% Close the model
bdclose('sdoSimpleSuspension')

3 Response Optimization

3-142

Specify Custom Signal Objective with Uncertain Variable (GUI)
This example shows how to specify a custom objective function for a model signal. You calculate the
objective function value using a variable that models parameter uncertainty.

Competitive Population Dynamics Model

The Simulink model sdoPopulation models a simple two-organism ecology using the competitive
Lotka-Volterra equations:

• is the population size of the n-th organism.

• is the inherent per capita growth rate of each organism.

• is the competitive delay for each organism.

• is the carrying capacity of the organism environment.

• is the proximity of the two populations and how strongly they affect each other.

The model uses normalized units.

Open the model.

open_system('sdoPopulation')

 Specify Custom Signal Objective with Uncertain Variable (GUI)

3-143

3 Response Optimization

3-144

 Specify Custom Signal Objective with Uncertain Variable (GUI)

3-145

The two-dimensional signal, P, models the population sizes for P1 (first element) and P2 (second
element). The model is initially configured with one organism, P1, dominating the ecology. The
Population scope shows the P1 population oscillating between high and low values, while P2 is
constant at 0.1. The Population Phase Portrait block shows the population sizes of the two
organisms in relation to each other.

Population Stabilization Design Problem

Tune the , , and values to meet the following design requirements:

• Minimize the population range, that is, the maximum difference between P1 and P2.

• Stabilize P1 and P2, that is, ensure that neither organism population dies off or grows extremely
large.

You must tune the parameters for different values of the carrying capacity, . This ensures
robustness to environment carrying-capacity uncertainty.

Open Response Optimizer

Double-click the Open Optimization Tool block in the model to open a pre-configured Response
Optimizer session. The session specifies the following variables:

• DesignVars - Design variables set for the , and model parameters.

• K_unc - Uncertain parameter modeling the carrying capacity of the organism environment ().
K_unc specifies the nominal value and two sample values.

• P1 and P2 - Logged signals representing the populations of the two organisms.

Specify Custom Signal Objective Function

Specify a custom requirement to minimize the maximum difference between the two population sizes.
Apply this requirement to the P1 and P2 model signals.

3 Response Optimization

3-146

1 Open the Create Requirement dialog box. In the New list, select Custom Requirement.
2 Specify the following in the Create Requirement dialog box:

• Name - Enter PopulationRange.
• Type - Select Minimize the function output from the list.
• Function - Enter @sdoPopulation_PopRange. For more information about this function, see

Custom Signal Objective Function Details.
• Select Signals and Systems to Bound (Optional) - Select the P1 and P2 check boxes.

 Specify Custom Signal Objective with Uncertain Variable (GUI)

3-147

3. Click OK.

A new variable, PopulationRange, appears in the Response Optimizer browser.

Custom Signal Objective Function Details

PopulationRange uses the sdoPopulation_PopRange function. This function computes the
maximum difference between the populations, across different environment carrying capacity values.
By minimizing this value, you can achieve both design goals. The function is called by the optimizer at
each iteration step.

To view the function, type edit sdoPopulation_PopRange. The following discusses details of this
function.

Input/Output

The function accepts data, a structure with the following fields:

• DesignVars - Current iteration values of , and .

• Nominal - Logged signal data, obtained by simulating the model using parameter values specified
by data.DesignVars and nominal values for all other parameters. The Nominal field is itself a
structure with fields for each logged signal. The field names are the logged signal names. The
custom requirement uses the logged signals, P1 and P2. Therefore, data.Nominal.P1 and
data.Nominal.P2 are timeseries objects corresponding to P1 and P2.

• Uncertain - Logged signal data, obtained by simulating the model using the sample values of the
uncertain variable K_unc. The Uncertain field is a vector of N structures, where N is the number
of sample values specified for K_unc. Each element of this vector is similar to data.Nominal and
contains simulation results obtained from a corresponding sample value specified for K_unc.

The function returns the maximum difference between the population sizes across different carrying
capacities. The following code snippet in the function performs this action:

val = max(maxP(1)-minP(2),maxP(2)-minP(1));

Data Time Range

When computing the design goals, discard the initial population growth data to eliminate biases from
the initial-condition. The following code snippet in the function performs this action:

%Get the population data
tMin = 5; %Ignore signal values prior to this time
iTime = data.Nominal.P1.Time > tMin;
sigData = [data.Nominal.P1.Data(iTime), data.Nominal.P2.Data(iTime)];

iTime represents the time interval of interest, and the columns of sigData contain P1 and P2 data
for this interval.

Optimization for Different Values of Carrying Capacity

The function includes the effects of varying the carrying capacity by iterating through the elements of
data.Uncertain. The following code snippet in the function performs this action:

...
for ct=1:numel(data.Uncertain)

3 Response Optimization

3-148

 iTime = data.Uncertain(ct).P1.Time > tMin;
 sigData = [data.Uncertain(ct).P1.Data(iTime), data.Uncertain(ct).P2.Data(iTime)];

 maxP = max([maxP; max(sigData)]); %Update maximum if new signals are bigger
 minP = min([minP; min(sigData)]); %Update minimum if new signals are smaller
end
...

The maximum and minimal populations are obtained across all the simulations contained in
data.Uncertain.

Optimize Design

Click Optimize.

The optimization converges after a number of iterations.

The P1,P2 plot shows the population dynamics, with the first organism population in blue and the
second organism population in red. The dotted lines indicate the population dynamics for different
environment capacity values. The PopulationRange plot shows that the maximum difference
between the two organism populations reduces over time.

 Specify Custom Signal Objective with Uncertain Variable (GUI)

3-149

The Population Phase Portrait block shows the populations initially varying, but they
eventually converge to stable population sizes.

3 Response Optimization

3-150

% Close the model
bdclose('sdoPopulation')

 Specify Custom Signal Objective with Uncertain Variable (GUI)

3-151

Design Optimization with Uncertain Variables (Code)
This example shows how to optimize a design when there are uncertain variables. You optimize the
dimensions of a Continuously Stirred Tank Reactor (CSTR) to minimize product concentration
variation and production cost in case of varying, or uncertain, feed stock.

Continuously Stirred Tank Reactor (CSTR) Model

Continuously Stirred Tank Reactors (CSTRs) are common in the process industry. The Simulink
model, sdoCSTR, models a jacketed diabatic (i.e., non-adiabatic) tank reactor described in [1]. The
CSTR is assumed to be perfectly mixed, with a single first-order exothermic and irreversible reaction,

. , the reactant, is converted to , the product.

In this example, you use the following two-state CSTR model, which uses basic accounting and
energy conservation principles:

• , and - Concentrations of A in the CSTR and in the feed [kgmol/m^3]

• , , and - CSTR, feed, and coolant temperatures [K]

• and - Volumetric flow rate [m^3/h] and the density of the material in the CSTR [1/m^3]

• and - Height [m] and heated cross-sectional area [m^2] of the CSTR.

• - Pre-exponential non-thermal factor for reaction [1/h]

• and - Activation energy and heat of reaction for [kcal/kgmol]

• - Boltzmann's gas constant [kcal/(kgmol * K)]

• and - Heat capacity [kcal/K] and heat transfer coefficients [kcal/(m^2 * K * h)]

Open the Simulink model.

open_system('sdoCSTR');

3 Response Optimization

3-152

The model includes a cascaded PID controller in the Controller subsystem. The controller
regulates the reactor temperature, , and reactor residual concentration, .

CSTR Design Problem

Assume that the CSTR is cylindrical, with the coolant applied to the base of the cylinder. Tune the
CSTR cross-sectional area, , and CSTR height, , to meet the following design goals:

• Minimize the variation in residual concentration, . Variations in the residual concentration
negatively affect the quality of the CSTR product. Minimizing the variations also improves CSTR
profit.

• Minimize the mean coolant temperature . Heating or cooling the jacket coolant temperature is
expensive. Minimizing the mean coolant temperature improves CSTR profit.

The design must allow for variations in the quality of supply feed concentration, , and feed
temperature, . The CSTR is fed with feed from different suppliers. The quality of the feed differs
from supplier to supplier and also varies within each supply batch.

Specify Design Variables

Select the following model parameters as design variables for optimization:

• Cylinder cross-sectional area

• Cylinder height

p = sdo.getParameterFromModel('sdoCSTR',{'A','h'});

Limit the cross-sectional area to a range of [1 2] m^2.

p(1).Minimum = 1;
p(1).Maximum = 2;

 Design Optimization with Uncertain Variables (Code)

3-153

Limit the height to a range of [1 3] m.

p(2).Minimum = 1;
p(2).Maximum = 3;

Specify Uncertain Variables

Select the feed concentration and feed temperature as uncertain variables. You evaluate the design
using different values of feed temperature and concentration.

pUnc = sdo.getParameterFromModel('sdoCSTR',{'FeedCon0','FeedTemp0'});

Create a parameter space for the uncertain variables. Use normal distributions for both variables.
Specify the mean as the current parameter value. Specify a variance of 5% of the mean for the feed
concentration and 1% of the mean for the temperature.

uSpace = sdo.ParameterSpace(pUnc);
uSpace = setDistribution(uSpace,'FeedCon0',makedist('normal',pUnc(1).Value,0.05*pUnc(1).Value));
uSpace = setDistribution(uSpace,'FeedTemp0',makedist('normal',pUnc(2).Value,0.01*pUnc(2).Value));

The feed concentration is inversely correlated with the feed temperature. Add this information to the
parameter space.

%uSpace.RankCorrelation = [1 -0.6; -0.6 1];

The rank correlation matrix has a row and column for each parameter with the (i,j) entry specifying
the correlation between the i and j parameters.

Sample the parameter space. The scatter plot shows the correlation between concentration and
temperature.

rng('default'); %For reproducibility
uSmpl = sdo.sample(uSpace,60);
sdo.scatterPlot(uSmpl)

3 Response Optimization

3-154

Ideally you want to evaluate the design for every combination of points in the design and uncertain
spaces, which implies 30*60 = 1800 simulations. Each simulation takes around 0.5 sec. You can use
parallel computing to speed up the evaluation. For this example you instead only use the samples that
have maximum & minimum concentration and temperature values, reducing the evaluation time to
around 1 min.

[~,iminC] = min(uSmpl.FeedCon0);
[~,imaxC] = max(uSmpl.FeedCon0);
[~,iminT] = min(uSmpl.FeedTemp0);
[~,imaxT] = max(uSmpl.FeedTemp0);
uSmpl = uSmpl(unique([iminC,imaxC,iminT,imaxT]) ,:);

Specify Design Requirements

The design requirements require logging model signals. During optimization, the model is simulated
using the current value of the design variables. Logged signals are used to evaluate the design
requirements.

Log the following signals:

• CSTR concentration, available at the second output port of the sdoCSTR/CSTR block

Conc = Simulink.SimulationData.SignalLoggingInfo;
Conc.BlockPath = 'sdoCSTR/CSTR';
Conc.OutputPortIndex = 2;
Conc.LoggingInfo.NameMode = 1;
Conc.LoggingInfo.LoggingName = 'Concentration';

 Design Optimization with Uncertain Variables (Code)

3-155

• Coolant temperature, available at the first output of the sdoCSTR/Controller block

Coolant = Simulink.SimulationData.SignalLoggingInfo;
Coolant.BlockPath = 'sdoCSTR/Controller';
Coolant.OutputPortIndex = 1;
Coolant.LoggingInfo.NameMode = 1;
Coolant.LoggingInfo.LoggingName = 'Coolant';

Create and configure a simulation test object to log the required signals.

simulator = sdo.SimulationTest('sdoCSTR');
simulator.LoggingInfo.Signals = [Conc,Coolant];

Create Objective/Constraint Function

Create a function to evaluate the CSTR design. This function is called at each optimization iteration.

Use an anonymous function with one argument that calls the sdoCSTR_design function.

evalDesign = @(p) sdoCSTR_design(p,simulator,pUnc,uSmpl);

The evalDesign function:

• Has one input argument that specifies the CSTR dimensions

• Returns the optimization objective value

The sdoCSTR_design function uses a for loop that iterates through the sample values specified for
the feed concentration. Within the loop, the function:

• Simulates the model using the current iterate, feed concentration, and feed temperature values

• Calculates the residual concentration variation and coolant temperature costs

To view the objective function, type edit sdoCSTR_design.

Evaluate Initial Design

Call the evalDesign function with the initial CSTR dimensions.

dInit = evalDesign(p)

dInit =

 struct with fields:

 F: 11.3356
 costConc: 6.4390
 costCoolant: 4.8965

Plot the model response for the initial design. Simulate the model using the sample feed
concentration values. The plot shows the variation in the residual concentration and coolant
temperature.

sdoCSTR_plotModelResponse(p,simulator,pUnc,uSmpl);

3 Response Optimization

3-156

The sdoCSTR_plotModelResponse function plots the model response. To view this function, type
edit sdoCSTR_plotModelResponse.

Optimize Design

Pass the objective function and initial CSTR dimensions to sdo.optimize.

pOpt = sdo.optimize(evalDesign,p)

 Optimization started 25-Aug-2020 20:56:31

 max First-order
 Iter F-count f(x) constraint Step-size optimality
 0 4 5.17535 0
 1 8 3.81522 0 2.01 7.83
 2 12 2.63963 0 0.57 3.03
 3 16 2.52991 0 0.159 0.27
 4 20 2.51352 0 0.0156 0.453
 5 24 2.50978 0 0.131 1.64
 6 28 2.50087 0 0.102 0.314
 7 32 2.48124 0 0.0164 0.179
 8 39 2.47744 0 0.00748 0.316
 9 48 2.46313 0 0.0323 0.468
 10 57 2.46313 0 0.000778 0.468
Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than

 Design Optimization with Uncertain Variables (Code)

3-157

the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

pOpt(1,1) =

 Name: 'A'
 Value: 2
 Minimum: 1
 Maximum: 2
 Free: 1
 Scale: 0.5000
 Info: [1x1 struct]

pOpt(2,1) =

 Name: 'h'
 Value: 2.2037
 Minimum: 1
 Maximum: 3
 Free: 1
 Scale: 2
 Info: [1x1 struct]

2x1 param.Continuous

Evaluate Optimized Design

Call the evalDesign function with the optimized CSTR dimensions.

dFinal = evalDesign(pOpt)

dFinal =

 struct with fields:

 F: 2.4631
 costConc: 1.4415
 costCoolant: 1.0217

Plot the model response for the optimized design. Simulate the model using the sample feed
concentration values. The optimized design reduces the residual concentration variation and average
coolant temperature for different feed stocks.

sdoCSTR_plotModelResponse(pOpt,simulator,pUnc,uSmpl);

3 Response Optimization

3-158

Related Examples

To learn how to use sensitivity analysis to explore the CSTR design space and select an initial design
for optimization, see “Design Exploration Using Parameter Sampling (Code)” on page 4-157.

References

[1] Bequette, B.W. Process Dynamics: Modeling, Analysis and Simulation. 1st ed. Upper Saddle River,
NJ: Prentice Hall, 1998.

% Close the model
bdclose('sdoCSTR')

 Design Optimization with Uncertain Variables (Code)

3-159

Generate MATLAB Code for Design Optimization Problems
(GUI)

This example shows how to automatically generate a MATLAB function to solve a Design Optimization
problem. You use the Response Optimizer to define an optimization problem for a hydraulic cylinder
design and generate MATLAB code to solve this optimization problem.

Hydraulic Cylinder Design Problem

The “Design Optimization to Meet a Custom Objective (GUI)” on page 3-103 example shows how to
use the Response Optimizer to optimize a cylinder design. In this example we load a pre-configured
Response Optimizer session based on that example.

load sdoHydraulicCylinder_sdosession

Use the following command to open the Response Optimizer

sdotool(SDOSessionData)

Generate MATLAB Code

From the Optimize list, select Generate MATLAB Code.

The generated code is added to the MATLAB editor as an unsaved MATLAB function.

3 Response Optimization

3-160

Examine the generated code. Significant code portions are:

• Specify Design Variables - Definition of the model parameters being optimized.

• Specify Design Requirements - Definition of the design requirements.

• Create Optimization Objective Function - Creation of an anonymous function that calls
the subfunction sdoHydraulicCylinder_optFcn, which evaluates the cylinder design.
sdo.optimize calls the anonymous function at each iteration.

• Evaluate custom parameter requirement functions - Evaluates the custom requirement,
MinimizeAC, that uses the sdoHydraulicCylinder_customObjective function.

• Optimize the Design - Optimization using the sdo.optimize command.

Select Save from the MATLAB editor to save the generated function.

Run Generated Code

Run the generated function.

 Generate MATLAB Code for Design Optimization Problems (GUI)

3-161

The first output argument, pOpt, contains the optimized parameter values and the second output
argument, optInfo, contains optimization information.

Modify the Generated Code

You can:

• Modify the generated sdo_sdoHydraulicCylinder function to include or exclude new design
requirements or change the optimization options.

• Call the generated sdo_sdoHydraulicCylinder function with a different set of parameters to
optimize.

For details on how to write an objective/constraint function to use with the sdo.optimize command,
type help sdoExampleCostFunction at the MATLAB command prompt.

Close the model

3 Response Optimization

3-162

Skip Model Simulation Based on Parameter Constraint
Violation (GUI)

This example shows how to optimize a design and specify parameter-only constraints that prevent the
model from being evaluated in an invalid solution space.

During optimization, the solver may try a design variable set that results in a model simulation error,
which can be computationally expensive. If you can define a parameter-only constraint that identifies
such a design variable set, then the solver can use the constraint to skip such sets. In other words,
you can configure the optimization to be more efficient by disallowing design variable sets that lead
to simulation errors.

In this example, you optimize thermostat settings to minimize temperature set-point deviations while
satisfying some constraints. One of the constraints applies to the model parameters that define the
thermostat switch on/switch off points. If the switch-off point is greater than the switch-on point,
evaluating the model leads to a simulation error.

Thermostat Model

Open the model.

open_system('sdoThermostat');

The model describes a simple heater & thermostat that regulate the temperature of a room. The room
is subject to external temperature fluctuations. The room temperature is computed using a first-order
heat-flow equation:

 Skip Model Simulation Based on Parameter Constraint Violation (GUI)

3-163

Where:

• is the room temperature (C).

• the external temperature (C).

• the heat supplied by the heater (W).

• the room thermal capacity (J/C).

The heater is controlled by a thermostat that turns on when the difference between the room
temperature and temperature set-point exceeds a threshold. The heater turns off when the error
drops below a threshold.

The heater operation is displayed in the Heater use scope. The upper axis is the delivered heat and
the lower axis shows the times when the heater is switched on.

The room temperature is displayed in the Temperature scope.

3 Response Optimization

3-164

Thermostat Design Problem

You tune the thermostat turn-on and turn-off temperature thresholds, and also the heater power. The
Thermostat switch block specifies the turn-on and turn-off thresholds using the variables H_on
and H_off. The Heater block specifies the heater power using the variable Hgain.

The design requirements are:

• Minimize the difference between the room temperature and temperature set-point over a 24 hour
period.

• The heater must not turn on more than 12 times during the 24 hour period.

• The thermostat turn-on temperature must be greater than the thermostat turn-off temperature. If
this constraint is violated, the model is invalid and cannot be simulated or evaluated.

Open the Response Optimizer

Open a pre-configured Response Optimizer session using the commands

load sdoThermostat_sdosession
sdotool(SDOSessionData)

The pre-configured session specifies the following variables:

 Skip Model Simulation Based on Parameter Constraint Violation (GUI)

3-165

• DesignVars - Design variables set for the H_on, H_off, and Hgain model parameters.
• Minimize_T_error - Requirement to minimize the temperature deviation from the set-point.
• LimitH_on - Requirement to limit the number of times the thermostat is turned on.
• H_on_sig and T_error - Logged signals. H_on_sig represents when the heater is on. T_error

is the difference between the room temperature and the set-point.

Specify Parameter Constraint

The H_on > H_off requirement is not yet defined. Use a custom requirement to specify this
constraint and configure the requirement to error if it is not satisfied.

In the New drop-down list, select Custom Requirement. The Create Requirement dialog opens.

In this dialog, specify the following:

• Name - SwitchConstraint.

• Type - Select Constrain the function output to be >= 0 from the Type list.

• Function - @sdoThermostat_SwitchingConstraint.

• Error if constraint is violated - Select this check box.

The software calls the sdoThermostat_SwitchingConstraint function at each optimization
iteration with a structure containing all the design variables. The output of the
sdoThermostat_SwitchingConstraint function is the difference between the H_on and H_off
values. This difference must be positive for the requirement to be satisfied.

The software evaluates custom requirements that test parameter-only constraints, such as
SwitchConstraint, before simulating the model and evaluating the remaining requirements.

3 Response Optimization

3-166

• If the constraint is violated while the Error if constraint is violated check box is selected, the
software does not simulate the model to evaluate the remaining requirements. Instead, the solver
assigns the cost function a NaN value for this iteration, evaluates the terminating conditions, and
continues.

• If the constraint is violated while the Error if constraint is violated check box is cleared, the
solver will attempt to simulate the model to evaluate the remaining requirements. Simulating the
model may lead to a hard error; for example, simulating the thermostat model when
SwitchConstraint is violated will lead to an error. In this case, the solver assigns the cost
function a NaN value for this iteration, evaluates the terminating conditions, and continues.

To examine the constraint function, type edit sdoThermostat_SwitchingConstraint. The
requirement that H_on > H_off is implemented as H_on - H_off > 0

Optimize the Design

Click Optimize.

 Skip Model Simulation Based on Parameter Constraint Violation (GUI)

3-167

The Optimization Progress window appears and updates at each iteration. The optimization
successfully minimizes the temperature error while satisfying the switching constraints.

During this optimization, the H_on and H_off values never approach the H_on > H_off constraint
boundary. So, there is never a danger of violating the constraint. However, changing the optimization
algorithm may produce different behavior. For example, changing the optimization algorithm from the
one used here, 'Interior-Point', to 'Active-Set' results in H_on and H_off values that are at the
constraint boundary. This violation triggers the SwitchConstraint requirement and prevents model
simulation for the relevant iterations.

View Optimized Model Response

Simulate the model with the optimized thermostat settings. The optimized heater operation is
displayed in the Heater use scope where the upper axis is the delivered heat and the lower axis the
heater switch on times.

3 Response Optimization

3-168

The optimized room temperature is displayed in the Temperature scope.

Close the model

bdclose('sdoThermostat')

 Skip Model Simulation Based on Parameter Constraint Violation (GUI)

3-169

Optimizing Parameters for Robustness

What Is Robustness?
A design is robust when its response does not violate design requirements under model parameter
variations. Your model may contain parameters whose values are not precisely known. Such
parameters vary over a given range of values and are defined as uncertain parameters. You may know
the nominal value and the range of values in which these uncertain parameters vary.

You can use Simulink Design Optimization software to incorporate the parameter uncertainty to test
the robustness of your design. When you optimize parameters for robustness, the optimization solver
uses the responses computed using all the uncertain parameter values to adjust the design variable
values.

You can specify the same parameter both as a design and uncertain variable. However, you cannot
use a parameter both as a design and uncertain variable in the same optimization run. Also, you
cannot add uncertainty to controller or plant parameters during optimization-based control design in
the Control System Designer.

The uncertain variables can be scalar, vector, matrix or an expression.

You can test and optimize parameters for model robustness in the following ways:

• Before Optimization. Specify the parameter uncertainty before you optimize the parameters to
meet the design requirements. In this case, the optimization method optimizes the signals based
on both nominal parameter values as well as the uncertain values. This mode requires more
computational time.

• After Optimization. Specify the parameter uncertainty after you have optimized the model
parameters to meet design requirements. You can then test the effect of the uncertain parameters
by plotting the model's response. If the response violates the design requirements, you can
optimize the parameters again by including the parameter uncertainty during the optimization.

Related Examples

“Optimize Parameters for Robustness (GUI)” on page 3-172

More About

“Sampling Methods for Uncertain Parameters” on page 3-170

Sampling Methods for Uncertain Parameters
Sample values for uncertain parameters are a vector of numerical values. You can specify the vector
yourself or generate a vector of random numbers using the software. The sample values you specify
can be uniformly distributed or random. For example, four sample values for two uncertain
parameters a and b in the range [0 3] and [1 2.5] may look like the following figure.

3 Response Optimization

3-170

There are two methods to determine the number of sample values to use during optimization:

• Only the combination of minimum and maximum values (circled)

• Combination of the entire set of values (all solid dots in the previous figure)

Tip Using only the minimum and maximum values during optimization increases the computation
speed when compared to using the entire set of values.

For the previous example, there are 4 combinations using the minimum and maximum values and 16
combinations if you use all sample values.

In the Response Optimizer, you specify the sampling method using the options as shown in the
following figure.

 Optimizing Parameters for Robustness

3-171

Related Examples

“Optimize Parameters for Robustness (GUI)” on page 3-172

More About

• “What Is Robustness?” on page 3-170

Optimize Parameters for Robustness (GUI)
This example shows how to optimize parameters for model robustness.

1 Load a saved Response Optimizer session.

load sldo_model1_desreq_optim_sdosession;
sdotool(SDOSessionData);

The sdotool command opens the following Simulink model and a saved Response Optimizer
session.

The parameters of this model, Kp, Ki and Kd, have already been optimized to meet the following
step response requirements:

• Maximum overshoot of 5%
• Maximum rise time of 10 seconds
• Maximum settling time of 30 seconds

2 Specify parameter uncertainty.

a In the Uncertain Variables Set drop-down list, select New.

3 Response Optimization

3-172

A window opens where you specify uncertain variables.

b Click w0 and zeta to select them.
c

Click to add the selected parameters to an uncertain variables set.

The software displays the following parameter settings:

 Optimizing Parameters for Robustness

3-173

• Variable — Parameter name
• Nominal Value — Nominal value of the parameters as specified in the Simulink model
• Uncertain Values — Values that the uncertain parameter can take. By default, the

maximum and minimum values vary by 10% of the nominal value.

The total number of sample values to use during optimization is a combination of the
maximum and minimum values of the uncertain parameters.

The check-box indicates that the parameter is included in the uncertain variable set. The
default uncertain variable set name is UncVars.

Click OK. A new variable UncVars appears in Data area of the Response Optimizer.

Specify Random Values

Instead of specifying sample values, you can auto-generate random values in a specific
range. Select a parameter and click Set Uncertain Values.

A window opens where you specify the range and the number of samples.

3 Test the model robustness to the uncertain parameters.

a Click Plot Model Response.

The step response plot, displaying the requirements, updates.

3 Response Optimization

3-174

• The solid curve corresponds to the model response computed using the optimized
parameters and nominal values of the uncertain parameter.

• The four dashed curves correspond to the model response with the minimum and
maximum values of the uncertain parameters.

The dashed plot lines show that the response during the period of 10 to 20 seconds
violates the design requirements.

4 Optimize the parameters for model robustness. Click Optimize.

The Optimization Progress window opens which displays the optimization iterations.

After the optimization completes, the message Optimization converged indicates that the
final model response computed by varying the uncertain parameters meets the specified design
requirements.

 Optimizing Parameters for Robustness

3-175

5 Examine the responses.

Tip To view only the final responses of the model, right-click the white area in the plot and
uncheck Responses > Show Iteration Responses.

3 Response Optimization

3-176

The final responses appear as the thick solid and dashed curves. The nominal and uncertain
responses with parameter variations now meet the design requirements.

If your model contains referenced models, you can create an uncertain variable set using variables in
the referenced models, using the Create Uncertain Variables Set dialog. For example, the first
variable in the dialog box, Slew, is listed as sdoRateLimitedController:Slew.
sdoRateLimitedController is the name of the referenced model with the variable Slew. The
Slew variable has the same value for all instances of the sdoRateLimitedController model. In
contrast, the variable Kd can have a different value for each instance of the referenced model
containing it. For example, the second variable in the dialog box is listed as sdoMultipleMotors/
Control_1:Kd. The upper-level model sdoMultipleMotors has block Control_1, which is a
referenced model that has variable Kd. The value of this variable can be different than Kd in block
Control_2, which is the third variable in the dialog box. To enable instance-specific values, Kd is
specified as a model argument in the referenced model workspace.

More About

• “What Is Robustness?” on page 3-170
• “Sampling Methods for Uncertain Parameters” on page 3-170

 Optimizing Parameters for Robustness

3-177

See Also

Related Examples
• “Design Optimization with Uncertain Variables (Code)” on page 3-152

3 Response Optimization

3-178

Use Accelerator Mode During Simulations

About Accelerating Optimization
Simulink Design Optimization software supports Normal and Accelerator simulation modes. You
can accelerate the design optimization computations by changing the simulation mode of your
Simulink model to Accelerator. For information about these modes, see “How Acceleration Modes
Work”.

The default simulation mode is Normal. In this mode, Simulink uses interpreted code, rather than
compiled C code during simulations.

In the Accelerator mode, Simulink Design Optimization software runs simulations during
optimization with compiled C code. Using compiled C code speeds up the simulations and reduces the
time to optimize the model response signals.

Limitations
If the model structure changes during optimization, the model is compiled to regenerate the C code
for each iteration. In this case, using the Accelerator mode increases the computation time. To
learn more about code regeneration, see “Code Regeneration in Accelerated Models”.

Setting Accelerator Mode
To set the simulation mode to Accelerator, open the Simulink model window and perform one of
the following actions:

• Under Simulation, choose Accelerator from the drop-down list as shown in the next figure.

Tip To obtain the maximum performance from the Accelerator mode, close all Scope blocks in
your model.

See Also

More About
• “Ways to Speed Up Design Optimization Tasks”

 Use Accelerator Mode During Simulations

3-179

Speed Up Response Optimization Using Parallel Computing

When to Use Parallel Computing for Response Optimization
You can use Simulink Design Optimization software with Parallel Computing Toolbox software to
speed up the response optimization of a Simulink model. Using parallel computing may reduce model
optimization time in the following cases:

• The model contains a large number of tuned parameters, and the Gradient descent method is
selected for optimization.

• The Pattern search method is selected for optimization.
• The model contains a large number of uncertain parameters and uncertain parameter values.
• The model is complex and takes a long time to simulate.

When you use parallel computing, the software distributes independent simulations to run them in
parallel on multiple MATLAB sessions, also known as workers. Distributing the simulations
significantly reduces the optimization time because the time required to simulate the model
dominates the total optimization time.

For information on how the software distributes the simulations and the expected speedup, see “How
Parallel Computing Speeds Up Optimization” on page 3-180.

For information on configuring your system and using parallel computing, see “Use Parallel
Computing for Response Optimization” on page 3-183.

How Parallel Computing Speeds Up Optimization
You can enable parallel computing with the Gradient descent and Pattern search optimization
methods. When you enable parallel computing, the software distributes independent simulations
during optimization on multiple MATLAB sessions. The following sections describe which simulations
are distributed and the potential speedup using parallel computing.

Parallel Computing with the Gradient Descent Method

When you select Gradient descent as the optimization method, the model is simulated during the
following computations:

• Constraint and objective value computation — One simulation per iteration
• Constraint and objective gradient computations — Two simulations for every tuned parameter per

iteration
• Line search computations — Multiple simulations per iteration

The total time, Ttotal, taken per iteration to perform these simulations is given by the following
equation:

Ttotal = T + (Np × 2 × T) + (Nls × T) = T × (1 + (2 × Np) + Nls)

where T is the time taken to simulate the model and is assumed to be equal for all simulations, Np is
the number of tuned parameters, and Nls is the number of line searches. Nls is difficult to estimate
and you generally assume it to be equal to one, two, or three.

3 Response Optimization

3-180

When you use parallel computing, the software distributes the simulations required for constraint and
objective gradient computations. The simulation time taken per iteration when the gradient
computations are performed in parallel, TtotalP, is approximately given by the following equation:

TtotalP = T + (ceil Np
Nw × 2 × T) + (Nls × T) = T × (1 + 2 × ceil Np

Nw + Nls)

where Nw is the number of MATLAB workers.

Note The equation does not include the time overheads associated with configuring the system for
parallel computing and loading Simulink software on the remote MATLAB workers.

The expected speedup for the total optimization time is given by the following equation:

TtotalP
Ttotal =

1 + 2 × ceil Np
Nw + Nls

1 + (2 × Np) + Nls

For example, for a model with Np=3, Nw=4, and Nls=3, the expected speedup equals
1 + 2 × ceil 3

4 + 3
1 + (2 × 3) + 3 = 0.6.

For an example of the performance improvement achieved with the Gradient descent method, see
“Improving Optimization Performance Using Parallel Computing” on page 3-200.

Parallel Computing with the Pattern Search Method

The Pattern search optimization method uses search and poll sets to create and compute a set of
candidate solutions at each optimization iteration.

The total time, Ttotal, taken per iteration to perform these simulations, is given by the following
equation:

Ttotal = (T × Np × Nss) + (T × Np × Nps) = T × Np × (Nss + Nps)

where T is the time taken to simulate the model and is assumed to be equal for all simulations, Np is
the number of tuned parameters, Nss is a factor for the search set size, and Nps is a factor for the
poll set size. Nss and Nps are typically proportional to Np.

When you use parallel computing, Simulink Design Optimization software distributes the simulations
required for the search and poll set computations, which are evaluated in separate parfor loops. The
simulation time taken per iteration when the search and poll sets are computed in parallel, TtotalP, is
given by the following equation:

TtotalP = (T × ceil(Np × Nss
Nw)) + (T × ceil(Np × Nps

Nw))

= T × (ceil(Np × Nss
Nw) + ceil(Np × Nps

Nw))

where Nw is the number of MATLAB workers.

Note The equation does not include the time overheads associated with configuring the system for
parallel computing and loading Simulink software on the remote MATLAB workers.

 Speed Up Response Optimization Using Parallel Computing

3-181

The expected speed up for the total optimization time is given by the following equation:

TtotalP
Ttotal =

ceil(Np × Nss
Nw) + ceil(Np × Nps

Nw)
Np × (Nss + Nps)

For example, for a model with Np=3, Nw=4, Nss=15, and Nps=2, the expected speedup equals
ceil(3 × 15

4) + ceil(3 × 2
4)

3 × (15 + 2) = 0.27.

Note Using the Pattern search method with parallel computing may not speed up the
optimization time. To learn more, see “Why do I not see the optimization speedup I expected using
parallel computing?” on page 3-194

For an example of the performance improvement achieved with the Pattern search method, see
“Improving Optimization Performance Using Parallel Computing” on page 3-200.

See Also

Related Examples
• “Use Parallel Computing for Response Optimization” on page 3-183

3 Response Optimization

3-182

Use Parallel Computing for Response Optimization

Configure Your System for Parallel Computing
You can speed up model optimization using parallel computing on multicore processors or
multiprocessor networks. Use parallel computing with the Response Optimizer and sdo.optimize
to optimize using the fmincon, lsqonlin, and patternsearch methods. Parallel computing is not
supported for the fminsearch (Simplex search) method.

When you optimize model parameters using parallel computing, the software uses the available
parallel pool. If none is available, and you select Automatically create a parallel pool in your
Parallel Computing Toolbox preferences, the software starts a parallel pool using the settings in those
preferences. To open a parallel pool that uses a specific cluster profile, use:

parpool(MyProfile);

MyProfile is the name of a cluster profile.

For information regarding creating a cluster profile, see “Add and Modify Cluster Profiles” (Parallel
Computing Toolbox).

Model Dependencies
Model dependencies are any referenced models, data such as model variables, S-functions, and
additional files necessary to run the model. Before starting the optimization, verify that the model
dependencies are complete. Otherwise, you may get unexpected results.

Making Model Dependencies Accessible to Remote Workers

When you use parallel computing, the Simulink Design Optimization software helps you identify
model dependencies. To do so, the software uses the Dependency Analyzer. The dependency analysis
may not find all the files required by your model. To learn more, see “Dependency Analyzer Scope and
Limitations”. If your model has dependencies that are undetected or inaccessible by the parallel pool
workers, then add them to the list of model dependencies.

The dependencies are made accessible to the parallel pool workers by specifying one of the following:

• File dependencies: the model dependency files are copied to the parallel pool workers.
• Path dependencies: the paths to the model dependencies are added to the paths of the parallel

pool workers. If you are working in a multi-platform scenario, ensure that the paths are
compatible across platforms.

Using file dependencies is recommended, however, in some cases it can be better to choose path
dependencies. For example, if parallel computing is set up on a local multi-core computer, using path
dependencies is preferred as using file dependencies creates multiple copies of the dependent files on
the local computer.

For more information, see:

• “Optimize Design Using Parallel Computing (GUI)” on page 3-184
• “Optimize Design Using Parallel Computing (Code)” on page 3-186

 Use Parallel Computing for Response Optimization

3-183

Optimize Design Using Parallel Computing (GUI)
To optimize a model response using parallel computing in the Response Optimizer:

1 Ensure that the software can access parallel pool workers that use the appropriate cluster
profile.

For more information, see “Configure Your System for Parallel Computing” on page 3-183.
2 Open the Response Optimizer for the Simulink model.
3 Configure the design variables, design requirements, and, optionally, optimization settings.

For more information, see “Specify Design Variables” on page 3-56, “Specify Time-Domain
Design Requirements in the App” on page 3-16, “Specify Frequency-Domain Design
Requirements in the App” on page 3-43, and “Specify Optimization Options” on page 3-62.

4
On the Response Optimization tab, click Options to open the Response Optimization
Options dialog box.

5 Select the Parallel Options tab.

6 Select the Use the parallel pool during optimization check box.

This option checks for dependencies in your Simulink model. The file dependencies are displayed
in the Model file dependencies list box, and corresponding path to the files in Model path
dependencies. The files listed in Model file dependencies are copied to the remote workers.

Note The automatic dependencies check may not detect all the dependencies in your model.

For more information, see “Model Dependencies” on page 3-183. In this case, add the undetected
dependencies manually.

3 Response Optimization

3-184

7 Add any file dependencies that the automatic check does not detect.

Specify the files in the Model file dependencies list box separated by semicolons or on separate
lines.

Alternatively, click Add file dependency to open a dialog box, and select the file to add.

Note If you do not want to copy the files to the remote workers, delete all entries in the Model
file dependencies list box. Populate the Model path dependencies list box by clicking the
Sync path dependencies from model, and add any undetected path dependencies. In addition,

 Use Parallel Computing for Response Optimization

3-185

in the list box, update the paths on local drives to make them accessible to remote workers. For
example, change C:\ to \\\\hostname\\C$\\.

8 If you modify the Simulink model, resync the dependencies to ensure that any new dependencies
are detected. Click Sync file dependencies from model in the Parallel Options tab to rerun
the automatic dependency check for your model.

This action updates the Model file dependencies list box with any new file dependency found in
the model.

9 Click OK.
10 In the Response Optimizer, click Optimize to optimize the model response using parallel

computing.

For information on troubleshooting problems related to optimization using parallel computing, see
“Troubleshooting” on page 3-187.

Optimize Design Using Parallel Computing (Code)
To optimize a model response using parallel computing at the command line:

1 Ensure that the software can access parallel pool workers that use the appropriate cluster
profile.

For more information, see “Configure Your System for Parallel Computing” on page 3-183.
2 Open the model.
3 Specify design requirements and design variables. For example see, “Design Optimization to

Meet Step Response Requirements (Code)”.
4 Enable parallel computing using an optimization option set, opt.

opt = sdo.OptimizeOptions;
opt.UseParallel = true;

5 Find the model dependencies.

[dirs,files] = sdo.getModelDependencies(modelname)

Note sdo.getModelDependencies may not detect all the dependencies in your model. For
more information, see “Model Dependencies” on page 3-183. In this case, add the undetected
dependencies manually.

6 Modify files to include any file dependencies that sdo.getModelDependencies does not
detect.

files = vertcat(files,'C:\matlab\work\filename.m')

Note If you do not want to copy the files to the remote workers, use the path dependencies. Add
any undetected path dependencies to dirs and update the paths on local drives to make them
accessible to remote workers. See sdo.getModelDependencies for more details.

7 Add the file dependencies for optimization.

opt.ParallelFileDependencies = files;
8 Run the optimization.

3 Response Optimization

3-186

[pOpt,opt_info] = sdo.optimize(opt_fcn,param,opt);

For information on troubleshooting problems related to optimization using parallel computing, see
“Troubleshooting” on page 3-187.

Troubleshooting
Why Are the Optimization Results With and Without Using Parallel Computing Different?

• Different numerical precision on the client and worker machines can produce marginally different
simulation results. Thus, the optimization method can take a different solution path and produce a
different result.

• When you use parallel computing with the Pattern search method, the search is more
comprehensive and can result in a different solution.

To learn more, see “Parallel Computing with the Pattern Search Method” on page 3-181.

Why Don’t I See the Optimization Speed up I Expected Using Parallel Computing?

• When you optimize a model that does not have a large number of parameters or does not take
long to simulate, you might not see a speedup in the optimization time. In such cases, the
overhead associated with creating and distributing the parallel tasks outweighs the benefits of
running the optimization in parallel.

• Using the Pattern search method with parallel computing might not speed up the optimization
time. Without parallel computing, the method stops the search at each iteration when it finds a
solution better than the current solution. The candidate solution search is more comprehensive
when you use parallel computing. Although the number of iterations might be larger, the
optimization without using parallel computing might be faster.

To learn more about the expected speedup, see “Parallel Computing with the Pattern Search
Method” on page 3-181.

Why Doesn’t the Optimization Using Parallel Computing Make Any Progress?

To troubleshoot the problem:

1 Run the optimization for a few iterations without parallel computing to see if the optimization
progresses.

2 Check whether the remote workers have access to all model dependencies. Model dependencies
include data variables and files required by the model to run.

To learn more, see “Model Dependencies” on page 3-183.

Why Doesn’t the Optimization Using Parallel Computing Stop When I Click the Stop
Optimization Button?

When you use parallel computing with the Pattern search method, the software must wait until
the current optimization iteration completes before it notifies the workers to stop. The optimization
does not terminate immediately when you click Stop, and, instead, appears to continue running.

See Also
parpool | sdo.OptimizeOptions | sdo.getModelDependencies | sdo.optimize

 Use Parallel Computing for Response Optimization

3-187

Related Examples
• “Optimizing Time-Domain Response of Simulink® Models Using Parallel Computing” on page 3-

209

More About
• “Speed Up Response Optimization Using Parallel Computing” on page 3-180
• “Ways to Speed Up Design Optimization Tasks”

3 Response Optimization

3-188

Use Fast Restart Mode During Response Optimization
This topic shows how to speed up response optimization using Simulink fast restart. You can use the
fast restart feature to speed up response optimization of tunable parameters of a model.

Fast restart enables you to perform iterative simulations without compiling a model or terminating
the simulation each time. Using fast restart, you compile a model only once. You can then tune
parameters and simulate the model again without spending time on compiling. Fast restart associates
multiple simulation phases with a single compile phase to make iterative simulations more efficient.
You see a speedup of design optimization tasks using fast restart in models that have a long
compilation phase. See “How Fast Restart Improves Iterative Simulations”.

When you enable fast restart, you can only change tunable properties of the model during simulation.
For more information about the limitations, see “Limitations”.

You can optimize using fast restart in the Response Optimizer or at the command line on page 3-
189.

Response Optimizer App Workflow for Fast Restart
To optimize a model response using fast restart in the Response Optimizer:

1 Open the Simulink model.
2 Enable fast restart in the model.

Click Fast Restart in the model window.
3 Open the Response Optimizer for the model.
4 Configure the design variables, design requirements, and, optionally, optimization settings.

For more information, see “Specify Design Variables” on page 3-56, “Specify Time-Domain
Design Requirements in the App” on page 3-16, “Specify Frequency-Domain Design
Requirements in the App” on page 3-43, and “Specify Optimization Options” on page 3-62.

5 Click Optimize to optimize the model response in fast restart mode.
6 Disable fast restart.

In the model window, click Fast Restart .

Command-Line Workflow for Fast Restart
To optimize a model response using fast restart at the command line:

1 Open the Simulink model.
2 Create a model simulation scenario. You must create a simulation scenario with logging

information before configuring the model for fast restart. You cannot modify logging information
once the model has been compiled for fast restart.

Simulator = sdo.SimulationTest('model');

Specify model signals to log during model simulation.

 Use Fast Restart Mode During Response Optimization

3-189

For response optimization problems that include frequency-domain requirements, the model is
linearized using Simulink Control Design. Use the SystemLoggingInfo property of the
sdo.SimulationTest object, Simulator, to specify linear systems to log when simulating the
model. For an example, see “Design Optimization to Meet Frequency-Domain Requirements
(Code)” on page 3-216.

Note In fast restart mode, you cannot use the linearize command from Simulink Control
Design to specify and compute linear systems. Using linearize generates an error.

3 Specify design requirements, Requirements, and design variables, param. For and example, see
“Design Optimization to Meet Step Response Requirements (Code)”.

4 Configure the model and simulation scenario for fast restart.

Simulator = fastRestart(Simulator,'on');
5 Create an optimization cost function, myCostfcn, and pass Simulator to the cost function as an

input. For more information, see “Write a Cost Function” on page 2-49. In the cost function, the
simulator configured for fast restart is used to update the model parameters, simulate the model,
and log signals.

Use an anonymous function with one argument that calls myCostfcn.

optimfcn = @(param) myCostfcn(param,Simulator,Requirements);

Here, myCostfcn is a cost function that takes design variables, param, simulation scenario,
Simulator, and design requirements, Requirements, as inputs.

6 Run the optimization.

[param_opt,opt_info] = sdo.optimize(optimfcn,param);
7 Restore the simulator fast restart settings.

Simulator = fastRestart(Simulator,'off');

Troubleshooting
Why Don’t I See the Optimization Speedup I Expected Using Fast Restart?

You see a speedup of design optimization tasks using fast restart in models that have a long
compilation phase. If the compilation phase of your model is not long, you do not see a significant
change in optimization speed.

See Also
fastRestart | sdo.SimulationTest | sdo.optimize

More About
• “Ways to Speed Up Design Optimization Tasks”

3 Response Optimization

3-190

Optimization Does Not Make Progress

Should I worry about the scale of my responses and how constraints
and design requirements are discretized?
No, Simulink Design Optimization software automatically normalizes constraints, design requirement
and response data.

Why don't the responses and parameter values change at all?
The optimization problem you formulated might be nonsmooth. This means that small parameter
changes have no effect on the amount by which response signals satisfy or violate the constraints and
only large changes will make a difference. Try switching to a search-based method such as simplex
search or pattern search. Alternatively, look for initial guesses outside of the dead zone where
parameter changes have no effect. If you are optimizing the response of a Simulink model, you could
also try removing nonlinear blocks such as Quantizer or Dead Zone.

Why does the optimization stall?
When optimizing a Simulink model, certain parameter combinations can make the simulation stall for
models with strong nonlinearities or frequent mode switching. In these cases, the ODE solvers take
smaller and smaller step sizes. Stalling can also occur when the model's ODEs become too stiff for
some parameter combinations. A symptom of this behavior is when the Simulink model status is
Running and clicking the Stop button fails to interrupt the optimization. When this happens, you can
try one of the following solutions:

• Switch to a different ODE solver, especially one of the stiff solvers.
• Specify a minimum step size.
• Disable zero crossing detection if chattering is occurring.
• Tighten the lower and upper bounds on parameters that cause simulation difficulties. In particular,

eliminate regions of the parameter space where some model assumptions are invalid and the
model behavior can become erratic.

 Optimization Does Not Make Progress

3-191

Optimization Convergence

What to do if the optimization does not get close to an acceptable
solution?
• If you are using pattern search, check that you have specified appropriate maximum and minimum

values for all your tuned parameters or compensator elements. The pattern search method looks
inside these bounds for a solution. When they are set to their default values of Inf and -Inf, the
method searches within ±100% of the initial values of the parameters. In some cases this region is
not large enough and changing the maximum and minimum values can expand the search region.

• Your optimization problem might have local minima. Consider running one of the search-based
methods first to get closer to an acceptable solution.

• Reduce the number of tuned parameters and compensator elements by removing from the design
variables or from the Compensators pane those parameters that you know only mildly influence
the optimized responses. After you identify reasonable values for the key parameters, add the
fixed parameters back to the tunable list and restart the optimization using these reasonable
values as initial guesses.

• The software may have encountered errors during the optimization. Review the errors to
determine if you can make changes to improve the optimization results. Changes may require
modifications to the model, requirements, or optimization settings.

• In the Response Optimizer, the software creates a structure named EvalErrors in the Data
area when the optimization completes with errors. Export this structure to the MATLAB
workspace and examine its contents at the command line. EvalErrors has two fields, Errors
and DesignVars, containing the errors encountered during optimization and the
corresponding design variable values. To reproduce a specific error, use
sdo.setValueInModel to run the model using the design variables that correspond to the
error.

• At the command line, the second output of sdo.optimize, opt_info, is a structure that
provides information regarding the optimization. opt_info.exitflag identifies the reason
the optimization terminated. For more information regarding exit flags, see “Exit Flags and
Exit Messages”.

Why does the optimization terminate before exceeding the maximum
number of iterations, with a solution that does not satisfy all the
constraints or design requirements?
• It might not be possible to achieve your specifications. Try relaxing the constraints or design

requirements that the response signals violate the most. After you find an acceptable solution to
the relaxed problem, tighten some constraints again and restart the optimization.

• The optimization might have converged to a local minimum that is not a feasible solution. Restart
the optimization from a different initial guess and/or use one of the search-based methods to
identify another local minimum that satisfies the constraints.

3 Response Optimization

3-192

What to do if the optimization takes a long time to converge even
though it is close to a solution?
• In the Response Optimizer, click Stop to interrupt the optimization when you think the current

optimized response signals are acceptable.

When you use Optimization Based Tuning, click Stop Optimization in the Optimization tab of
the Response Optimization dialog in the Control System Designer, when you think the
current optimized response signals are acceptable.

• If you use the gradient descent method, try restarting the optimization. Restarting resets the
Hessian estimate and might speed up convergence.

• Increase the convergence tolerances in the Optimization Options dialog to force earlier
termination.

• Relax some of the constraints or design requirements to increase the size of the feasibility region.

What to do if the response becomes unstable and does not recover?
While the optimization formulation has explicit safeguards against unstable or divergent response
signals, the optimization can sometimes venture into an unstable region where simulation results
become erratic and gradient methods fail to find a way back to the stable region. In these cases, you
can try one of the following solutions:

• Add or tighten the lower and upper bounds on compensator element and parameter values.
Instability often occurs when you allow some parameter values to become too large.

• Use a search-based method to find parameter values that stabilize the response signals and then
start the gradient-based method using these initial values.

• When optimizing responses in Control System Designer, you can try adding additional design
requirements that achieve the same or similar goal. For example, in addition to a settling time
design requirement on a step response plot, you could add a settling time design requirement on a
root-locus plot that restricts the location of the real parts of the poles. By adding overlapping
design requirements in this way, you can force the optimization to meet the requirements.

 Optimization Convergence

3-193

Optimization Speed and Parallel Computing

How can I speed up the optimization?
• The optimization time is dominated by the time it takes to simulate the model. When optimizing a

Simulink model, you can enable the Accelerator mode by choosing Accelerator from the
dropdown list under Simulation in the Simulink Editor, to dramatically reduce the optimization
time.

Note The Rapid Accelerator mode in Simulink software is not supported for speeding up the
optimization. For more information, see “Use Accelerator Mode During Simulations” on page 3-
179.

• The choice of ODE solver can also significantly affect the overall optimization time. Use a stiff
solver when the simulation takes many small steps, and use a fixed-step solver when such solvers
yield accurate enough simulations for your model. (These solvers must be accurate in the entire
parameter search space.)

• Reduce the number of tuned compensator elements or parameters and constrain their range to
narrow the search space.

• When specifying parameter uncertainty (not available when optimizing responses in Control
System Designer), keep the number of sample values small since the number of simulations
grows exponentially with the number of samples. For example, a grid of 3 parameters with 10
sample values for each parameter requires 103=1000 simulations per iteration.

Why are the optimization results with and without using parallel
computing different?
• Different numerical precision on the client and worker machines can produce marginally different

simulation results. Thus, the optimization method can take a different solution path and produce a
different result.

• When you use parallel computing with the Pattern search method, the search is more
comprehensive and can result in a different solution.

To learn more, see “Parallel Computing with the Pattern Search Method” on page 3-181.

Why do I not see the optimization speedup I expected using parallel
computing?
• When you optimize a model that does not have a large number of parameters or does not take

long to simulate, you might not see a speedup in the optimization time. In such cases, the
overhead associated with creating and distributing the parallel tasks outweighs the benefits of
running the optimization in parallel.

• Using the Pattern search method with parallel computing might not speed up the optimization
time. Without parallel computing, the method stops the search at each iteration when it finds a
solution better than the current solution. The candidate solution search is more comprehensive
when you use parallel computing. Although the number of iterations might be larger, the
optimization without using parallel computing might be faster.

3 Response Optimization

3-194

To learn more about the expected speedup, see “Parallel Computing with the Pattern Search
Method” on page 3-181.

Why does the optimization using parallel computing not make any
progress?
To troubleshoot the problem:

1 Run the optimization for a few iterations without parallel computing to see if the optimization
progresses.

2 Check whether the remote workers have access to all model dependencies. Model dependencies
include data variables and files required by the model to run.

To learn more, see “Model Dependencies” on page 3-183.

Why does the optimization using parallel computing not stop when I
click the Stop optimization button?
When you use parallel computing with the Pattern search method, the software must wait until
the current optimization iteration completes before it notifies the workers to stop. The optimization
does not terminate immediately when you click Stop, and, instead, appears to continue running.

 Optimization Speed and Parallel Computing

3-195

Undesirable Parameter Values

What to do if the optimization drives the tuned compensator elements
and parameters to undesirable values?
• When a tuned compensator element or parameter is positive, or when its value is physically

constrained to a given range, enter the lower and upper bounds (Minimum and Maximum) in
one of the following:

• Dialog box to select design variables (in Response Optimizer)
• Compensators pane (in Control System Designer)

This information helps guide the optimization method towards a reasonable solution.
• Specify initial guesses that are within the range of desirable values.
• In the Compensators pane in Control System Designer, verify that no integrators/
differentiators are selected for optimization. Optimizing the pole/zero location of integrators/
differentiators can result in drastic changes in the system gain and lead to undesirable values.

What to do if the optimization violates bounds on parameter values?
The Gradient descent optimization method fmincon violates the parameter bounds when it
cannot simultaneously satisfy the signal constraints and the bounds. When this happens, try one of
the following:

• Specify a different value for the parameter bound and restart the optimization. A guideline is to
adjust the bound by 1% of the typical value.

For example, for a parameter with a typical value of 1 and lower bound of 0, change the lower
bound to 0.01.

• Relax the signal constraints and restart the optimization. This approach results in a different
solution path for the Gradient descent method.

• Restart the optimization immediately after it terminates by clicking Optimize in the Response
Optimizer. This approach uses the previous optimization results as the starting point for the next
optimization cycle to refine the results.

• Use the following two-step approach to perform the optimization:

1 Run an initial optimization to satisfy the signal constraints.

For example, run the optimization using the Simplex search method. This method satisfies
the signal constraints but does not support the bounds on parameter values. The results
obtained using this method provide the starting point for the optimization performed in the
next step. To learn more about this method, see the fminsearch function reference page in
the Optimization Toolbox documentation.

2 Reconfigure the optimization by selecting a different optimization method to satisfy both the
signal constraints and the parameter bounds.

For example, change the optimization method to Gradient descent and run the
optimization again.

3 Response Optimization

3-196

Tip If Global Optimization Toolbox software is installed, you can select the Pattern search
optimization method to optimize the model response.

 Undesirable Parameter Values

3-197

Reverting to Initial Parameter Values

How do I quit an optimization and revert to my initial parameter
values?
• Before running an optimization, do one of the following:

• In the Response Optimizer, click Options. Uncheck Update model at end of optimization
in the General Options tab.

• In the Response Optimizer, click Options. Select Save optimized variable values as new
design variable set in the General Options tab.

• Make a copy of the design variable set in the Data area.

If you want to revert to the initial parameter values after the optimization terminates or you stop
the optimization by clicking Stop, select the design variable that contains the initial values in the

Design Variable Set drop-down list and click adjacent to Design variables Set. Select the
design variables in the dialog box and click Update model variable values to revert the model
parameters to their original values.

• When using the Control System Designer, the Start Optimization button becomes a Stop
Optimization button after the optimization has begun. To quit the optimization, click the Stop
Optimization button. To revert to the initial parameter values, select Edit > Undo Optimize
compensators from the menu in the Control System Designer.

3 Response Optimization

3-198

Save and Load Optimization Sessions

Structure of an Optimization Session
The Response Optimizer stores and organizes data from a given Simulink model inside a session.
An optimization session includes the following information:

• Design variables and uncertain variables
• Design requirements
• Optimization results
• Optimization settings
• Plots — Changes to plots layout and plot characteristics, such as axis limits, line colors, are not

included.

The default session name is the same as the Simulink model name. The session name displays on the
title pane of Response Optimizer.

Save a Session
Saving a session lets you reuse your settings and optimization results later. Each Response
Optimizer session is associated with a Simulink model.

You can save the session as either a MAT-file or workspace variable.

• To save the session as a MAT-file, in the Response Optimization tab, in the Save Session drop-
down list, click Save to file. A window opens where you specify the MAT-file name.

• To save the session as a model or MATLAB workspace variable, in the Save Session drop-down
list, select Save to model workspace or Save to MATLAB workspace.

Load a Session
To load a previously saved MAT-file or workspace session:

1 Open the Response Optimizer for the model.
2 To load a MAT-file, in the Response Optimization tab, click the Open Session drop-down list,

and select Open from file. A window opens where you select the MAT-file to load.

To load a workspace variable, select Open from model workspace or Open from MATLAB
workspace in the Open Session drop-down list.

See Also

Related Examples
• “Specify Design Variables” on page 3-56
• “Specify Time-Domain Design Requirements in the App” on page 3-16
• “Specify Frequency-Domain Design Requirements in the App” on page 3-43
• “Specify Optimization Options” on page 3-62

 Save and Load Optimization Sessions

3-199

Improving Optimization Performance Using Parallel Computing
This example shows how to improve optimization performance using the Parallel Computing
Toolbox™. The example discusses the speedup seen when using parallel computing to optimize a
complex Simulink® model. The example also shows the effect of the number of parameters and the
model simulation time when using parallel computing.

Requires Parallel Computing Toolbox™

An Example Illustrating Optimization Speedup

The main computational load when using Simulink Design Optimization is the simulation of a model.
The optimization methods typically require numerous simulations per optimization iteration. As many
of the simulations are independent, it is beneficial to use parallel computing to distribute these
independent simulations across different processors.

Consider the Simulink model of a HL20 aircraft, which ships with the Aerospace Blockset™. The
HL20 model is a complex model and includes mechanical, electrical, avionics, and environmental
components. A typical simulation of the HL20 model takes around 60 seconds.

During landing, the aircraft is subjected to two wind gusts from different directions which cause the
aircraft to deviate from the nominal trajectory on the runway. Simulink Design Optimization is used to
tune the 3 parameters of the controller so that the lateral deviation of the aircraft from a nominal
trajectory in the presence of wind gusts is kept within five meters.

3 Response Optimization

3-200

The optimization is performed both with and without using parallel computing on dual-core 64bit
AMD®, 2.4GHz, 3.4GB Linux® and quad-core 64bit AMD, 2.5GHz, 7.4GB Linux machines. The speed
up observed for this problem is shown below.

The HL20 example illustrates the potential speedup when using parallel computing. The next sections
discuss the speedup expected for other optimization problems.

When Will an Optimization Benefit from Parallel Computing?

The previous section shows that distributing the simulations during an optimization can reduce the
total optimization time. This section quantifies the expected speedup.

In general, the following factors could indicate that parallel computing would result in faster
optimization:

• There are a large number of parameters being optimized

• A pattern search method is being used

• A complex Simulink model that takes a long time to simulate

• There are a number of uncertain parameters in the model

Each of these is examined in the following sections.

 Improving Optimization Performance Using Parallel Computing

3-201

Number of Parameters and Their Effect on Parallel Computing

The number of simulations performed by an optimization method is closely coupled with the number
of parameters.

Gradient Descent Method and Parallel Computing

Consider the simulations required by a gradient-based optimization method at each iteration:

• A simulation for the current solution point

• Simulations to compute the gradient of the objective with respect to the optimized parameters

• Once a gradient is computed, simulations to evaluate the objective along the direction of the
gradient (the so called line search evaluations)

Of these simulations, the simulations required to compute gradients are independent and are
distributed. Let us look at this more closely:

Np = 1:16; %Number of parameters (16 = 4 filtered PID controllers)
Nls = 1; %Number of line search simulations, assume 1 for now
Nss = 1; %Total number of serial simulations, start with nominal only

The gradients are computed using central differences. There are 2 simulations per parameter, and
include the line search simulations to give the total number of simulations per iteration:

Nss = 1+Np*2+Nls;

As mentioned above the computation of gradients with respect to each parameter can be distributed
or run in parallel. This reduces the total number of simulations that run in series when using parallel
computing as follows:

Nw = 4; %Number of parallel processors
Nps = 1 + ceil(Np/Nw)*2+Nls;

The ratio Nss/Nps gives us the speedup which we plot below

Nls = 0:5; %Vary the number of line search simulations
figure;
hAx = gca;
xlim([min(Np) max(Np)]);
for ct = 1:numel(Nls)
 Rf = (1+Nls(ct)+Np*2)./(1+Nls(ct)+ceil(Np/Nw)*2);
 hLine = line('parent',hAx,'xdata',Np,'ydata',Rf);
 if ct == 1
 hLine.LineStyle = '-';
 hLine.Color = [0 0 1];
 hLine.LineWidth = 1;
 else
 hLine.LineStyle = '-.';
 hLine.Color = [0.6 0.6 1];
 hLine.LineWidth = 1;
 end
end
grid on
title('Gradient descent based relative speedup')
xlabel('Number of parameters')
ylabel('Serial time/parallel time')

3 Response Optimization

3-202

annotation('arrow',[0.55 .55],[5/6 2/6])
text(8.5,1.75,'Increasing number of line searches')

The plot shows that the relative speedup gets better as more parameters are added. The upper solid
line is the best possible speedup with no line search simulations while the lighter dotted curves
increase the number of line search simulations.

The plot also shows local maxima at 4,8,12,16 parameters which corresponds to cases where the
parameter gradient calculations can be distributed evenly between the parallel processors. Recall
that for the HL20 aircraft problem, which has 3 parameters, the quad core processor speedup
observed was 2.14 which matches well with this plot.

Pattern Search Method and Parallel Computing

Pattern search optimization method is inherently suited to a parallel implementation. This is because
at each iteration one or two sets of candidate solutions are available. The algorithm evaluates all
these candidate solutions and then generates a new candidate solution for the next iteration.
Evaluating the candidate solutions can be done in parallel as they are independent. Let us look at this
more closely:

Pattern search uses two candidate solution sets, the search set and the poll set. The number of
elements in these sets is proportional to the number of optimized parameters

Nsearch = 15*Np; %Default number of elements in the solution set
Npoll = 2*Np; %Number of elements in the poll set with a 2N poll method

 Improving Optimization Performance Using Parallel Computing

3-203

The total number of simulations per iteration is the sum of the number of candidate solutions in the
search and poll sets. When distributing the candidate solution sets the simulations are distributed
evenly between the parallel processors. The number of simulations that run in series after
distribution thus reduces to:

Nps = ceil(Nsearch/Nw)+ceil(Npoll/Nw);

When evaluating the candidate solutions without using parallel computing, the iteration is terminated
as soon as a candidate solution that is better than the current solution is found. Without additional
information, the best bet is that about half the candidate solutions will be evaluated. The number of
serial simulations is thus:

Nss = 0.5*(Nsearch+Npoll);

Also note that the search set is only used in the first couple of optimization iterations, after which
only the poll set is used. In both cases the ratio Nss/Nps gives us the speedup which we plot below.

figure;
hAx = gca;
xlim([min(Np) max(Np)]);
Rp1 = (Nss)./(Nps);
Rp2 = (Npoll)./(ceil(Npoll/Nw));
line('parent',hAx,'xdata',Np,'ydata',Rp1,'color',[0 0 1]);
line('parent',hAx,'xdata',Np,'ydata',Rp2,'color',[0.6 0.6 1]);
grid on
title('Pattern search based relative speedup')
xlabel('Number of parameters')
ylabel('Serial time/ parallel time')
legend('Search and poll sets','Poll set only')

3 Response Optimization

3-204

The dark curve is the speedup when the solution and poll sets are evaluated and the lighter lower
curve the speedup when only the poll set is evaluated. The expected speedup over an optimization
should lie between the two curves. Notice that even with only one parameter, a pattern search
method benefits from distribution. Also recall that for the HL20 aircraft problem, which has 3
parameters, the quad core speedup observed was 2.81 which matches well with this plot.

Overhead of Distributing an Optimization

In the previous sections, the overhead associated with performing the optimization in parallel was
ignored. Including this overhead gives an indication of the complexity of a simulation that will benefit
from distributed optimization.

The overhead associated with running an optimization in parallel primarily results from two sources:

• opening the parallel pool

• loading the Simulink model and performing an update diagram on the model

There is also some overhead associated with transferring data to and from the remote processors.
Simulink Design Optimization relies on shared paths to provide remote processors access to models
and the returned data is limited to objective and constraint violation values. Therefore, this overhead
is typically much smaller than opening the MATLAB® pool and loading the model. This was true for
the HL20 aircraft optimization but may not be true in all cases. However, the analysis shown below
can be extended to cover additional overhead.

findOverhead = false; % Set true to compute overhead for your system.
if findOverhead

 Improving Optimization Performance Using Parallel Computing

3-205

 % Compute overhead.
 wState = warning('off','MATLAB:dispatcher:pathWarning');
 t0 = clock;
 parpool %Open the parallel pool
 load_system('airframe_demo') %Open a model
 set_param('airframe_demo','SimulationCommand','update') %Run an update diagram for the model
 Toverhead = etime(clock,t0)
 close_system('airframe_demo')
 delete(gcp) %Close the parallel pool
 warning(wState);
else
 % Use overhead observed from experiments.
 Toverhead = 28.6418;
end

Let us consider a gradient-based algorithm with the following number of serial simulations per
iteration:

Nw = 4; %Four parallel processors
Np = 4; %Four parameters optimized
Nls = 2; %Assume 2 line search simulations
Nss = 1+Np*2+Nls; %Serial simulations without parallel computing
Nps = 1+ceil(Np/Nw)*2+Nls; %Serial simulations with parallel computing

The speedup is now computed as the ratio of the total parallel time including overhead to the total
serial time. For worst case analysis, assume the optimization terminates after one iteration which
gives:

Niter = 1;
Ts = 10:10:60; %Time to simulate model once
Tst = Niter*Nss*Ts; %Total serial optimization time
Tpt = Niter*Nps*Ts+Toverhead; %Total parallel optimization time
figure;
hAx = gca;
xlim([min(Ts) max(Ts)]);
Rp = (Tst)./(Tpt);
line('parent',hAx,'xdata',Ts,'ydata',Rp,'color',[0 0 1]);
Niter = 2^1:4;
for ct = 1:numel(Niter)
 Rp = (Niter(ct)*Nss*Ts)./(Niter(ct)*Nps*Ts+Toverhead);
 line('parent',hAx,'xdata',Ts,'ydata',Rp,'color',[0.6 0.6 1]);
end
grid on
title('Effect of parallel overhead on optimization speedup')
xlabel('Time to simulate model once')
ylabel('Serial time/ parallel time')
annotation('arrow',[0.55 0.55],[0.45 0.85]);
text(38,2.05,'Increasing number of iterations')

3 Response Optimization

3-206

The dark lower curve shows the speedup assuming one iteration while the lighter upper curves
indicate speedup with up to 16 iterations.

A similar analysis could be performed for pattern search based optimization. Experience has shown
that optimization of complex simulations that take more than 40 seconds to run typically benefit from
parallel optimization.

Uncertain Parameters and Their Effect on Parallel Optimization

When using Simulink Design Optimization, you can vary some parameters (say a spring stiffness) and
optimize parameters in the face of these variations. The uncertain parameters define additional
simulations that need to be evaluated at each iteration. However, conceptually you can think of these
additional simulations as extending the simulation without uncertain parameters. This implies that
wherever one simulation was carried out, now multiple simulations are carried out. As a result,
uncertain parameters do not affect the overhead free optimization speedup and the calculations in
earlier sections are valid.

In the case where we considered overhead, uncertain parameters have the effect of increasing the
simulation time and reduce the effect of the overhead associated with creating a parallel
optimization. To see this consider the following

Nu = [0 10]; %Number of uncertain scenarios
Nss = (1+Nu)*(1+Np*2+Nls); %Serial simulations without parallel computing
Nps = (1+Nu)*(1+ceil(Np/Nw)*2+Nls); %Serial simulations with parallel computing
figure;
hAx = gca;

 Improving Optimization Performance Using Parallel Computing

3-207

xlim([min(Ts) max(Ts)]);
for ct = 1:numel(Nu)
 Rp = (Ts*Nss(ct))./(Ts*Nps(ct)+Toverhead);
 line('parent',hAx,'xdata',Ts,'ydata',Rp,'color',[0 0 1]);
end
grid on
title('Effect of uncertain parameters on optimization speedup')
xlabel('Time to simulate model once')
ylabel('Serial time/ parallel time')
annotation('arrow',[0.45 0.45],[0.4 0.9])
text(31,2.05,'Increasing number of uncertain variables')

The bottom curve is the case with no uncertain parameters while the top curve is the case with an
uncertain parameter that can take on 10 distinct values.

3 Response Optimization

3-208

Optimizing Time-Domain Response of Simulink® Models Using
Parallel Computing

This example shows how to use parallel computing to optimize the time-domain response of a
Simulink® model. You use Simulink® Design Optimization™ and Parallel Computing Toolbox™ to
tune the gains of a discrete PI controller of a boiler to meet the design requirements. The example
also shows how the software automatically handles model file dependencies.

This example requires Parallel Computing Toolbox™.

Opening the Model

The Simulink model consists of a boiler model and a discrete PI controller. When using parallel
computing, Simulink Design Optimization performs a model dependency check, which recognizes the
boiler model library as an installed library.

In order to illustrate how model dependencies are handled when using parallel computing, we copy
the boiler model and library block to a temporary folder before opening the model.

pathToLib = boilerpressure_setup; %Copies boiler model and library to a temporary folder
addpath(pathToLib);
open_system('boilerpressure_demo')

Design Requirements

The boiler pressure is regulated by a discrete PI controller. The design requirement for the controller
is to limit the pressure variation of the boiler within +-%5 of the nominal pressure.

The initial controller has fairly good regulation characteristics but in the presence of additional heat
disturbances, modeled by the Heat Disturbance block, we want to tune the controller performance to
provide tighter pressure regulation.

 Optimizing Time-Domain Response of Simulink® Models Using Parallel Computing

3-209

Double-click the 'Response Optimization GUI with preloaded data' block in the Simulink model to
open a pre-configured Response Optimizer session. The Response Optimizer is configured with:

1. Upper and lower bounds representing a +-5% allowable range on the drum pressure

2. A reference tracking objective to minimize the deviation of the drum pressure from nominal

3. The PI controller gains, Kp and Ki, are selected for tuning

Click Plot Model Response to display the drum pressure variations with the initial controller.

Configuring and Running the Optimization in the GUI Using Parallel Computing

When computing the model response with the initial controller, this complex model took a long time
to simulate. Using parallel computing can reduce the optimization time by simulating the model in
parallel. For more information on parallel computing and optimization performance see the tutorial
“Improving Optimization Performance Using Parallel Computing” on page 3-200.

3 Response Optimization

3-210

To configure the optimization problem to use parallel computing click Options in the Response
Optimizer and select the Parallel Options tab. Select the "Use the parallel pool during
optimization" option. This triggers an automated search for any model dependencies. In this example,
the Steam table library (libsteam.slx) is found as a model dependency (in addition to the
boilerpressure_demo model itself), and is displayed in the Model file dependencies list box.

Clicking OK configures the optimization to use parallel computing.

To run the optimization click the Optimize button. A progress window opens displaying optimization
progress and the plots update to show the optimized response.

 Optimizing Time-Domain Response of Simulink® Models Using Parallel Computing

3-211

The final response shows that the optimized regulator tracks the reference pressure much more
closely and the drum pressure constraints are satisfied.

Configuring and Running the Optimization at the Command Line

You can also use the command line functions to configure the optimization to use parallel computing
and run the optimization.

Select the model variables for optimization and set lower limits

p = sdo.getParameterFromModel('boilerpressure_demo',{'Kp','Ki'});
p(1).Minimum = 0.001;
p(2).Minimum = 0.001;

Select the model signal to bound and create a simulator to simulate the model.

nPressure = Simulink.SimulationData.SignalLoggingInfo;
nPressure.BlockPath = 'boilerpressure_demo/1//y0';
nPressure.OutputPortIndex = 1;

3 Response Optimization

3-212

nPressure.LoggingInfo.NameMode = 1;
nPressure.LoggingInfo.LoggingName = 'nPressure';

simulator = sdo.SimulationTest('boilerpressure_demo');
simulator.LoggingInfo.Signals = nPressure;

Get the optimization requirements defined by the check blocks in the model so that we can use them
in the optimization problem.

bnds = getbounds('boilerpressure_demo/Drum pressure constraint');
PressureLimits = [bnds{:}];
bnds = getbounds('boilerpressure_demo/Drum pressure constraint(Reference Tracking)');
PressureRegulation = [bnds{:}];
requirements = struct(...
 'PressureLimits', PressureLimits, ...
 'PressureRegulation', PressureRegulation);

Define the function called during optimization. Notice that the function uses the simulator and
requirements defined earlier to evaluate the design.

evalDesign = @(p) boilerpressure_design(p,simulator,requirements);
type boilerpressure_design

function design = boilerpressure_design(p,simulator,requirements)
%BOILERPRESSURE_DESIGN
%
% The boilerpressure_design function is used to evaluate a boiler
% controller design design.
%
% The |p| input argument is the vector of controller parameters.
%
% The |simulator| input argument is a sdo.SimulinkTest object used to
% simulate the |boilerpressure_demo| model and log simulation signals.
%
% The |requirements| input argument contains the design requirements used
% to evaluate the boiler controller design.
%
% The |design| return argument contains information about the design
% evaluation that can be used by the |sdo.optimize| function to optimize
% the design.
%
% see also sdo.optimize, sdoExampleCostFunction

% Copyright 2011 The MathWorks, Inc.

%% Simulate the model
%
% Use the simulator input argument to simulate the model and log model
% signals.
%
% First ensure that we simulate the model with the parameter values chosen
% by the optimizer.
%
simulator.Parameters = p;
%%
% Simulate the model and log signals.
%

 Optimizing Time-Domain Response of Simulink® Models Using Parallel Computing

3-213

simulator = sim(simulator);
%%
% Get the simulation signal log, the simulation log name is defined by the
% model |SignalLoggingName| property
%
logName = get_param('boilerpressure_demo','SignalLoggingName');
simLog = get(simulator.LoggedData,logName);

%% Evaluate the design requirements
%
% Use the requirements input argument to evaluate the design requirements
%
% Check the Pressure signal against the |PressureLimits| requirements.
%
nPressure = get(simLog,'nPressure');
c = [...
 evalRequirement(requirements.PressureLimits(1),nPressure.Values); ...
 evalRequirement(requirements.PressureLimits(2),nPressure.Values)];
%%
% Use the PressureLimits requirements as non-linear constraints for
% optimization.
design.Cleq = c(:);
%%
% Check the pressure signal against the |PressureRegulation| requirement.
%
f = evalRequirement(requirements.PressureRegulation,nPressure.Values);
%%
% Use the PressureRegulation requirement as an objective for optimization.
design.F = f;
end

Setup optimization options to use the parallel pool and specify the model and model files
dependencies.

opt = sdo.OptimizeOptions;
opt.UseParallel = true;
opt.OptimizedModel = 'boilerpressure_demo';
[dirs,files] = sdo.getModelDependencies('boilerpressure_demo');
opt.ParallelFileDependencies = files;

To run the optimization using the parallel pool pass the optimization options, opt, to the
sdo.optimize command.

3 Response Optimization

3-214

Closing the Model

After the model is optimized, we remove the boiler model and library file from the temporary folder.

bdclose('boilerpressure_demo')
rmpath(pathToLib)
boilerpressure_cleanup(pathToLib)

 Optimizing Time-Domain Response of Simulink® Models Using Parallel Computing

3-215

Design Optimization to Meet Frequency-Domain Requirements
(Code)

This example shows how to tune model parameters to meet frequency-domain requirements, using
the sdo.optimize command.

This example requires Simulink® Control Design™.

Suspension Model

Open the Simulink Model.

open_system('sdoSimpleSuspension')

Mass-spring-damper models represent simple suspension systems and for this example we tune the
system to meet typical suspension requirements. The model implements the second order system
representing a mass-spring-damper using Simulink blocks and includes:

• a Mass gain block parameterized by the total suspended mass, m0+mLoad. The total mass is the
sum of a nominal mass, m0, and a variable load mass, mLoad.

• a Damper gain block parameterized by the damping coefficient, b.

• a Spring gain block parameterized by the spring constant, k.

• two integrator blocks to compute the mass velocity and position.

• a Band-Limited Disturbance Force block applying a disturbance force to the mass. The
disturbance force is assumed to be band-limited white noise.

3 Response Optimization

3-216

Simulate the model to view the system response to the applied disturbance force.

Design Problem

The initial system has a bandwidth that is too high. This can be seen from the spiky position signal.
You tune the spring and damper values to meet the following requirements:

• The -3dB system bandwidth must not exceed 10 rad/s.

• The damping ratio of the system must be less than 1/sqrt(2). This ensures that no frequencies in
pass band are amplified by the system.

• Minimize the expected failure rate of the system. The expected failure rate is described by a
Weibull distribution dependent on the mass, spring, and damper values.

• These requirements must all be satisfied as the load mass ranges from 0 to 20 kg.

Specify Design Variables
DesignVars = sdo.getParameterFromModel('sdoSimpleSuspension',{'b','k'});
DesignVars(1).Minimum = 100;
DesignVars(1).Maximum = 10000;
DesignVars(2).Minimum = 10000;
DesignVars(2).Maximum = 100000;

Specify Uncertain Variables

Specify mLoad, the load mass, as an uncertain variable. This will ensure the optimal solution is robust
to variations in load mass.

UncVars = sdo.getParameterFromModel('sdoSimpleSuspension','mLoad');
UncVars_Values = {...
 10; ...
 20};

 Design Optimization to Meet Frequency-Domain Requirements (Code)

3-217

Specify Design Requirements

Specify design requirements to satisfy during optimization.

Requirements = struct;
Requirements.Bandwidth = sdo.requirements.BodeMagnitude(...
 'BoundFrequencies', [10 100], ...
 'BoundMagnitudes', [-3 -3]);
Requirements.DampingRatio = sdo.requirements.PZDampingRatio;

The reliability requirement will be specified in the optimization objective function described below.
The reliability requirement is used to tune the spring and damper values to minimize the expected
failure rate over a lifetime of 100e3 miles. The failure rate is computed using a Weibull distribution
on the damping ratio of the system. As the damping ratio increases, the failure rate is expected to
increase.

Linearization Definition

The design requirements use the bandwidth and damping ratio of the system, these frequency
domain characteristics require linearizing the model. Create a simulator for the model and use the
simulator to compute the linear systems used by the requirements.

Simulator = sdo.SimulationTest('sdoSimpleSuspension');

Specify linear systems to compute by specifying the linearization inputs and outputs of the system.
The linear system input is the output of the Band-Limited Disturbance Force block and the
linear system output is the output of the x_dot block (the position signal).

IOs(1) = linio('sdoSimpleSuspension/Band-Limited Disturbance Force',1,'input');
IOs(2) = linio('sdoSimpleSuspension/x_dot',1,'output');

Add the linearization IOs to a sdo.SystemLoggingInfo object with a logging name, and
linearization snapshot time. In this case, the snapshot time is set to 0, the model initial condition.

sys1 = sdo.SystemLoggingInfo;
sys1.Source = 'IOs';
sys1.LoggingName = 'IOs';
sys1.LinearizationIOs = IOs;
sys1.SnapshotTimes = 0;

Add the system logging info to the simulator. When the simulator is used to run the model, the linear
system defined by the specified linearization IOs is computed and added to the simulation log with
the specified logging name.

Simulator.SystemLoggingInfo = sys1;

Create Optimization Objective Function

Create a function that is called at each optimization iteration to evaluate the design requirements.

Use an anonymous function with one argument that calls sdoSimpleSuspension_Design. The
sdoSimpleSuspension_Design function has arguments for the design parameters, the simulator,
the design requirements, the uncertain variables, and uncertain variable values.

optimfcn = @(P) sdoSimpleSuspension_Design(P,Simulator,Requirements,UncVars,UncVars_Values);
type sdoSimpleSuspension_Design

3 Response Optimization

3-218

function Vals = sdoSimpleSuspension_Design(P,Simulator,Requirements,UncVars,UncVars_Values)
%SDOSIMPLESUSPENSION_DESIGN
%
% The sdoSimpleSuspension_Design function is used to evaluate a simple
% suspension system design.
%
% The |P| input argument is the vector of suspension design parameters.
%
% The |Simulator| input argument is a sdo.SimulinkTest object used to
% simulate the |sdoSimpleSuspension| model and log simulation signals.
%
% The |Requirements| input argument contains the design requirements
% used to evaluate the suspension design.
%
% The |UncVars| and |UncVars_Values| arguments specify the uncertain
% variable and uncertain variable values.
%
% The |Vals| return argument contains information about the design
% evaluation that can be used by the |sdo.optimize| function to optimize
% the design.
%
% See also sdoSimpleSuspension_cmddemo

% Copyright 2015 The MathWorks, Inc.

%% Evaluate the suspension reliability
%
%Get the spring and damper design values
allVarNames = {P.Name};
idx = strcmp(allVarNames,'k');
k = P(idx).Value;
idx = strcmp(allVarNames,'b');
b = P(idx).Value;

%Get the nominal mass from the model workspace
wksp = get_param('sdoSimpleSuspension','ModelWorkspace');
m = evalin(wksp,'m0');

%The expected failure rate is defined by the Weibull cumulative
%distribution function, 1-exp(-(x/l)^k), where k=3, l is a function of the
%mass, spring and damper values, and x the lifetime.
d = b/2/sqrt(m*k);
pFailure = 1-exp(-(100e3*d/250e3)^3);

%% Nominal Evaluation
%
% Evaluate the model and requirements with uncertain parameters set to their
% nominal values.

% Simulate the model.
Simulator.Parameters = [P(:);UncVars(:)];
Simulator = sim(Simulator);

% Retrieve logged linearizations.
Sys = find(Simulator.LoggedData,'IOs');

% Evaluate the design requirements.

 Design Optimization to Meet Frequency-Domain Requirements (Code)

3-219

Cleq_Bandwidth = evalRequirement(Requirements.Bandwidth,Sys.values);
Cleq_DampingRatio = evalRequirement(Requirements.DampingRatio,Sys.values);

%% Uncertain Evaluation
%
% Evaluate the model and requirements for all combinations of uncertain
% parameter values.
for ct=1:size(UncVars_Values,1)
 UncVars(1).Value = UncVars_Values{ct,1};

 % Simulate the model.
 Simulator.Parameters = [P(:);UncVars(:)];
 Simulator = sim(Simulator);

 % Retrieve logged linearizations.
 Sys = find(Simulator.LoggedData,'IOs');

 % Evaluate the design requirements.
 Cleq_Bandwidth_UncVars = evalRequirement(Requirements.Bandwidth,Sys.values);
 Cleq_DampingRatio_UncVars = evalRequirement(Requirements.DampingRatio,Sys.values);

 Cleq_Bandwidth = [Cleq_Bandwidth; Cleq_Bandwidth_UncVars]; %#ok<AGROW>
 Cleq_DampingRatio = [Cleq_DampingRatio; Cleq_DampingRatio_UncVars]; %#ok<AGROW>
end

%% Return Values.
%
% Collect the evaluated design requirement values in a structure to
% return to the optimization solver.
Vals.F = pFailure;
Vals.Cleq = [...
 Cleq_Bandwidth(:); ...
 Cleq_DampingRatio(:)];
end

Optimization Options

Specify optimization options.

Options = sdo.OptimizeOptions;
Options.MethodOptions.Algorithm = 'active-set';
Options.MethodOptions.TolGradCon = 1e-06;

Optimize the Design

Call sdo.optimize with the objective function handle, parameters to optimize, and options.

[Optimized_DesignVars,Info] = sdo.optimize(optimfcn,DesignVars,Options);

 Optimization started 25-Aug-2020 21:16:57

 max First-order
 Iter F-count f(x) constraint Step-size optimality
 0 5 0.0619897 0.7642
 1 10 0.351266 -0.1277 0.461 1.22
 2 15 0.189345 -0.03881 0.188 0.312
 3 20 0.0829063 0.01312 0.51 0.425
 4 24 0.0365398 0 0.308 1.55

3 Response Optimization

3-220

 5 28 0.0294977 0 0.0143 0.733
 6 32 0.0293065 1.57e-16 0.000417 0.00142
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Related Examples

To learn how to optimize the suspension system using the Response Optimizer, see “Design
Optimization to Meet Frequency-Domain Requirements (GUI)” on page 3-129.

Close the model.

bdclose('sdoSimpleSuspension')

 Design Optimization to Meet Frequency-Domain Requirements (Code)

3-221

PID Tuning with Actuator Constraints
This example shows how to use Simulink® Design Optimization™ to tune the gains of the PID
controller (Kp, Ki, and Kd) and optimize the step response of the plant. To view the results, use the
following steps.

Open the pidtune_demo model using the command below and run the simulation. The simulation
produces an unoptimized step response and the initial data for optimization.

open_system('pidtune_demo')

Double-click the Scope block to view the unoptimized step response.

3 Response Optimization

3-222

Double-click the Output Constraint block to view constraints on the plant response, including rise
time, settling time and maximum overshoot.

Double-click the Actuator Constraint block to view constraints on the actuator signal of the
controller.

You can launch the Response Optimizer using the Apps menu in the Simulink toolstrip, or the
sdotool command in MATLAB. You can launch a pre-configured optimization task in the Response
Optimizer by first opening the model and by double-clicking on the orange block at the bottom of the
model. From the Response Optimizer, press the Plot Model Response button to simulate the
model and show how well the initial design satisfies the design requirements.

 PID Tuning with Actuator Constraints

3-223

We start the optimization by pressing the Optimize button from the Response Optimizer. The plots
are updated to indicate that the design requirements are now satisfied.

3 Response Optimization

3-224

 PID Tuning with Actuator Constraints

3-225

% Close the model
bdclose('pidtune_demo')

3 Response Optimization

3-226

PID Tuning with Reference Tracking and Plant Uncertainty
This example shows how to use Simulink® Design Optimization™ to track a reference signal and
optimize the response with uncertainties in the plant model. The plant model consists of the plant
transfer function and includes a Saturation block and a Rate Limits block. To view the results, use the
following steps.

Open the pidtrack_demo model using the command below and run the simulation. The simulation
produces an unoptimized step response and the initial data for optimization.

open_system('pidtrack_demo')

Double-click the Scope block to view the unoptimized step response.

 PID Tuning with Reference Tracking and Plant Uncertainty

3-227

Double-click the Step Response Specifications block to view constraints on the plant response,
including rise time, settling time and maximum overshoot.

Double-click the Reference Tracking Specifications block to view the reference signal that
the controller has to track.

You can launch the Response Optimizer using the Apps menu in the Simulink toolstrip, or the
sdotool command in MATLAB. You can launch a pre-configured optimization task in the Response
Optimizer by first opening the model and by double-clicking on the orange block at the bottom of the
model. From the Response Optimizer, press the Plot Model Response button to simulate the
model and show how well the initial design satisfies the design requirements.

3 Response Optimization

3-228

The solid lines in the plots indicate the plant response without considering the uncertainties and the
dashed lines indicate the uncertain responses.

We start the optimization by pressing the Optimize button from the Response Optimizer.

The tuned parameters are the PID Controller gains Kp, Ki, and Kd. The plant parameters a1 and a2
are only known within 10% (uncertainty).

The optimization seeks to minimize the gap between the actual and ideal responses for the nominal
values (solid lines) and min/max values (dotted lines) of a1 and a2.

The plots are updated to indicate that the design requirements are now satisfied.

 PID Tuning with Reference Tracking and Plant Uncertainty

3-229

3 Response Optimization

3-230

% Close the model
bdclose('pidtrack_demo')

 PID Tuning with Reference Tracking and Plant Uncertainty

3-231

Engine Design and Cost Tradeoffs
This example shows how to use Simulink Design Optimization™ to optimize a design for performance
and cost. In this example, we tune an automotive engine speed controller while reducing controller
costs by tuning sensor accuracy and actuator response time.

Opening the Model

Open the automotive engine model using the command below. The following subsystems model the
engine response: Throttle & Manifold, Induction to Power Stroke Delay, Combustion,
Drag Torque and Vehicle Dynamics. The main signal of interest in the model is the engine speed
in rpm. The control system consists of the lead-lag Controller, rpm Sensor, and Throttle
actuator blocks. The model is driven by a step change in speed reference.

open_system('enginetradeoff_demo')

Design Overview

The design has the following objectives:

Engine performance objective:

The engine must respond to step changes in the speed reference with the following characteristics:

• Maximum overshoot of 2%

• Rise time of 4 seconds to reach 90% of the reference speed

• Settling time of 7.5 seconds to reach within 2% of the reference speed

This objective is included as a constraint in the Performance requirement block. The input to this
block is the engine speed, which is normalized by the speed reference value. This means that
although the speed reference changes, the performance requirement remains the same.

Cost minimization objective:

3 Response Optimization

3-232

The design cost of the controller is to be minimized. This objective uses sensor and actuator
parameterization to compute a design cost. The design cost is computed so that it is always greater
than 1 and the optimization attempts to drive the cost to 1.

We use a custom requirement to minimize this cost. The enginetreadeoff_cost function used by
the custom requirement simply returns the cost value to be minimized.

type enginetradeoff_cost

function Cost = enginetradeoff_cost(u)
%Compute controller cost based on sensor accuracy, actuator response, and
%controller sampling time.

% Copyright 2013 The MathWorks, Inc.

%Cost constants
min_cost = 1; %Minimum cost > 0
sensor_var_min = 1e-3; %Minimum sensor variance (most expensive)
sampling_min = 1e-2; %Minimum controller sampling time (most expensive)
throttle_max = 2*pi*10; %Maximum actuator response frequency (most expensive)

%Get variable names
varnames = {u.DesignVars.Name};

%Form cost
Cost = min_cost;
%Add sensor cost
index = strcmp(varnames, 'sensor_std');
if any(index)
 Cost = Cost + sensor_var_min./max(u.DesignVars(index).Value,sensor_var_min);
end

%Add sampling cost
index = strcmp(varnames, 'Ts');
if any(index)
 Cost = Cost+ sampling_min./max(u.DesignVars(index).Value,sampling_min);
end

%Add throttle cost
index = strcmp(varnames, 'Tthrottle');
if any(index)
 Cost = Cost + u.DesignVars(index).Value/throttle_max;
end

Model parameterization:

To achieve the performance and cost objectives, we parameterize the following in the model:

• Final step value of the speed reference: This ensures that the design works over a range of
operating points, from low speed to high speed values.

• Gain, pole and zero values of the controller: This allows us to change the controller performance.
We tune these values using optimization.

• Response time of the throttle actuator: The response time is optimized to minimize controller cost.
The actuator cost is inversely proportional to the response time, i.e., a faster response time
implies a more expensive actuator.

 Engine Design and Cost Tradeoffs

3-233

• Accuracy of the rpm sensor: The accuracy is specified by a standard deviation value and optimized
to minimize controller cost. The sensor cost is inversely proportional to standard deviation, i.e., a
smaller standard deviation implies a more accurate sensor, which is more expensive.

Running the Optimization

Optimizing the engine controller for performance and cost involves:

• Optimizing the controller, sensor, and actuator parameters.

• Optimizing the response over different operating conditions.

With problems of this type, it is a good practice to build the design iteratively rather than optimizing
for all objectives together. Here, we use the divide and conquer strategy as shown in the table below.
The idea is to use the optimized parameter values from one stage as the initial guess for the next
stage.

You can launch the Response Optimizer using the Apps menu in the Simulink toolstrip, or the
sdotool command in MATLAB. You can launch a pre-configured optimization task in the Response
Optimizer by first opening the model and by double-clicking on the orange block at the bottom of the
model. From the Response Optimizer, press the Plot Model Response button to simulate the
model and show how well the initial design satisfies the design requirements.

3 Response Optimization

3-234

The optimization project saved with the example corresponds to stage 2. In this stage, we optimize
the controller parameters over the operating range. To do so, we specify K, P and Z as tuned
parameters and the final step value, final_step, of the reference signal as an uncertain parameter.
At this stage, the custom controller cost objective is not included in the optimization problem.

We introduce the controller cost objective in stage 3 by configuring the model as follows:

• Open the Uncertain Variables editor from the Response Optimizer and then unselect the
check box for final_step. This removes sweeping the model over different operating points
from the optimization problem and thus reduces computational load.

 Engine Design and Cost Tradeoffs

3-235

• Open the Design Variables editor from the Response Optimizer and then select the check
box for sensor_std to tune this parameter.

• Click the Select button in the Response Optimizer to open the Design Requirements editor,
and then select the check box for custom Cost. This accounts for the cost minimization objective
during optimization.

3 Response Optimization

3-236

We start the optimization by pressing the Optimize button from the Response Optimizer. The plots
are updated to indicate that the design requirements are now satisfied.

 Engine Design and Cost Tradeoffs

3-237

To configure the optimization for Stage 4:

• Open the Design Variables editor from the Response Optimizer and then select the check
box for Tthrottle to tune this parameter.

You can start the optimization by pressing the Optimize button from Response Optimizer.

To configure the optimization for stage 5:

3 Response Optimization

3-238

• Open the Uncertain Variables editor from the Response Optimizer and then select the
check box for final_step to sweep the model over the operating range.

You can start the optimization by pressing the Optimize button from the Response Optimizer.

% Close the model
bdclose('enginetradeoff_demo')

 Engine Design and Cost Tradeoffs

3-239

Magnetic Levitation Controller Tuning
This example shows how to use numerical optimization to tuning the controller parameters of a
nonlinear system. In this example, we model a CE 152 Magnetic Levitation system where the
controller is used to position a freely levitating ball in a magnetic field. The control structure for this
model is fixed and the required controller performance can be specified in terms of an idealized time
response.

Earnshaw's Theorem

Earnshaw's theorem proved that it is not possible to achieve stable levitation using static,
macroscopic, classical electromagnetic fields. However the CE 152 system works around this by
creating a potential well around the point at which the ball is to be suspended, thereby creating a
non-inverse square law force. This is achieved by an inductive coil that generates a time varying
electromagnetic field. The electromagnetic field is controlled through the use of feedback to keep the
ball at the required location.

open_system('maglev_demo')

Model Description

The magnetic levitation system is a nonlinear dynamic system with one input and one output. Double-
click the Magnetic Levitation Plant Model to open this subsystem. The input voltage is
applied to a coil that creates the electromagnetic field. The output voltage is measured by an IR

3 Response Optimization

3-240

receiver and represents the position of the ball in the magnetic field. The diagram below outlines this
system.

The physical system consists of a ball (with mass 0.00837 kg) which is under the influence of three
forces:

• The magnetic field produced by an inductive coil. This is modeled by the Power amplifier and
coil block in the Simulink® model. The input to the inductor is a voltage signal and the output a
current. The force from the coil depends on the square of the current, the air-gap between the coil
and the ball, and the physical properties of the ball. This produces an upward acting force on the
ball.

• The gravitational force acting downwards

• A damping force which acts in a direction opposite to the velocity at any instant of time

These three forces cause the resulting motion of the ball and are modeled in Simulink as shown.

open_system('maglev_demo/Magnetic Levitation Plant Model')

 Magnetic Levitation Controller Tuning

3-241

Non-linearities arising from saturation of the coil and changes in dynamics outside the limits of the
magnetic field are also modeled in the Simulink Model. As the force from the coil decays according to
an inverse square law larger voltages are required the further the ball is from the coil. The control
signal is scaled to account for this and the scaling is included in the Control signal scaling blocks.

Control Problem Description

The requirement for the controller is that it be able to position the ball at any arbitrary location in the
magnetic field and that it move the ball from one position to another. These requirements are
captured by placing step response bounds on the position measurement. Specifically we require the
following constraints on the ball:

• Position constraint: within 20% of the desired position in less than 0.5 second

• Settling Time Constraint: within 2% of the desired position within 1.5 second

To meet the control requirements we implement a Proportional-Integral-Derivative (PID) controller.
For convenience the controller uses a normalized position measurement with a range from 0 to 1,
representing the bottom-most and top-most positions of the ball respectively.

Simulink® Design Optimization™ and numerical optimization is ideally suited to tune the PID
coefficients because:

• The system dynamics are complex enough to require effort and time for analysis if we approach
the problem using conventional control design techniques.

• The controller structure is fixed

• We have knowledge of the step response we require from the system.

3 Response Optimization

3-242

Setting Constraint Values

Given the step response characteristic we desire, it is simple to specify the upper and lower bounds
of the response. Double-click the Position Constraint block in the Magnetic Levitation
Plant Model subsystem to view constraints on the position of the ball. The constraint lines may be
moved using the mouse.

You can launch the Response Optimizer using the Apps menu in the Simulink toolstrip, or the
sdotool command in MATLAB. You can launch a pre-configured optimization task in the Response
Optimizer by first opening the model and by double-clicking on the orange block at the bottom of the
model. From the Response Optimizer, press the Plot Model Response button to simulate the
model and show how well the initial design satisfies the design requirements.

 Magnetic Levitation Controller Tuning

3-243

Defining Tuned Parameters

We select the PID controller parameters to tune by opening the Design Variables editor, as shown
below

3 Response Optimization

3-244

Running the Optimization

After specifying the optimization parameters and the required step response bounds we start the
optimization by pressing the Optimize button from the Response Optimizer. During optimization,
the plots are updated with the position of the ball for each iteration and the dark curve shows the
final optimized trajectory of the ball (as shown below).

 Magnetic Levitation Controller Tuning

3-245

Verifying the Results

Once we complete the optimization, it is important to validate the results against other step sizes. A
successful parameter optimization should be able to provide good control for all steps sizes close to
the tuned step size of 1. Step sizes from .7 to 1 should be tested to confirm the controller's
performance. The following plot shows the response to a step input from 0 to 0.85 at 0.1 seconds.

3 Response Optimization

3-246

Conclusion

The verification step shows that controller's performance satisfies the requirements specified and the
tuned parameter values are suitable for control. The tuned parameters could be used to provide
baseline performance against which other control schemes can be compared, or a baseline for
controllers for different operating regions.

% Close the model
bdclose('maglev_demo')

 Magnetic Levitation Controller Tuning

3-247

LQG Controller Tuning
This example shows how to use Simulink® Design Optimization™ to optimize the output response of
a plant by tuning the LQR gain matrix and feed-forward gain. This model includes uncertainty in the
plant model and accounts for this uncertainty in the optimization process.

Open the lqg_demo model using the command below and run the simulation. The simulation
produces an unoptimized response of the plant and the initial data for optimization. Double-click the
Scope block to view the unoptimized response of the plant.

open_system('lqg_demo')

Double-click the Plant/Actuator block to view the details of the subsystem. Note that the plant is
represented in State-Space form in this model and includes Rate Limiter and Saturation blocks.

Double-click the Output Constraint block to view constraints on the step response of the plant.

You can launch the Response Optimizer using the Apps menu in the Simulink toolstrip, or the
sdotool command in MATLAB. You can launch a pre-configured optimization task in the Response
Optimizer by first opening the model and by double-clicking on the orange block at the bottom of the
model. From the Response Optimizer, press the Plot Model Response button to simulate the
model and show how well the initial design satisfies the design requirements.

3 Response Optimization

3-248

The solid line in the plot indicates the plant response without considering the uncertainties and the
dashed lines indicate the uncertain responses.

We start the optimization by pressing the Optimize button from the Response Optimizer. The plots
are updated to indicate that the design requirements are now satisfied.

 LQG Controller Tuning

3-249

3 Response Optimization

3-250

% Close the model
bdclose('lqg_demo')

 LQG Controller Tuning

3-251

Inverted Pendulum Controller Tuning
This example shows how to use Simulink® Design Optimization™ to optimize the controller of an
inverted pendulum. The inverted pendulum is on a cart and the motion of the cart is controlled. The
controller's Proportional, Integral and Feed-forward gains are tuned to limit pendulum angle
variations and respond to step changes in cart position optimally.

Open the pendulum_demo model using the command below and run the simulation. The simulation
produces an unoptimized position and angle of the inverted pendulum and the initial data for
optimization. An animation window shows the cart position and inverted pendulum angle.

open_system('pendulum_demo')

Double-click the Desired Cart Position block to view constraints on the cart position of the
inverted pendulum.

Double-click the Angle Constraints block to view constraints on the angle of the inverted
pendulum.

You can launch the Response Optimizer using the Apps menu in the Simulink toolstrip, or the
sdotool command in MATLAB. You can launch a pre-configured optimization task in Response
Optimizer by first opening the model and by double-clicking on the orange block at the bottom of the
model. From the Response Optimizer, press the Plot Model Response button to simulate the
model and show how well the initial design satisfies the design requirements.

3 Response Optimization

3-252

We start the optimization by pressing the Optimize button from the Response Optimizer. The plots
are updated to indicate that the design requirements are now satisfied.

 Inverted Pendulum Controller Tuning

3-253

3 Response Optimization

3-254

% Close the model
bdclose('pendulum_demo')

 Inverted Pendulum Controller Tuning

3-255

Pitch Rate Controller Tuning
This example shows how to use Simulink® Design Optimization™ to tune the gains of a Digital Pitch
Rate Controller and optimize the response of an Aircraft to a step altitude change. The controller
includes state derivative and integral feedback. The controller is tuned to satisfy a 10 percent
overshoot and 0.9 second rise time step response characteristic.

Open the pitchrate_demo model using the command below and run the simulation. The simulation
produces an unoptimized response of the aircraft and the initial data for optimization.

open_system('pitchrate_demo')

Double-click the Scope block to view the unoptimized response of the aircraft.

Double-click the Step Response block to view constraints on the step response of the aircraft.

You can launch the Response Optimizer using the Apps menu in the Simulink toolstrip, or the
sdotool command in MATLAB. You can launch a pre-configured optimization task in Response
Optimizer by first opening the model and by double-clicking on the orange block at the bottom of the
model. From the Response Optimizer, press the Plot Model Response button to simulate the
model and show how well the initial design satisfies the design requirements.

3 Response Optimization

3-256

We start the optimization by pressing the Optimize button from the Response Optimizer. The plots
are updated to indicate that the design requirements are now satisfied.

 Pitch Rate Controller Tuning

3-257

3 Response Optimization

3-258

bdclose('pitchrate_demo')

 Pitch Rate Controller Tuning

3-259

Tuning of Airframe Autopilot Gains
This example shows how to apply Simulink® Design Optimization™ to optimize the autopilot gains of
an airframe to control its fin deflection. The model uses blocks from Aerospace Blockset™.

The autopilot controller consists of an inner pitch loop and outer vertical acceleration loop. Both
controllers are integral only controllers. The gains of both the controllers are tuned to satisfy a 2
second rise-time step response characteristic.

Open the nlairframe_demo model using the command below and run the simulation. The
simulation produces an unoptimized vertical acceleration of the airframe and the initial data for
optimization.

open_system('nlairframe_demo')

Double-click the az Response Scope block to view the unoptimized vertical acceleration az of the
airframe.

Double-click the q Response Scope block to view the unoptimized rotation rate q of the airframe.

Double-click the Model block to view the details of the subsystem. It includes an Atmosphere model
and Aerodynamics and Equations of Motion model.

3 Response Optimization

3-260

Double-click the Desired az Response block to view constraints on the vertical acceleration of the
airframe. These constraints are used to simultaneously tune the gains of the two integral controllers.
The first segment of the upper bound constraint represents an overshoot. Note that this is a soft
constraint and can be violated.

You can launch the Response Optimizer using the Apps menu in the Simulink toolstrip, or the
sdotool command in MATLAB. You can launch a pre-configured optimization task in Response
Optimizer by first opening the model and by double-clicking on the orange block at the bottom of the
model. From the Response Optimizer, press the Plot Model Response button to simulate the
model and show how well the initial design satisfies the design requirements.

We start the optimization by pressing the Optimize button from the Response Optimizer. The plots
are updated to indicate that the design requirements are now satisfied.

 Tuning of Airframe Autopilot Gains

3-261

3 Response Optimization

3-262

The darker curve shows the final optimized response of the airframe.

% Close the model
bdclose('nlairframe_demo')

 Tuning of Airframe Autopilot Gains

3-263

Distillation Controller Tuning
This example shows how to use Simulink® Design Optimization™ to optimize the multi-loop
controller parameters of a distillation column. The Distillation column produces methanol and is
represented as a linear model with delays. The digital multi-loop controller consists a decoupling
matrix and two single-loop PI controllers. The parameters of both the single-loop controllers are
tuned simultaneously to satisfy a 14 percent overshoot and 13 minute rise-time step response
characteristics.

Open the distillation_demo model using the command below and run the simulation. The
simulation produces the unoptimized composition of methanol in the column and the initial data for
optimization.

open_system('distillation_demo')

Double-click the Scope block to view the unoptimized methanol composition in the top and bottom of
the column.

Double-click the Linearized Model of Distillation Column block. Note that this is a
subsystem and shows the model for variation of methanol in the top and bottom of the distillation
column.

Double-click the Desired Step Response block to view constraints on the step response of the
distillation column. These constraints are used to simultaneously tune both of the single-loop
controller parameters.

You can launch the Response Optimizer using the Apps menu in the Simulink toolstrip, or the
sdotool command in MATLAB. You can launch a pre-configured optimization task in the Response
Optimizer by first opening the model and by double-clicking on the orange block at the bottom of the
model. From the Response Optimizer, press the Plot Model Response button to simulate the
model and show how well the initial design satisfies the design requirements.

3 Response Optimization

3-264

There are two curves in the plot representing the methanol composition in the top and bottom of the
column.

We start the optimization by pressing the Optimize button from the Response Optimizer. The plots
are updated to indicate that the design requirements are now satisfied.

 Distillation Controller Tuning

3-265

3 Response Optimization

3-266

The two solid curves show the final optimized methanol composition in the top and bottom of the
distillation column.

% Close the model
bdclose('distillation_demo')

 Distillation Controller Tuning

3-267

Heat Exchanger Controller Tuning
This example shows how to use Simulink® Design Optimization™ to optimize the temperature control
of a heat exchanger around a temperature set-point.

The controller regulates the temperature around a setpoint in response to external temperature
disturbances. The effect of this disturbance is modeled with an uncertain delay introduced in the
Temperature Disturbance Model block.

The temperature controller includes a PI controller along with a feed-forward external temperature
measurement. The controller gains are tuned to reduce the effect of external temperature variations
by a factor of 50.

Open the heatex_demo model using the command below and run the simulation. The simulation
produces an unoptimized temperature variation of the heat exchanger and the initial data for
optimization.

open_system('heatex_demo')

Double-click the Scope block to view the unoptimized temperature response, the disturbance signal
and the control signal.

Double-click the Heat Exchanger Model block to view the model details. The exchanger is modeled
as a first-order system with delay.

3 Response Optimization

3-268

Double-click the Max Temperature Variation block to view constraints on the temperature
variation of the heat exchanger. This constraint is used to tune the controller parameters.

You can launch the Response Optimizer using the Apps menu in the Simulink toolstrip, or the
sdotool command in MATLAB. You can launch a pre-configured optimization task in the Response
Optimizer by first opening the model and by double-clicking on the orange block at the bottom of the
model. From the Response Optimizer, press the Plot Model Response button to simulate the
model and show how well the initial design satisfies the design requirements.

The solid line represents the current response with the mean Disturbance Delay as specified in
the constraint block. The dashed lines represent the response with the maximum and minimum
Disturbance Delay.

We start the optimization by pressing the Optimize button from the Response Optimizer. The plots
are updated to indicate that the design requirements are now satisfied.

 Heat Exchanger Controller Tuning

3-269

3 Response Optimization

3-270

The solid curve shows the final optimized temperature variation of the heat exchanger.

% Close the model
bdclose('heatex_demo')

 Heat Exchanger Controller Tuning

3-271

Power Converter Tuning
This example shows how to use Simulink® Design Optimization™ to optimize the current controller
parameters of a 3-phase thyristor converter. The model uses blocks from Simscape™ and Simscape™
Electrical™.

The 3-phase thyristor is controlled by a pulse-width modulator with variable phase angle computed by
a PI controller. The PI Current Regulator gains are tuned to track the reference DC current and limit
oscillations.

Open the power_demo model using the command below and run the simulation. The simulation
produces an unoptimized current variation of the DC motor and the initial data for optimization.

open_system('power_demo')

Double-click the Scope block to view the unoptimized current response. Note that two phases of the
3-phase source current and the output voltage of the DC motor are also displayed in this block.

Double-click the Current Regulation Specs block to view constraints on the output current of
the DC motor.

You can launch the Response Optimizer using the Apps menu in the Simulink toolstrip, or the
sdotool command in MATLAB. You can launch a pre-configured optimization task in the Response
Optimizer by first opening the model and by double-clicking on the orange block at the bottom of the
model. From the Response Optimizer, press the Plot Model Response button to simulate the
model and show how well the initial design satisfies the design requirements.

3 Response Optimization

3-272

We start the optimization by pressing the Optimize button from the Response Optimizer. The plot
is updated to indicate that the design requirements are now satisfied.

 Power Converter Tuning

3-273

3 Response Optimization

3-274

The plot now shows the final optimized current response.

% Close the model
bdclose('power_demo')

 Power Converter Tuning

3-275

Servomechanism Tuning
This example shows how to use Simulink® Design Optimization™ to optimize the position controller
parameters for a servomotor piston. This model uses blocks from Stateflow®.

The controller sets the duty cycle of a pulse-width modulation circuit for the servomotor. The anti-
windup controller Proportional and Integral gains are tuned to optimize the step response
characteristics of the servomotor.

Open the servo_demo model using the command below and run the simulation. The simulation
produces an unoptimized position of the piston and the initial data for optimization.

open_system('servo_demo')

There are two Scope blocks in the model. Double-click the set point(yellow) and piston
position Scope block to view the set-point and the unoptimized position of the piston.

Double-click the solenoid current(A) Scope block to view the output solenoid current of
Magnetic Circuit.

Double-click the Desired Response for Piston Position block to view constraints on the
position of the piston.

You can launch the Response Optimizer using the Apps menu in the Simulink toolstrip, or the
sdotool command in MATLAB. You can launch a pre-configured optimization task in the Response
Optimizer by first opening the model and by double-clicking on the orange block at the bottom of the
model. From the Response Optimizer, press the Plot Model Response button to simulate the
model and show how well the initial design satisfies the design requirements.

3 Response Optimization

3-276

We start the optimization by pressing the Optimize button from the Response Optimizer. The plots
are updated to indicate that the design requirements are now satisfied.

 Servomechanism Tuning

3-277

3 Response Optimization

3-278

The plot shows the final optimized piston position.

% Close the model
bdclose('servo_demo')

 Servomechanism Tuning

3-279

Stewart Platform Controller Tuning
This example shows how to use Simulink® Design Optimization™ to optimize the position controller
parameters of a Stewart platform. The Stewart platform is modeled using Simscape™ Multibody™
blocks.

The model includes a vertical PID position controller and the gains are tuned to limit the maximum
forces and track position with minimum overshoot and 0.05 second rise time.

Open the stewart_demo model using the command below and run the simulation. The simulation
produces an unoptimized vertical position (Z direction) of the Stewart platform.

open_system('stewart_demo')

Double-click the Scope block to view the unoptimized position, the step input, and the controller's
force actuation signal.

Double-click the down-arrow at the lower left corner of the Stewart Platform System block to
view the details of the Stewart Platform. Note that this model uses the Simscape Multibody blockset.

Double-click the Desired Response or the Max Forces blocks to view the constraints on the
Stewart platform. The Max Forces block defines the constraints on the actuation signal of the
controller.

3 Response Optimization

3-280

You can launch the Response Optimizer using the Apps menu in the Simulink toolstrip, or the
sdotool command in MATLAB. You can launch a pre-configured optimization task in the Response
Optimizer by first opening the model and by double-clicking on the orange block at the bottom of the
model. From the Response Optimizer, press the Plot Model Response button to simulate the
model and show how well the initial design satisfies the design requirements.

There are two plots representing the Z Position and Leg Forces of the platform.

We start the optimization by pressing the Optimize button from the Response Optimizer. The plots
are updated to indicate that the design requirements are now satisfied.

 Stewart Platform Controller Tuning

3-281

3 Response Optimization

3-282

The plots are now updated with the optimized position of the Stewart platform and the force
actuation signal.

% Close the model
bdclose('stewart_demo')

 Stewart Platform Controller Tuning

3-283

Phase Lock Loop Tuning
This example shows how to use Simulink® Design Optimization™ to tune an all-pass filter of a Phase
Lock Loop. The filter includes a second-order low pass filter and a feedthrough gain. The feedthrough
gain and the second order filter coefficients are tuned to apply a steady-state input to the Voltage
Controlled Oscillator (VCO).

Requires Signal Processing Toolbox™.

Open the phaselock_demo model using the command below and run the simulation. The simulation
produces an unoptimized input to the VCO and the initial data for optimization.

open_system('phaselock_demo')

Double-click the Scope block to view the unoptimized input to the VCO.

Double-click the Loop Optimizer block to view constraints on the input to the VCO. The constraints
represent a step response with 0.1 second rise-time and 20 percent overshoot.

You can launch the Response Optimizer using the Apps menu in the Simulink toolstrip, or the
sdotool command in MATLAB. You can launch a pre-configured optimization task in the Response
Optimizer by first opening the model and by double-clicking on the orange block at the bottom of the
model. From the Response Optimizer, press the Plot Model Response button to simulate the
model and show how well the initial design satisfies the design requirements.

3 Response Optimization

3-284

We start the optimization by pressing the Optimize button from the Response Optimizer. The plots
are updated to indicate that the design requirements are now satisfied.

 Phase Lock Loop Tuning

3-285

3 Response Optimization

3-286

The solid curve shows the final optimized input to the VCO.

% Close the model
bdclose('phaselock_demo')

 Phase Lock Loop Tuning

3-287

Sensitivity Analysis

• “What is Sensitivity Analysis?” on page 4-2
• “Specify Parameters for Design Exploration” on page 4-4
• “Generate Parameter Samples for Sensitivity Analysis” on page 4-8
• “Specify Time-Domain Requirements” on page 4-21
• “Specify Parameters Requirements” on page 4-36
• “Specify Frequency-Domain Requirements” on page 4-48
• “Evaluate Design Requirements” on page 4-60
• “Analyze Relation Between Parameters and Design Requirements” on page 4-67
• “Use Sensitivity Analysis to Configure Estimation and Optimization” on page 4-74
• “Interact with Plots in the Sensitivity Analyzer” on page 4-79
• “Validate Sensitivity Analysis” on page 4-96
• “Store Intermediate Data in the App” on page 4-100
• “Specify Steady-State Operating Point for Sensitivity Analysis” on page 4-102
• “Use Parallel Computing for Sensitivity Analysis” on page 4-104
• “Use Fast Restart Mode During Sensitivity Analysis” on page 4-109
• “Design Exploration Using Parameter Sampling (GUI)” on page 4-112
• “Identify Key Parameters for Estimation (GUI)” on page 4-131
• “Explore Design Reliability Using Parameter Sampling (GUI)” on page 4-145
• “Design Exploration Using Parameter Sampling (Code)” on page 4-157
• “Identify Key Parameters for Estimation (Code)” on page 4-169
• “Generate MATLAB Code for Sensitivity Analysis Statistics to Identify Key Parameters (GUI)”

on page 4-179
• “Generate MATLAB Code for Sensitivity Analysis for Design Space Exploration and Evaluation

(GUI)” on page 4-183

4

What is Sensitivity Analysis?
Sensitivity analysis is defined as the study of how uncertainty in the output of a model can be
attributed to different sources of uncertainty in the model input[1]. In the context of using Simulink
Design Optimization software, sensitivity analysis refers to understanding how the parameters and
states (optimization design variables) of a Simulink model influence the optimization cost function.
Examples of using sensitivity analysis include:

• Before optimization — Determine the influence of the parameters of a Simulink model on the
output. Use sensitivity analysis to rank parameters in order of influence, and obtain initial guesses
for parameters for estimation or optimization.

• After optimization — Test how robust the cost function is to small changes in the values of
optimized parameters.

One approach to sensitivity analysis is local sensitivity analysis, which is derivative based (numerical
or analytical). Mathematically, the sensitivity of the cost function with respect to certain parameters
is equal to the partial derivative of the cost function with respect to those parameters. The term local
refers to the fact that all derivatives are taken at a single point. For simple cost functions, this
approach is efficient. However, this approach can be infeasible for complex models, where
formulating the cost function (or the partial derivatives) is nontrivial. For example, models with
discontinuities do not always have derivatives.

Local sensitivity analysis is a one-at-a-time (OAT) technique. OAT techniques analyze the effect of one
parameter on the cost function at a time, keeping the other parameters fixed. They explore only a
small fraction of the design space, especially when there are many parameters. Also, they do not
provide insight about how the interactions between parameters influence the cost function.

Another approach to sensitivity analysis is global sensitivity analysis, often implemented using Monte
Carlo techniques. This approach uses a representative (global) set of samples to explore the design
space. Use Simulink Design Optimization software to perform global sensitivity analysis using the
Sensitivity Analyzer, or at the command line. The workflow is as follows:

1 Sample the model parameters using experimental design principles. That is, for each parameter,
generate multiple values that the parameter can assume. Define the parameter sample space by
specifying probability distributions for each parameter. You can also specify parameter
correlations.

For information about sampling parameters, see “Generate Parameter Samples for Sensitivity
Analysis” on page 4-8.

2 Define a cost function by creating a design requirement on the model signals.
3 Evaluate the requirement (cost function) at each combination of parameter values using Monte

Carlo simulations. You can plot the cost function output for the samples to visually analyze
trends.

4 (Optional) Formally analyze the relation between the evaluated requirement and the samples.
Analysis methods include correlation, partial correlation (requires Statistics and Machine
Learning Toolbox™ software), and standardized regression. You can configure each analysis
method to use either raw or ranked data.

For information about the analysis methods, see “Analyze Relation Between Parameters and
Design Requirements” on page 4-67.

4 Sensitivity Analysis

4-2

References
[1] Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and

Tarantola, S. Global Sensitivity Analysis. The Primer, John Wiley and Sons, 2008.

See Also
sdo.analyze | sdo.evaluate | sdo.sample | sdo.scatterPlot

Related Examples
• “Design Exploration Using Parameter Sampling (GUI)” on page 4-112
• “Design Exploration Using Parameter Sampling (Code)” on page 4-157
• “Identify Key Parameters for Estimation (GUI)” on page 4-131
• “Identify Key Parameters for Estimation (Code)” on page 4-169

More About
• “Generate Parameter Samples for Sensitivity Analysis” on page 4-8
• “Analyze Relation Between Parameters and Design Requirements” on page 4-67
• “Validate Sensitivity Analysis” on page 4-96

 What is Sensitivity Analysis?

4-3

Specify Parameters for Design Exploration
This topic shows how to select parameters of a Simulink model for design exploration in the
Sensitivity Analyzer. After you select the parameters, you generate parameter samples on page 4-
8 by varying the parameter values in a specific range, and evaluate your design requirements for
each combination of parameter values.

Add Model Parameters as Variables
The software can only evaluate variables that are in use by the model. Create variables in the
MATLAB or model workspace, and specify your Simulink model or block parameters using these
variables. If you have already specified model parameters as variables, Select Parameters for Design
Exploration on page 4-6.

In this figure, the Gain parameter of a Gain block is specified as a numerical value.

To evaluate design requirements using the Gain parameter, specify it as variable gain1:

1 Create the variable gain1 in one of the following ways:

• Add the variables to the model workspace, and specify initial values.

4 Sensitivity Analysis

4-4

• Write initialization code in the PreloadFcn callback of the model. For more information, see
“Model Callbacks”.

gain1 = 0.8
2 Specify the block parameter as variable gain1 in the Gain block dialog box.

You can now select gain1 for evaluation. See, “Select Parameters for Design Exploration” on page 4-
6.

Specify Independent Parameters

You can also specify independent parameters that do not appear explicitly in the model as variables.
However, you cannot use this workflow with Simulink fast restart.

Suppose that a model parameter Kint is related to independent parameters x and y such that Kint
= x+y. To add x and y instead of Kint:

• Create the independent variables x and y by adding them to the model workspace and specifying
initial values.

• The software only allows evaluation of variables that are used by model blocks. To ensure that the
software detects x and y for evaluation, add a Constant block to your model, and specify the
Constant value of the block as [x y]. Connect the block to a Display block.

 Specify Parameters for Design Exploration

4-5

• Write code in the InitFcn callback of the model that defines the relationship between Kint, x,
and y. You must first use the get_param function to get the variables x and y from the model
workspace before you can use them to define Kint.

wks = get_param(gcs,'ModelWorkspace')
x = evalin(wks,'x')
y = evalin(wks,'y')
Kint = x+y;

You can now select x and y for design exploration.

Select Parameters for Design Exploration
In the Sensitivity Analyzer, in the Sensitivity Analysis tab, click Select Parameters to open the
Select model variables dialog box.

Use this dialog box to select parameters to vary. The table lists the variables that the model uses to
set block parameter values. The variables can reside in the model workspace, the base workspace, or
a data dictionary.

Select variables by clicking the check box next to each variable. If your model contains many
variables, filter the list by typing in the Filter by variable name field. The Used By column lists all
blocks in the model that use the variable. When a variable is used in more than one block, all blocks
are listed. To highlight blocks in the model that use the variable, click the block name.

The variables that you select must have a numeric value that uses the data type double. If the value
of a variable is not a double number, use these techniques:

• To select a single element or a subset of a matrix or array variable, click Specify expression
indexing if necessary.

4 Sensitivity Analysis

4-6

Enter an expression such as myArray(2), which selects the second element of an array variable
myArray.

After you type the expression, press the Enter key to add the variable to the list of model
variables.

• To use a variable of a numeric data type other than double, convert the variable to a
Simulink.Parameter object, which separates a parameter value from its data type. Set the
Value property to a default double number, and use the DataType property to control the data
type.

• To use the value of a Simulink.Parameter object, specify the Value property. Enter the
expression myParamObj.Value.

• To use a numeric field of a structure, enter myStruct.PID.P1. If you store the structure in a
Simulink.Parameter object, enter myStruct.Value.PID.P1.

• To use one cell of a cell array, enter myCells{3}.

You cannot use mathematical expressions such as a + b. Sometimes, models have parameters that are
not explicitly defined in the model itself. For example, a gain k could be defined in the MATLAB
workspace as k = a + b, where a and b are not defined in the model but k is used. To add these
independent parameters, see “Add Model Parameters as Variables” on page 4-4.

See Also

Related Examples
• “What is Sensitivity Analysis?” on page 4-2
• “Generate Parameter Samples for Sensitivity Analysis” on page 4-8

 Specify Parameters for Design Exploration

4-7

Generate Parameter Samples for Sensitivity Analysis
This topic shows how to generate parameter samples for sensitivity analysis.

You can perform global sensitivity analysis using Simulink Design Optimization software. Using
techniques such as design of experiments (DOE) (also referred to as experimental design), you can
choose a parameter set for sensitivity analysis.

You generate parameter samples by varying the value of the Simulink model parameters and states of
interest according to a specified probability distribution. These parameters and states are collectively
referred to as parameters. Each combination of generated parameter values is referred to as a
sample or sample point. A collection of samples is referred to as a design space, sample space, or
parameter set.

After generating a parameter set, you define a cost function by creating design requirements on the
model signals. You then evaluate the cost function for each sample in the parameter set. Then, you
analyze the relation between the parameters and requirement to understand how the parameters
influence the cost function.

You can generate two kinds of parameter values: random parameter values on page 4-8 or gridded
parameter values on page 4-16.

Generate Random Parameter Values
When generating random parameter values, you specify the following characteristics of the
parameter space:

• “Number of Samples” on page 4-8
• “Sampling Method” on page 4-8
• “Probability Distribution” on page 4-10
• “Parameter Correlations” on page 4-11

You can specify the characteristics of the parameter space either in the Sensitivity Analyzer or at
the command line on page 4-14.

Number of Samples

Choose enough samples to yield useful results. However, each model evaluation has a computational
expense and can be time intensive. As the number of parameters increases, the number of samples
required to explore the design space generally increases. For correlation or regression analysis,
consider using 10Np samples, where Np is the number of parameters.

Sampling Method

Specify the method used to generate the samples. You can choose from the following methods:

• Random — Random samples are drawn from the probability distributions specified for the
parameters.

If you specify correlation between parameters, the software uses the Iman-Conover algorithm to
impose the parameter correlations.

• Latin hypercube— Latin hypercube samples are drawn from the probability distributions
specified for the parameters. Use this option for a more systematic space-filling approach than

4 Sensitivity Analysis

4-8

random sampling. The Sobol and Halton quasirandom sampling methods are more space-filling
than the Latin hypercube method.

If you specify correlation between parameters, the software uses the Iman-Conover algorithm to
impose the parameter correlations.

• Sobol — Requires Statistics and Machine Learning Toolbox software. Sobol quasirandom
sequences are drawn from the probability distributions specified for the parameters. Use this
method for highly systematic space-filling.

The figure shows 20 samples for two parameters. The samples are generated from a uniform
distribution, in the interval from 0 to 1. Random sampling can result in large gaps between some
samples, and close clustering of other samples. Sobol and Halton quasirandom sampling methods
avoid gaps and clustering of samples. If you have many parameters in your parameter set, Sobol
sets gives more systematic space filling than Halton quasirandom sets. For more information, see
“Generating Quasi-Random Numbers” (Statistics and Machine Learning Toolbox).

If you specify correlation between parameters, the software uses the Iman-Conover algorithm to
impose the parameter correlations.

• Halton — Requires Statistics and Machine Learning Toolbox software. Halton quasirandom
sequences are drawn from the probability distributions specified for the parameters. Like the
Sobol method, you can use Halton method for highly systematic space-filling. However, Sobol
method gives more systematic space filling if you have many parameters in your parameter set.
For more information, see “Generating Quasi-Random Numbers” (Statistics and Machine Learning
Toolbox).

If you specify correlation between parameters, the software uses the Iman-Conover algorithm to
impose the parameter correlations.

• Copula— Requires Statistics and Machine Learning Toolbox software. Random samples are drawn
from a copula. Use this option to impose correlations between the parameters using copulas.

 Generate Parameter Samples for Sensitivity Analysis

4-9

You can use either a Gaussian copula (default) or a t copula. Use t copulas when the probability of
extreme parameter values is not negligible (distribution is heavy-tailed), and specify the degrees
of freedom. As you increase the degrees of freedom, the t copula converges to the Gaussian
copula, and the probability of extreme parameter values becomes negligible. The following figure
shows 1000 samples drawn for two parameters in the interval from 0 to 1 using the Gaussian and
t copulas.

In comparison to the Gaussian copula, the t copula has more samples that represent the extreme
values of the parameters. As the degrees of freedom are increased, the t copula converges to the
Gaussian copula.

Specify the correlation type as either Spearman’s rank correlation or Kendall’s rank correlation.

Probability Distribution

Specify the probability distribution function and related distribution characteristics for each
parameter. Use your knowledge of the system (empirical or theoretical) to choose the probability
distributions.

Note Simulink Design Optimization software allows you to specify uniform (default), normal,
multinomial, piecewise linear, and triangular distributions. For other distributions, you need Statistics
and Machine Learning Toolbox software.

Consider the following characteristics of your parameters when choosing a distribution:

4 Sensitivity Analysis

4-10

Parameter Characteristics Applicable Distributions
Extends from -∞ to ∞ • Normal

• Extreme value
• Generalized extreme value — Single-ended or

from -∞ to ∞, depending on distributional
parameter values.

• Logistic — heavy tailed compared to normal
distribution.

• t location-scale — heavy tailed compared to
normal distribution.

Bounded at both ends • Uniform
• Beta
• Binomial — discrete distribution
• Multinomial— discrete distribution
• Piecewise linear
• Triangular

Extends from 0 to ∞ • Birnbaum-Saunders
• Burr
• Exponential
• Gamma
• Generalized extreme value — Single-ended or

from -∞ to ∞, depending on parameter values.
• Inverse Gaussian
• Log-logistic
• Log-normal
• Nakagami
• Negative binomial— discrete distribution
• Poisson— discrete distribution
• Rayleigh
• Rician
• Weibull

Custom distribution Piecewise linear

For more information about these distributions, see the “Probability Distributions” (Statistics and
Machine Learning Toolbox) category.

Parameter Correlations

Specify the correlation between parameters. The algorithm used to impose the parameter
correlations depends on the sampling method. For more information, see “Sampling Method” on page
4-8.

 Generate Parameter Samples for Sensitivity Analysis

4-11

Generate Random Parameter Values in the App

In the Sensitivity Analyzer, after you have selected the parameters in the parameter set on page 4-
4, click Generate Values and, select Generate Random Values.

In the Generate Random Parameter Values dialog box, specify the number of samples, probability
distributions, parameter bounds and correlations, and sampling method. For information about how
to specify the fields in the dialog box, click Help.

4 Sensitivity Analysis

4-12

The generated parameter set and the corresponding parameter set table are displayed in the app.
The number of rows in the parameter set table correspond to the number of samples you specified.

 Generate Parameter Samples for Sensitivity Analysis

4-13

After generating the parameter values, plot them to check if generated parameter values match the
intended specifications. This is relevant if you generate a small number of random samples for each
parameter set. For more information, see “Inspect the Generated Parameter Set” on page 4-96.

For an example, see “Identify Key Parameters for Estimation (GUI)” on page 4-131.

Generate Random Parameter Values at the Command Line

At the command line, use sdo.ParameterSpace to define the parameter space. This object specifies
the probability distributions and correlations for the parameters. Use this object as an input to
sdo.sample for generating parameter values from the specified parameter space.

To generate the random parameter values:

• Specify the number of samples as the second input argument of sdo.sample.
• Specify the method used to generate these samples using the Method property of an

sdo.SampleOptions object. Use this object as an input to sdo.sample to specify the sampling
options.

If the method chosen is 'sobol' or 'halton', specify the MethodOptions property of
sdo.SampleOptions.

If the method chosen is 'copula', specify the choice of copula using
the MethodOptions property of sdo.SampleOptions. Also specify the RankCorrelation
property of the sdo.ParameterSpace object.

• Specify the probability distribution of a parameter using the ParameterDistributions
property of an sdo.ParameterSpace object.

4 Sensitivity Analysis

4-14

• Specify correlation between parameters, using the RankCorrelation property of the
sdo.ParameterSpace.

After generating the parameter values, plot the generated values to check if they match the desired
specifications. This is relevant if you generate a small number of random samples for each parameter
set. For more information, see “Inspect the Generated Parameter Set” on page 4-96.

For an example, see “Identify Key Parameters for Estimation (Code)” on page 4-169.

Generate Custom Parameter Values at the Command Line

This example shows how to generate random parameter values with a custom distribution when
performing sensitivity analysis at the command line. Generate a 1000 samples of a model parameter,
R, in the 5% range of its nominal value, 10. R is a resistor. Resistors of 1% tolerance are removed by
the manufacturer, so do not generate R values in the 1% range of its nominal value.

1 Construct a param.Continuous object.

R = param.Continuous('R',10);
2 Create a customized probability distribution, pdR, to configure the parameter space.

x = [0.95 0.99 1.01 1.05]*R.Value;
F = [0 0.5 0.5 1];
pdR = makedist('PiecewiseLinear','x',x,'Fx',F);
x = linspace(0.9*R.Value,1.1*R.Value,1e3);
plot(x,pdf(pdR,x));

makedist specifies a piecewise linear distribution for the resistor value, with a “hole” in the 1%
range.

3 Specify pdR as the probability distribution for the R parameter in an sdo.ParameterSpace
object.

ps = sdo.ParameterSpace(R,pdR);

 Generate Parameter Samples for Sensitivity Analysis

4-15

4 Generate 1000 samples.

Ns = 1000;
x = sdo.sample(ps,Ns);

5 (Optional) Use sdo.scatterPlot to visualize the samples and validate the sample space.

Generate Gridded Parameter Values
You can generate gridded parameter values in the Sensitivity Analyzer or at the command line.

Generate Gridded Parameter Values in the Sensitivity Analyzer

You can generate gridded parameters in the app after you have created a parameter set.

1 Create a parameter set.

In the Sensitivity Analyzer, in the Sensitivity Analysis tab, click Select Parameters.

In the Select Parameters dialog box, select all the parameters you want to include in your
parameter set, and click OK.

A ParamSet variable is created in the Parameter Sets area of the app. The current value for
each parameter in the parameter set is displayed in a table.

4 Sensitivity Analysis

4-16

2 Specify the starting parameter values and gridding method for grid generation.

In the Sensitivity Analysis tab, click Generate Values, and select Generate Gridded Values
from the drop-down menu.

In the Generate Gridded Parameter Values dialog box, specify the gridding method as All
Combinations. The app generates all possible combinations of the values specified in Values.

 Generate Parameter Samples for Sensitivity Analysis

4-17

Specify the starting parameter values in Values. The values you enter here determine the
parameter space. To see the other ways to specify starting parameter values and gridding
methods, click Help.

3 Generate the parameters.

Click Overwrite. The parameter set table updates with the generated gridded parameter values.

You can also append the generated values to previously generated random or gridded parameter
values in the parameter set table. To do so, click Append.

4 (Optional) Plot the generated values.

In the Parameter Sets area of the app, select ParamSet. In the Plots tab of the app, select
Scatter Plot from the plots gallery.

4 Sensitivity Analysis

4-18

Plots are generated with histograms of the distribution of the parameter values shown on the
diagonals. The off-diagonal plots display the scatter plots between pairs of parameters. To learn
more about the plots, see “Interact with Plots in the Sensitivity Analyzer” on page 4-79.

 Generate Parameter Samples for Sensitivity Analysis

4-19

Generate Gridded Parameter Values at the Command Line

This example shows how to create a table of gridded parameter values at the command line.

Generate a grid of samples for two model parameters, A and B. Vary A between [2,3,4] and B
between [20,30,40].

1 Construct a param.Continuous object.

A = param.Continuous('A',1);
B = param.Continuous('B',10);

2 Specify the parameter values for grid generation.

Avals = [2 3 4];
Bvals = [20 30 40];

3 Create a table of gridded parameter values. Specify one column for each parameter, and one row
for each sample. The column names must be the same as the parameter names.

[Agrid,Bgrid] = meshgrid(Avals,Bvals);
x = table(Agrid(:),Bgrid(:),'VariableNames',{'A','B'});

x =

 A B
 _ __

 2 20
 2 30
 2 40
 3 20
 3 30
 3 40
 4 20
 4 30
 4 40

See Also
sdo.SampleOptions | sdo.sample

Related Examples
• “Inspect the Generated Parameter Set” on page 4-96
• “Design Exploration Using Parameter Sampling (GUI)” on page 4-112
• “Design Exploration Using Parameter Sampling (Code)” on page 4-157
• “Explore Design Reliability Using Parameter Sampling (GUI)” on page 4-145

4 Sensitivity Analysis

4-20

Specify Time-Domain Requirements
In the Sensitivity Analyzer, you can specify the following time-domain requirements:

• Signal Matching — “Match Model Outputs to Measured Signals” on page 4-21
• Signal Bound — “Specify Piecewise-Linear Lower and Upper Bounds” on page 4-24
• Signal Property — “Specify Signal Property Requirements” on page 4-26
• Step Response Envelope — “Specify Step Response Characteristics” on page 4-27
• Signal Tracking — “Track Reference Signals” on page 4-29
• Ellipse Region Constraint — “Impose Elliptic Bound on Phase Plane Trajectory of Two Signals”

on page 4-31
• Custom Requirement — “Specify Custom Requirements” on page 4-33

After you specify the constraints, you can see if the requirements are satisfied by evaluating the
design requirements. For more information, see “Evaluate Design Requirements” on page 4-60.

Match Model Outputs to Measured Signals
You can specify a signal matching requirement to match model outputs to measured signals. This
requirement is also known as an experiment in the Parameter Estimator. To specify a signal
matching requirement:

1 In the Sensitivity Analyzer, in the New Requirement drop-down list, select Signal Matching.

A new signal matching requirement appears in the Requirements area of the app. An Edit
Signal Matching dialog box opens where you specify this requirement. You specify model output
and input signals, and assign measured data to them. You can also specify initial state values.

 Specify Time-Domain Requirements

4-21

2 In the Outputs panel of the Edit Signal Matching dialog box, select output signals, and import
output data. You can select more than one output signal, but you can have only one data set for a
signal. If you have multiple data sets, create multiple requirements.

a Select the model output signals that you want to add the requirement to.

By default, the root-level model output ports and logged signals are already listed in the
Outputs panel. To remove existing outputs from the signal matching requirement, click the

corresponding . To add other output signals, click Select Measured Output Signals.

The Select Outputs dialog box opens to display the root-level model Outport blocks and
logged signals.

4 Sensitivity Analysis

4-22

b In the Simulink model window, click the signal to add. The Select Outputs dialog box updates
to show the new signals. To add these signals as outputs, select the corresponding check
boxes. Click OK.

c In the Edit Signal Matching dialog box Outputs panel, for each output, import measured
output data in one of the following ways:

•
Import signal data from spreadsheets or text files — Click , and import the data from
the file.

• Import data from the MATLAB workspace — Suppose that the signal data and time data
are in the EyeData and time column vectors in the workspace, respectively. Specify the
output data as [time,EyeData].

If your data is stored in a time-series object, t, specify the output data as
[t.time,t.outputdata].

After importing data, to view or edit the data, click .
3 (Optional) Select input signals and import input data in the Inputs panel.

You can have more than one input signal, but you can have only one data set for a signal. If you
have multiple data sets, create multiple requirements. By default, the root-level model input
ports are already listed in the Inputs panel. Remove or add inputs, and import input data, in the
same way as described for the output data.

4 (Optional) Specify initial states values in the Initial States panel.

 Specify Time-Domain Requirements

4-23

By default, the initial conditions specified in the model are used for evaluating the requirement.
To specify initial conditions other than the defaults, click Select Initial States. In the Select
Model States dialog box, select the states to specify, and click OK.

The selected states appear in the Edit Signal Matching dialog box Initial States panel. Specify
the initial states.

5 Close the Edit Signal Matching dialog box.

The signal matching requirement in the Requirements area of the app is updated with the
specified characteristics.

6 (Optional) Plot the requirement.

a In the Sensitivity Analysis tab of the app, in the Requirements area, select the
requirement.

b In the Plots tab of the app, select the plot type to generate a graphical display of the
requirement.

Note You can preprocess the data using the preprocess tools in the Experiment Plot tab.
For more information, see “Preprocess Data” on page 1-13.

Specify Piecewise-Linear Lower and Upper Bounds
To specify upper and lower bounds on a signal:

1 In the Sensitivity Analyzer, in the New Requirement drop-down list, select Signal Bound.

A Create Requirement dialog box opens where you specify upper or lower bounds on a signal. A
new requirement with the name specified in Name appears in the Requirements area of the
app.

2 Select the requirement type from Type.
3 Specify the edge start and end times and corresponding amplitude in the Time (s) and

Amplitude columns.

4 Sensitivity Analysis

4-24

4
Click to specify additional bound edges.

Select a row and click to delete a bound edge.
5 In the Select Signals to Bound area, select a logged signal to apply the requirement to.

If you have already selected signals, as described in “Specify Signals to Log” on page 3-10, they
appear in the list. Select the corresponding check-box.

If you have not selected a signal to log:

a
Click . A Create Signal Set dialog box opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a requirement.

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

c
Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Create Requirement
dialog box.

6 Select the check-box corresponding to the signal, and close the Create Requirement dialog box.

The requirement in the Requirements area of the app is updated with the specified
characteristics.

7 (Optional) Plot the requirement.

a In the Sensitivity Analysis tab of the app, in the Requirements area, select the
requirement.

b In the Plots tab of the app, select the plot type to generate a graphical display of the
requirement.

The plot is populated when you perform evaluation. A positive value indicates that the
requirement has been violated.

You can now evaluate the requirement. For more information, see “Evaluate Design Requirements”
on page 4-60.

 Specify Time-Domain Requirements

4-25

Alternatively, you can add a Check Custom Bounds block to your model to specify piecewise-linear
bounds.

Specify Signal Property Requirements
To specify signal property requirements:

1 In the Sensitivity Analyzer, in the New Requirement drop-down list, select Signal Property.
A Create Requirement dialog box opens where you specify signal property requirements. A new
requirement with the name specified in Name appears in the Requirements area of the app.

2 In the Specify Property area, specify a signal property requirement using the Property and
Type lists and the Bound box.

Property List

Property Description Time weighting
available

Signal minimum Minimum of the signal No
Signal maximum Maximum of the signal No
Signal final value Last signal value No
Signal mean Average of signal value Yes
Signal median Middle value of signal Yes
Signal variance Variance of signal Yes
Signal interquartile
range

Difference between the 75th and 25th
percentiles of signal values

No

Signal sum
∑

i = t0

tN
S(i), where S(t0), …, S(tN) is the

signal to constrain.

Yes

Signal sum square
∑

i = t0

tN
S(i)2

Yes

Signal sum absolute
∑

i = t0

tN
S(i)

Yes

For signal properties where the Time-Weighted option is available, you can select it to weight
the property computation by the time intervals between samples.

Custom Signal Property

You can add a custom signal property to the Property list by editing the function
sdo.requirements.signalPropertyFcns.

a At the MATLAB command prompt, enter edit
sdo.requirements.signalPropertyFcns.

b Add your signal property function to the FcnData cell array.

Your signal property function must be on the path.

4 Sensitivity Analysis

4-26

3 In the Select Signals to Bound area, select the logged signal to which you want to apply the
requirement.

The signal selected must have numeric type data (either floating-point or integer). Also, if the
property selected is Signal median, Signal variance, or Signal interquartile range,
then the signal data must be floating-point (either double or single).

If you have already selected a signal, as described in “Specify Signals to Log” on page 3-10, the
signal appears in the list. Select the corresponding check box for that signal.

If you have not selected a signal to log:

a
Click . A Create Signal Set dialog box opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a requirement.

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

c
Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Create Requirement
dialog box.

4 Select the check-box corresponding to the signal, and close the Create Requirement dialog box.

The requirement in the Requirements area of the app is updated with the specified
characteristics.

You can now evaluate the requirement. For more information, see “Evaluate Design Requirements”
on page 4-60. When you perform evaluation, a positive requirement value indicates that the
requirement has been violated.

Specify Step Response Characteristics
To apply a step response requirement to a signal in your model, specify the step response
characteristics as follows:

1 Select a step response requirement from the Sensitivity Analyzer.

 Specify Time-Domain Requirements

4-27

In the New Requirement drop-down list of the app, in the New Time Domain Requirement
section, select Step Response Envelope.

A Create Requirement dialog box opens where you specify the step response requirements on a
signal. A new requirement with the name specified in Name appears in the Requirements area
of the app.

2 Specify the step response characteristics:

• Initial value — Input level before the step occurs
• Step time — Time at which the step takes place
• Final value — Input level after the step occurs
• Rise time — The time taken for the response signal to reach a specified percentage of the

step range. The step range is the difference between the final and initial values.
• % Rise — The percentage of the step range used with Rise time to define the overall rise

time characteristics.
• Settling time — Time taken until the response signal settles within a specified region around

the final value. This settling region is defined as the final step value plus or minus the
specified percentage of the final value.

• % Settling — The percentage of the final value that defines the settling range of settling time
characteristic specified in Settling time.

• % Overshoot — The amount by which the response signal can exceed the final value. This
amount is specified as a percentage of the step range. The step range is the difference
between the final and initial values.

• % Undershoot — The amount by which the response signal can undershoot the initial value.
This amount is specified as a percentage of the step range. The step range is the difference
between the final and initial values.

3 Specify the signal to be bound.

To apply this requirement to a model signal, in the Select Signals to Bound area, select a
logged signal to which you will apply the requirement.

If you have already selected a signal to log, as described in “Specify Signals to Log” on page 3-
10, it appears in the list. Select the corresponding check-box.

If you have not selected a signal to log:

a
Click . The Create Signal Set dialog box opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a requirement.

4 Sensitivity Analysis

4-28

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

c
Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Create Requirement
dialog box.

4 Select the check-box corresponding to the signal, and close the Create Requirement dialog box.

The requirement in the Requirements area of the app is updated with the specified
characteristics.

5 (Optional) Plot the requirement.

a In the Sensitivity Analysis tab of the app, in the Requirements area, select the
requirement.

b In the Plots tab of the app, select the plot type to generate a graphical display of the
requirement.

The plot is populated when you perform evaluation. A positive value indicates that the
requirement has been violated.

You can now evaluate the requirement. For more information, see “Evaluate Design Requirements”
on page 4-60.

Alternatively, you can use the Check Step Response Characteristics block to specify step response
bounds for a signal.

Track Reference Signals
Use reference tracking to force a model signal to match a desired signal. To track a reference signal:

1 In the Sensitivity Analyzer, in the New Requirement drop-down list, select Signal Tracking.

A Create Requirement dialog box opens where you specify the reference signal to track. A new
requirement with the name specified in Name appears in the Requirements area of the app.

2 Define the reference signal by entering vectors, or variables from the workspace, in the Time
vector and Amplitude fields.

 Specify Time-Domain Requirements

4-29

Click Update reference signal data to use the new amplitude and time vector as the reference
signal.

3 Specify how the optimization solver minimizes the error between the reference and model signals
using the Tracking Method list:

• SSE — Reduces the sum of squared errors
• SAE — Reduces the sum of absolute errors

4 In the Specify Signal to Track Reference Signal area, select a logged signal to apply the
requirement to.

If you already selected a signal to log, as described in “Specify Signals to Log” on page 3-10, they
appear in the list. Select the corresponding check-box.

If you have not selected a signal to log:

a
Click . A Create Signal Set dialog box opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a requirement.

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

c
Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Create Requirement
dialog box.

5 Select the check-box corresponding to the signal, and close the Create Requirement dialog box.

The requirement in the Requirements area of the app is updated with the specified
characteristics.

6 (Optional) Plot the requirement.

a In the Sensitivity Analysis tab of the app, in the Requirements area, select the
requirement.

b In the Plots tab of the app, select the plot type to generate a graphical display of the
requirement.

4 Sensitivity Analysis

4-30

The plot is populated when you perform evaluation. A positive value indicates that the
requirement has been violated.

Alternatively, you can use the Check Against Reference block to specify a reference signal to track.

Impose Elliptic Bound on Phase Plane Trajectory of Two Signals
You can impose an elliptic bound on the phase plane trajectory of two signals in your Simulink model.
The phase plane trajectory is a plot of the two signals against each other. You specify the radii, center,
and rotation of the bounding ellipse. You also specify whether you require the trajectory of the two
signals to lie inside or outside the ellipse.

The following image shows the bounding ellipse and an example of the phase plane trajectory of two
signals.

The X-Y plane is the phase plane defined by the two signals. rx and ry are the radii of the bounding
ellipse along the x and y axes, and θR is the rotation of the ellipse about the center. The ellipse center
is at (x0,y0). In the image, the phase plane trajectory of the signals lies within the bounding ellipse for
all time points t1 to tn.

To specify the elliptical bound requirement:

1 In the Sensitivity Analyzer, in the New Requirement drop-down list, select Ellipse Region
Constraint.

In the Create Requirement dialog box, specify the signals and elliptical bound. A new
requirement with the name specified in Name appears in the Requirements area of the app.

 Specify Time-Domain Requirements

4-31

1 Specify the two signals that you want to impose the requirement on. The signals define the X-Y
plane of the bounding ellipse. To specify the signals, click the corresponding Select buttons.

When you click Select, the Create Signal Set dialog box opens.

4 Sensitivity Analysis

4-32

In the Simulink model window, click the signal to which you want to add the requirement. The
Create Signal Set dialog box updates with the name of the block and the port number where the

selected signal is located. Select the signal, and click to add it to the signal set.

Once you have specified the logged signal in the Create Signal Set dialog box, the signal appears
in the Create Requirement dialog box.

2 Specify the radii of the bounding ellipse as real positive finite values in Semi-axis length. You
specify rx and ry that are the x-axis and y-axis radii before any rotation about the ellipse center.

3 Specify the location of the center of the bounding ellipse in Center. You specify x0 and y0, the x
and y coordinates of the center, as real finite values.

4 Specify the angle of rotation of the ellipse about its center as a real finite scalar in Angle (rad).
5 Specify the bound Type as one of the following:

• '<=' — Ellipse is an upper bound. The phase plane trajectory of the two signals should lie
inside or on the ellipse.

• '>=' — Ellipse is a lower bound. The phase plane trajectory of the two signals should lie
outside or on the ellipse.

1 Close the Create Requirement dialog box.

The requirement created in the Requirements area of the app is updated with the specified
characteristics.

2 (Optional) Plot the requirement.

a In the Sensitivity Analysis tab of the app, in the Requirements area, select the
requirement.

b In the Plots tab of the app, select the plot type to generate a graphical display of the
requirement.

The plot is populated when you perform evaluation. A positive value indicates that the
requirement has been violated.

You can now evaluate the requirement. For more information, see “Evaluate Design Requirements”
on page 4-60.

Specify Custom Requirements
You can specify custom requirements, such as minimizing system energy. To specify custom
requirements:

1 In the Sensitivity Analyzer, in the New Requirement drop-down list, select Custom
Requirement.

A Create Requirement dialog box opens where you specify the reference signal to track. A new
requirement with the name specified in Name appears in the Requirements area of the app.

2 Specify the requirement type in the Type drop-down menu.
3 Specify the name of the function that contains the custom requirement in Function. The field

must be specified as a function handle using @. The function must be on the MATLAB path. Click

 to review or edit the function.

 Specify Time-Domain Requirements

4-33

If the function does not exist, clicking opens a template MATLAB file. Use this file to
implement the custom requirement. The default function name is myCustomRequirement.

4 (Optional) To prevent the solver from considering specific parameter combinations, select Error
if constraint is violated. Use this option for parameter-only constraints.

During an optimization iteration, the solver first evaluates requirements with this option
selected.

• If the constraint is violated, the solver skips evaluating any remaining requirements and
proceeds to the next combination of parameters in the parameter set.

• If the constraint is not violated, the solver evaluates the remaining requirements for the
current combination of parameter values. If any of the remaining requirements bound signals
or systems, then the solver simulates the model.

Note If you select this check box, then do not specify signals or systems to bound. If you do
specify signals or systems, then this check box is ignored.

5 (Optional) Specify the signal or system, or both, to be bound.

You can apply this requirement to model signals, or a linearization of your Simulink model
(requires Simulink Control Design), or both.

Click Select Signals and Systems to Bound (Optional) to view the signal and linearization I/O
selection area.

• To apply this requirement to a model signal:

In the Signal area, select a logged signal to which you will apply the requirement.

If you have already selected a signal to log, as described in “Specify Signals to Log” on page
3-10, it appears in the list. Select the corresponding check box.

If you have not selected a signal to log:

a
Click . A Create Signal Set dialog box opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a requirement.

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

4 Sensitivity Analysis

4-34

c
Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Create Requirement
dialog box.

• To apply this requirement to a linear system:

a Specify the simulation time at which the model is linearized in Snapshot Times. For
multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select
the corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box. For more information on using this dialog box, see
“Create Linearization I/O Sets” on page 3-64.

For more information on linearization, see “What Is Linearization?” (Simulink Control
Design).

6 Select the check-box corresponding to the signal or system, and close the Create Requirement
dialog box.

The requirement created in the Requirements area of the app is updated with the specified
characteristics.

You can now evaluate the requirement. For more information, see “Evaluate Design Requirements”
on page 4-60. When you perform evaluation, a positive requirement value indicates that the
requirement has been violated.

See Also

Related Examples
• “Specify Parameters Requirements” on page 4-36
• “Specify Frequency-Domain Requirements” on page 4-48
• “Evaluate Design Requirements” on page 4-60
• “Identify Key Parameters for Estimation (GUI)” on page 4-131
• “Design Exploration Using Parameter Sampling (GUI)” on page 4-112

 Specify Time-Domain Requirements

4-35

Specify Parameters Requirements
In the Sensitivity Analyzer, you can specify the following constraints on Simulink model parameters
that are specified as variables:

• Monotonic Variable — “Impose Monotonic Constraint Requirement on Variable” on page 4-36
• Smoothness Constraint — “Impose Upper Bound on Gradient Magnitude of Variable” on page 4-

38
• Function Matching — “Specify Linear or Quadratic Function Matching Constraint” on page 4-

41
• Vector Property — “Specify Requirement on a Vector Property” on page 4-43
• Relational Constraint — “Impose Relational Constraint Between Two Variables” on page 4-45

For information about how to specify a model parameter as a variable, see “Add Model Parameters as
Variables” on page 4-4.

Impose Monotonic Constraint Requirement on Variable
You can impose a monotonic constraint requirement on a variable in your Simulink model. For
example, constrain a variable to be monotonically increasing. The variable can be a vector, matrix, or
multidimensional array that is a parameter in your model, such as the breakpoints of a lookup table.

To specify the requirement:

1 In the Sensitivity Analyzer, in the New Requirement drop-down list, select Monotonic
Variable.

In the Create Requirement dialog box, specify the requirement. A new requirement with the
name specified in Name appears in the Requirements area of the app.

4 Sensitivity Analysis

4-36

2 Specify the name of the variable in Variable. The variable must be a vector, matrix, or
multidimensional array of data type double or single.

You can type the name of a nonscalar variable, or select the variable from the drop-down list. The
list is prepopulated with all the nonscalar variables in your model. To choose a subset of an array
or matrix variable V, type an expression. For example, specify Variable as V(1,:) to use the first
row of the variable. To use a numeric nonscalar field x of a structure S, type S.x. You cannot use
mathematical expressions such as a + b.

Sometimes, models have parameters that are not explicitly defined in the model itself. For
example, a gain k could be defined in the MATLAB workspace as k = a + b, where a and b are
not defined in the model but k is used. To add these independent parameters as variables in the
app, see “Add Model Parameters as Variables” on page 4-4.

1 Specify the monotonicity for each dimension of the variable.

After you select the variable, the dialog updates to show Dimension 1 to Dimension n,
corresponding to the n dimensions of the variable. For example, for a 2-dimensional variable K of
size 3-by-5, the dialog updates as shown.

Specify the monotonicity for the first dimension in Dimension 1 and for the nth-dimension in
Dimension n as one of the following options:

• Strictly increasing — Each element of the variable is greater than the previous element
in that dimension.

• Increasing — Each element of the variable is greater than or equal to the previous element
in that dimension.

• Decreasing — Each element of the variable is less than or equal to the previous element in
that dimension.

• Strictly decreasing — Each element of the variable is less than the previous element in
that dimension.

• Not constrained — No constraint exists between the elements of the variable in that
dimension.

 Specify Parameters Requirements

4-37

1 Close the Create Requirement dialog box.

The requirement created in the Requirements area of the app is updated with the specified
characteristics.

You can now evaluate the requirement. For more information, see “Evaluate Design Requirements”
on page 4-60. When you perform evaluation, the app returns the evaluated requirement value
corresponding to each dimension of the variable. A positive requirement value indicates that the
requirement has been violated.

Impose Upper Bound on Gradient Magnitude of Variable
You can impose an upper bound on the gradient magnitude of a variable in your Simulink model. The
variable can be a vector, matrix, or multidimensional array that is a parameter in your model, such as
the data of a lookup table. For example, consider a car engine controller whose gain changes under
different operating conditions determined by the car speed. You can use a gradient bound constraint
to limit the rate at which the controller gain changes per unit change in vehicle speed.

For an N-dimensional variable F that is a function of independent variables x1,..., xN, the gradient
magnitude is defined as:

∇F = ∂F
∂x1

2
+ ∂F
∂x2

2
+⋯+ ∂F

∂xN

2

To compute the gradient magnitude, the software computes the partial derivative in each dimension
by computing the difference between successive F data in that dimension and dividing by the spacing
between the data in that dimension. You specify F and the spacing between the data. The software
checks whether the gradient magnitude of the variable data is less than or equal to a specified bound.
If the gradient magnitude of the data is greater than the required bound, the variable data is not
smooth.

To specify the requirement:

1 In the Sensitivity Analyzer, in the New Requirement drop-down list, select Smoothness
Constraint.

In the Create Requirement dialog box, specify the requirement. A new requirement with the
name specified in Name appears in the Requirements area of the app.

4 Sensitivity Analysis

4-38

2 Specify the gradient magnitude bound as a nonnegative finite real scalar in Gradient maximum
magnitude.

3 Specify the variable F that you want to impose the requirement on in Dependent Variable. The
variable must be a vector, matrix, or multidimensional array of data type double or single. The
variable must be a parameter in your model or a constant that you enter.

You can type the name of a nonscalar variable or a constant, or select the variable from the drop-
down list. The list is prepopulated with all the nonscalar variables in your model. To choose a
subset of an array or matrix variable V, type an expression. For example, specify Variable as
V(1,:) to use the first row of the variable. To use a numeric nonscalar field x of a structure S,
type S.x. You cannot use mathematical expressions such as a + b.

Sometimes, models have parameters that are not explicitly defined in the model itself. For
example, a gain k could be defined in the MATLAB workspace as k = a + b, where a and b are
not defined in the model but k is used. To add these independent parameters as variables in the
app, see “Add Model Parameters as Variables” on page 4-4.

1 Specify the spacing between points of Dependent Variable data in each dimension in
Independent Variable.

After you select the Dependent Variable, the dialog updates to show Dimension 1 to
Dimension n, corresponding to the n dimensions of the dependent variable. For example, for a
1-dimensional variable K, the dialog updates as shown.

 Specify Parameters Requirements

4-39

The first dimension specifies the spacing going down the dependent variable data rows, and the
second specifies spacing across the columns. The Nth dimension specifies the spacing along
the Nth dimension of dependent variable data. You can specify the independent variables in each
dimension as scalars or vectors.

• Scalars — Specify the spacing between dependent variable data F in the corresponding
dimension as a nonzero scalar. For example, suppose that Dependent Variable is two-
dimensional, and the spacing between data in the first dimension is 5 and in the second
dimension is 2. In the Independent Variable section, specify Dimension 1 as 5 and
Dimension 2 as 2.

• Vectors — Specify the coordinates of F data in the corresponding dimension as real, numeric,
monotonic vectors. The software uses the coordinates to compute the spacing between the
dependent variable data points in the corresponding dimension. The length of the vector must
match the length of F in the corresponding dimension. You do not have to specify coordinates
with uniform spacing. For example, suppose that F is two-dimensional, and the length of the
data in the first and second dimension is 3 and 5, respectively. The coordinates of the data in
the first dimension are [1 2 3]. In the second dimension, the spacing is not uniform and the
coordinates of the data are [1 2 10 20 30]. In the Independent Variable section,
specify Dimension 1 as [1 2 3] and Dimension 2 as [1 2 10 20 30].

You can also specify the independent variables by typing the name of a variable, or selecting a
variable from the drop-down list. The list is prepopulated with all the variables in your model that
have the appropriate size. To choose a subset of an array or matrix variable V, type an
expression. For example, specify as V(1,:) to use the first row of the variable. To use a numeric
field x of a structure S, type S.x. You cannot use mathematical expressions such as a + b.

1 Close the Create Requirement dialog box.

The requirement created in the Requirements area of the app is updated with the specified
characteristics.

You can now evaluate the requirement. For more information, see “Evaluate Design Requirements”
on page 4-60. When you perform evaluation, the app returns the evaluated requirement value. A
positive requirement value indicates that the requirement has been violated.

4 Sensitivity Analysis

4-40

Specify Linear or Quadratic Function Matching Constraint
In the app, you can constrain a variable's values to match a linear or quadratic function. The variable
can be a vector, matrix, or a multidimensional array that is a parameter in your model, such as the
data of a lookup table in your model. To specify the requirement:

1 In Sensitivity Analyzer, from the New Requirement drop-down list, select Function
Matching.

In the Create Requirement dialog box, specify the requirement. A new requirement with the
name specified in Name appears in the Requirements area of the app.

2 Specify the function to be matched. To do so, set Functional Relation to one of the following
values:

 Specify Parameters Requirements

4-41

• Linear — Data from variable V are fit to a linear function. For example, for a two-dimensional
variable with independent variables, X1 and X2, the linear function has the form:

V = a0 + a1X1 + a2X2

The software calculates the fit coefficients a0, a1, and a2 and then calculates the sum of
squares of the error between the data and the linear function.

• Quadratic with no cross-terms — Data are fit to a quadratic function with no cross-
terms. For a two-dimensional variable, the pure quadratic function has the form:

V = a0 + a1X1 + a2X1
2 + a3X2 + a4X2

2

• Quadratic with all cross-terms — Variable data are fit to a quadratic function that
includes cross-terms. For a two-dimensional variable, the quadratic function has the form:

V = a0 + a1X1 + a2X1
2 + a3X2 + a4X2

2 + a5X1X2

If the variable is one-dimensional, there are no cross-terms and so the computation is the
same as when Functional relation is Quadratic with no cross-terms.

3 Specify the variable V to which you want to apply the requirement in Dependent Variable. The
variable must be a vector, matrix, or multidimensional array of data type double or single that
is a parameter in your model.

Type the name of a non scalar variable, or select a variable from the drop-down list. The list is
prepopulated with all the nonscalar variables in your model. To see where the selected variable is
used on your model, click Show in Model. To choose a subset of an array or matrix variable A,
type an expression. For example, specify A(1,:) to use the first row of the variable. To use a
numeric nonscalar field x of a structure S, type S.x. You cannot use mathematical expressions
such as a + b.

Sometimes models have parameters that are not explicitly defined in the model itself. For
example, a gain k could be defined in the MATLAB workspace as k = a + b, where a and b are
not defined in the model but k is used. To add these independent parameters as design variables
in the app, see “Add Model Parameters as Variables” on page 4-4.

4 Specify the independent variable vectors used for computing the function in Independent
Variable. The independent variables are specified as real, numeric, monotonic vectors.

The number of independent variables must equal the number of dimensions of the dependent
variable V. For example, you specify two independent variables when V is a matrix, and use three
independent variables when V is three-dimensional. The first independent variable vector
specifies coordinates going down the rows of V, and the second independent variable vector
specifies coordinates going across the columns of V. The nth independent variable vector specifies
coordinates along the nth dimension of V. The number of elements in each independent variable
vector must match the size of V in the corresponding dimension. The independent variable
vectors must be monotonically increasing or decreasing.

You can also specify the independent variables by typing the name of a variable, or selecting a
variable from the drop-down list. The list is prepopulated with all the variables in your model that
have the appropriate size. To choose a subset of an array or matrix variable A, type an
expression. For example, specify A(1,:) to use the first row of the variable. To use a numeric
field x of a structure S, type S.x. You cannot use mathematical expressions such as a + b. To
use an equally spaced vector, select [1 2 ...N] from the drop-down menu.

4 Sensitivity Analysis

4-42

5 Specify whether you want to center and scale the independent variables. When you select the
Center and scale independent variables option, the independent variable vectors you specify
are divided by a scale value after subtracting a center value. Centering can improve numerical
conditioning when one or more independent variable vectors have a mean that differs from 0 by
several orders of magnitude. Scaling can improve numerical conditioning when independent
variable vectors differ from each other by several orders of magnitude.

To specify the center and scale values for each independent variable, expand the Center and
Scale Settings section, and select one of the following:

• Use automatic centers and scales - The center and scale values are the mean and standard
deviation for each independent variable. Using the mean and standard deviation values to
center and scale the independent variables is the default option.

• Use custom centers and scales - Specify the Center and Scale values for each
independent variable. The independent variable vectors are divided by the corresponding
Scale value after subtracting the value you specify in Center.

6 Close the Create Requirement dialog box.

The requirement created in the Requirements area of the app is updated with the specified
characteristics.

You can now evaluate the requirement. For more information, see “Evaluate Design Requirements”
on page 4-60. When you perform evaluation, the app returns the evaluated requirement value. The
app computes an error signal that is the difference between the dependent variable data and the
specified function of the independent variables. The app returns the sum of squares of this error as
the evaluated requirement value. A positive value indicates that the requirement has been violated,
and 0 value indicates that the requirement is satisfied. The closer the value is to 0, the better is the
match between the function and dependent variable data.

Specify Requirement on a Vector Property
In the app, you can specify a requirement on a vector property, such as the mean value of the vector.
The vector must be a parameter in your model. To specify the requirement:

1 In the Sensitivity Analyzer, in the New Requirement drop-down list, select Vector Property.

In the Create Requirement dialog box, specify the requirement. A new requirement with the
name specified in Name appears in the Requirements area of the app.

 Specify Parameters Requirements

4-43

1 Specify the vector property in Property. For a vector V with N elements, you can specify one of
the following properties:

• Vector mean — mean(V)
• Vector median — median(V)
• Vector variance — variance(V)
• Vector inter-quartile range — Difference between the 75th and 25th percentiles of

the vector values.
•

Vector sum — ∑
i = 1

N
V(i)

•
Vector sum of squares — ∑

i = 1

N
V(i)2

•
Vector sum of absolute values — ∑

i = 1

N
V(i)

• Vector minimum — min(V)
• Vector maximum — max(V)

2 Specify the type of requirement you want to impose on the vector property in Type. You can set
an upper or lower bound on the vector property, or require the property to equal a particular
value. You can also choose to maximize or minimize the vector property. For example, to
maximize the mean value of your vector, specify Property as Vector mean and Type as
Maximize the property.

3 Specify the value of the bound imposed on the vector property in Bound. Specify the bound as a
finite real scalar value. For example, if for a vector variable V you require mean(V) = 5, specify
Property as Vector mean, Type as Constrain property to be == the bound, and
Bound as 5.

1 Specify the name of the variable in Variable. The variable must be a vector, matrix, or
multidimensional array of data type double or single.

4 Sensitivity Analysis

4-44

You can type the name of a nonscalar variable, or select the variable from the drop-down list. The
list is prepopulated with all the nonscalar variables in your model. To choose a subset of an array
or matrix variable V, type an expression. For example, specify Variable as V(1,:) to use the first
row of the variable. To use a numeric nonscalar field x of a structure S, type S.x. You cannot use
mathematical expressions such as a + b.

Sometimes, models have parameters that are not explicitly defined in the model itself. For
example, a gain k could be defined in the MATLAB workspace as k = a + b, where a and b are
not defined in the model but k is used. To add these independent parameters as variables in the
app, see “Add Model Parameters as Variables” on page 4-4.

2 Close the Create Requirement dialog box.

The requirement created in the Requirements area of the app is updated with the specified
characteristics.

You can now evaluate the requirement. For more information, see “Evaluate Design Requirements”
on page 4-60. When you perform evaluation, the app returns the evaluated requirement value. A
positive requirement value indicates that the requirement has been violated.

Impose Relational Constraint Between Two Variables
You can impose a relational constraint requirement on a pair of variables in your Simulink model. For
example, require that variable a is always greater than variable b. To specify the requirement:

1 In the Sensitivity Analyzer, in the New Requirement drop-down list, select Relational
Constraint.

In the Create Requirement dialog box, specify the requirement. A new requirement with the
name specified in Name appears in the Requirements area of the app.

 Specify Parameters Requirements

4-45

2 Specify the name of the two variables in Variable. The variables can be vectors or arrays but
must be the same size.

Type the name of two variables, or select the variables from the drop-down lists. The lists are
prepopulated with all the variables in your model. To see where a selected variable is used on
your model, click Show in Model. To choose a subset of an array or matrix variable V, type an
expression. For example, specify Variable as V(1,:) to use the first row of the variable. To use a
numeric field x of a structure S, type S.x. You cannot use mathematical expressions such
as a + b.

Sometimes, models have parameters that are not explicitly defined in the model itself. For
example, a gain k could be defined in the MATLAB workspace as k = a + b, where a and b are
not defined in the model but k is used. To add these independent parameters as variables in the
app, see “Add Model Parameters as Variables” on page 4-4.

1 Specify the relation between the elements of the two variables as one of the following in
Relationship:

• '<' — Each data element in the first variable is less than the corresponding element in the
second variable.

• '<=' — Each data element in the first variable is less than or equal to the corresponding
element in the second variable.

• '>' — Each data element in the first variable is greater than the corresponding element in
the second variable.

• '>=' — Each data element in the first variable is greater than or equal to the corresponding
element in the second variable.

• '==' — Each data element in the first variable is equal to the corresponding element in the
second variable.

• '~=' — Each data element in the first variable is not equal to the corresponding element in
the second variable.

1 Close the Create Requirement dialog box.

The requirement created in the Requirements area of the app is updated with the specified
characteristics.

4 Sensitivity Analysis

4-46

You can now evaluate the requirement. For more information, see “Evaluate Design Requirements”
on page 4-60. When you perform evaluation, the app returns the evaluated requirement value. The
interpretation of the evaluated requirement value depends on the requirement Type.

Type Evaluated Requirement Value
Requirement is Satisfied Requirement is Violated

'>' or '<' Negative number Positive number, or 0 if the
elements are equal

'>=' or '<=' Negative number, or 0 if the
elements are equal

Positive number

'==' 0 Non-zero number
'~=' 0 1

See Also

Related Examples
• “Specify Parameters for Design Exploration” on page 4-4
• “Specify Time-Domain Requirements” on page 4-21
• “Specify Frequency-Domain Requirements” on page 4-48

 Specify Parameters Requirements

4-47

Specify Frequency-Domain Requirements
This topic shows how to specify frequency-domain requirements in the Sensitivity Analyzer. To
specify frequency-domain requirements, you require the Simulink Control Design toolbox.

Specify Lower Bounds on Gain and Phase Margin
To specify lower bounds on the gain and phase margin of a linear system:

1 In the Sensitivity Analyzer, in the New Requirement drop-down list, select Gain and Phase
Margin. A Create Requirement dialog box opens where you specify upper or lower bounds on
the gain and phase margin. A new requirement with the name specified in Name appears in the
Requirements area of the app.

2 Specify bounds on the gain margin or phase margin, or both.

4 Sensitivity Analysis

4-48

• Gain margin — Amount of gain increase or decrease required to make the loop gain unity at
the frequency where the phase angle is –180°.

• Phase margin — Amount of phase increase or decrease required to make the phase angle –
180° when the loop gain is 1.0

To specify a lower bound on the gain margin or phase margin, or both, select the corresponding
check box and enter the lower bound value.

3 In the Select Systems to Bound section, select the linear systems to which this requirement
applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
4 Close the Create Requirement dialog box.

The requirement in the Requirements area of the app is updated with the specified
characteristics.

 Specify Frequency-Domain Requirements

4-49

5 (Optional) Plot the requirement.

a In the Sensitivity Analysis tab of the app, in the Requirements area, select the
requirement.

b In the Plots tab of the app, select the plot type to generate a graphical display of the
requirement.

The plot is populated when you perform evaluation. A positive value indicates that the
requirement has been violated.

Specify Piecewise-Linear Lower and Upper Bounds on Frequency
Response
To specify upper or lower bounds on the magnitude of a system response:

1 In the Sensitivity Analyzer, in the New Requirement drop-down list, select Bode Magnitude.
A Create Requirement dialog box opens where you specify the lower or upper bounds on the
magnitude of the system response. A new requirement with the name specified in Name appears
in the Requirements area of the app.

2 Specify the requirement type in the Type drop-down list.
3 Specify the edge start and end frequencies and corresponding magnitude in the Frequency and

Magnitude columns.
4 Insert or delete bound edges.

Click to specify additional bound edges.

To delete a bound edge, select a row, and click .
5 In the Select Systems to Bound section, select the linear systems to which this requirement

applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
6 Close the Create Requirement dialog box.

4 Sensitivity Analysis

4-50

The requirement in the Requirements area of the app is updated with the specified
characteristics.

7 (Optional) Plot the requirement.

a In the Sensitivity Analysis tab of the app, in the Requirements area, select the
requirement.

b In the Plots tab of the app, select the plot type to generate a graphical display of the
requirement.

The plot is populated when you perform evaluation. A positive value indicates that the
requirement has been violated.

Alternatively, you can use the Check Bode Characteristics block to specify bounds on the magnitude
of the system response. (Requires Simulink Control Design.)

Specify Bound on Closed-Loop Peak Gain
To specify an upper bound on the closed-loop peak response of a system:

1 In the Sensitivity Analyzer, in the New Requirement drop-down list, select Closed-Loop
Peak Gain. A Create Requirement dialog box opens where you specify an upper bound on the
closed-loop peak gain of the system. A new requirement with the name specified in Name
appears in the Requirements area of the app.

2 Specify the upper bound in Closed-Loop peak gain.
3 In the Select Systems to Bound section, select the linear systems to which this requirement

applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
4 Close the Create Requirement dialog box.

The requirement in the Requirements area of the app is updated with the specified
characteristics.

5 (Optional) Plot the requirement.

a In the Sensitivity Analysis tab of the app, in the Requirements area, select the
requirement.

 Specify Frequency-Domain Requirements

4-51

b In the Plots tab of the app, select the plot type to generate a graphical display of the
requirement.

The plot is populated when you perform evaluation. A positive value indicates that the
requirement has been violated.

Alternatively, you can use the Check Nichols Characteristics block to specify bounds on the
magnitude of the system response. (Requires Simulink Control Design.)

Specify Lower Bound on Damping Ratio
To specify a lower bound on the damping ratio of the poles of a system:

1 In the Sensitivity Analyzer, in the New Requirement drop-down list, select Damping Ratio. A
Create Requirement dialog box opens where you specify a lower bound on the damping ratio of
the system. A new requirement with the name specified in Name appears in the Requirements
area of the app.

2 Specify the lower bound on the damping ratio in Damping ratio.
3 In the Select Systems to Bound section, select the linear systems to which this requirement

applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
4 Close the Create Requirement dialog box.

The requirement in the Requirements area of the app is updated with the specified
characteristics.

5 (Optional) Plot the requirement.

a In the Sensitivity Analysis tab of the app, in the Requirements area, select the
requirement.

b In the Plots tab of the app, select the plot type to generate a graphical display of the
requirement.

The plot is populated when you perform evaluation. A positive value indicates that the
requirement has been violated.

4 Sensitivity Analysis

4-52

Alternatively, you can use the Check Pole-Zero Characteristics block to specify a bound on the
damping ratio. (Requires Simulink Control Design.)

Specify Upper and Lower Bounds on Natural Frequency
To specify a bound on the natural frequency of the poles of a system:

1 In the Sensitivity Analyzer, in the New Requirement drop-down list, select Natural
Frequency. A Create Requirement dialog box opens where you specify a bound on the natural
frequency of the system. A new requirement with the name specified in Name appears in the
Requirements area of the app.

2 Specify a lower or upper bound on the natural frequency in Natural frequency.
3 In the Select Systems to Bound section, select the linear systems to which this requirement

applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
4 Close the Create Requirement dialog box.

The requirement in the Requirements area of the app is updated with the specified
characteristics.

5 (Optional) Plot the requirement.

a In the Sensitivity Analysis tab of the app, in the Requirements area, select the
requirement.

b In the Plots tab of the app, select the plot type to generate a graphical display of the
requirement.

The plot is populated when you perform evaluation. A positive value indicates that the
requirement has been violated.

Alternatively, you can use the Check Pole-Zero Characteristics block to specify a bound on the natural
frequency. (Requires Simulink Control Design.)

 Specify Frequency-Domain Requirements

4-53

Specify Upper Bound on Approximate Settling Time
To specify an upper bound on the approximate settling time of a system:

1 In the Sensitivity Analyzer, in the New Requirement drop-down list, select Settling Time. A
Create Requirement dialog box opens where you specify an upper bound on the approximate
settling time of the system. A new requirement with the name specified in Name appears in the
Requirements area of the app.

2 Specify the upper bound on the approximate settling time in Settling time.
3 In the Select Systems to Bound section, select the linear systems to which this requirement

applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
4 Close the Create Requirement dialog box.

The requirement in the Requirements area of the app is updated with the specified
characteristics.

5 (Optional) Plot the requirement.

a In the Sensitivity Analysis tab of the app, in the Requirements area, select the
requirement.

b In the Plots tab of the app, select the plot type to generate a graphical display of the
requirement.

The plot is populated when you perform evaluation. A positive value indicates that the
requirement has been violated.

Alternatively, you can use the Check Pole-Zero Characteristics block to specify the approximate
settling time. (Requires Simulink Control Design.)

Specify Piecewise-Linear Upper and Lower Bounds on Singular Values
To specify piecewise-linear upper and lower bounds on the singular values of a system:

1 In the Sensitivity Analyzer, in the New Requirement drop-down list, select Singular Values.
A Create Requirement dialog box opens where you specify the lower or upper bounds on the

4 Sensitivity Analysis

4-54

singular values of the system. A new requirement with the name specified in Name appears in
the Requirements area of the app.

2 Specify the requirement type using the Type drop-down list.
3 Specify the edge start and end frequencies and corresponding magnitude in the Frequency and

Magnitude columns, respectively.
4 Insert or delete bound edges.

Click to specify additional bound edges.

Select a row and click to delete a bound edge.
5 In the Select Systems to Bound section, select the linear systems to which this requirement

applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
6 Close the Create Requirement dialog box.

The requirement in the Requirements area of the app is updated with the specified
characteristics.

7 (Optional) Plot the requirement.

a In the Sensitivity Analysis tab of the app, in the Requirements area, select the
requirement.

b In the Plots tab of the app, select the plot type to generate a graphical display of the
requirement.

The plot is populated when you perform evaluation. A positive value indicates that the
requirement has been violated.

Alternatively, you can use the Check Singular Value Characteristics block to specify bounds on the
singular value. (Requires Simulink Control Design).

 Specify Frequency-Domain Requirements

4-55

Specify Step Response Characteristics
To apply a step response requirement to a linearization of your model (requires Simulink Control
Design), specify the step response characteristics as follows:

1 Select a step response requirement from the Sensitivity Analyzer.

In the New Requirement drop-down list of the app, in the New Frequency Domain
Requirement section, select Step Response Envelope.

A Create Requirement dialog box opens where you specify the step response requirements on a
signal. A new requirement with the name specified in Name appears in the Requirements area
of the app.

2 Specify the step response characteristics:

• Initial value — Input level before the step occurs
• Step time — Time at which the step takes place
• Final value — Input level after the step occurs
• Rise time — The time taken for the response signal to reach a specified percentage of the

step range. The step range is the difference between the final and initial values.
• % Rise — The percentage of the step range used with Rise time to define the overall rise

time characteristics.
• Settling time — Time taken until the response signal settles within a specified region around

the final value. This settling region is defined as the final step value plus or minus the
specified percentage of the final value.

• % Settling — The percentage of the final value that defines the settling range of settling time
characteristic specified in Settling time.

• % Overshoot — The amount by which the response signal can exceed the final value. This
amount is specified as a percentage of the step range. The step range is the difference
between the final and initial values.

• % Undershoot — The amount by which the response signal can undershoot the initial value.
This amount is specified as a percentage of the step range. The step range is the difference
between the final and initial values.

3 Specify the systems to be bound.

To apply this requirement to a linearization of your Simulink model:

a In the Select Systems to Bound area, specify the simulation time at which the model is
linearized in Snapshot Times. For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

4 Sensitivity Analysis

4-56

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
4 Close the Create Requirement dialog box.

The requirement in the Requirements area of the app is updated with the specified
characteristics.

5 (Optional) Plot the requirement.

a In the Sensitivity Analysis tab of the app, in the Requirements area, select the
requirement.

b In the Plots tab of the app, select the plot type to generate a graphical display of the
requirement.

The plot is populated when you perform evaluation. A positive value indicates that the
requirement has been violated.

Alternatively, you can use the Check Step Response Characteristics block to specify step response
bounds for a signal.

Specify Custom Requirements
You can specify custom requirements, such as minimizing system energy. To specify custom
requirements:

1 In the Sensitivity Analyzer, in the New Requirement drop-down list, select Custom
Requirement.

A Create Requirement dialog box opens where you specify the reference signal to track. A new
requirement with the name specified in Name appears in the Requirements area of the app.

2 Specify the requirement type in the Type drop-down menu.
3 Specify the name of the function that contains the custom requirement in Function. The field

must be specified as a function handle using @. The function must be on the MATLAB path. Click

 to review or edit the function.

If the function does not exist, clicking opens a template MATLAB file. Use this file to
implement the custom requirement. The default function name is myCustomRequirement.

4 (Optional) To prevent the solver from considering specific parameter combinations, select Error
if constraint is violated. Use this option for parameter-only constraints.

During an optimization iteration, the solver first evaluates requirements with this option
selected.

• If the constraint is violated, the solver skips evaluating any remaining requirements and
proceeds to the next combination of parameters in the parameter set.

• If the constraint is not violated, the solver evaluates the remaining requirements for the
current combination of parameter values. If any of the remaining requirements bound signals
or systems, then the solver simulates the model.

 Specify Frequency-Domain Requirements

4-57

Note If you select this check box, then do not specify signals or systems to bound. If you do
specify signals or systems, then this check box is ignored.

5 (Optional) Specify the signal or system, or both, to be bound.

You can apply this requirement to model signals, or a linearization of your Simulink model
(requires Simulink Control Design), or both.

Click Select Signals and Systems to Bound (Optional) to view the signal and linearization I/O
selection area.

• To apply this requirement to a model signal:

In the Signal area, select a logged signal to which you will apply the requirement.

If you have already selected a signal to log, as described in “Specify Signals to Log” on page
3-10, it appears in the list. Select the corresponding check box.

If you have not selected a signal to log:

a
Click . A Create Signal Set dialog box opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a requirement.

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

c
Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Create Requirement
dialog box.

• To apply this requirement to a linear system:

a Specify the simulation time at which the model is linearized in Snapshot Times. For
multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select
the corresponding check box.

4 Sensitivity Analysis

4-58

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box. For more information on using this dialog box, see
“Create Linearization I/O Sets” on page 3-64.

For more information on linearization, see “What Is Linearization?” (Simulink Control
Design).

6 Select the check-box corresponding to the signal or system, and close the Create Requirement
dialog box.

The requirement created in the Requirements area of the app is updated with the specified
characteristics.

You can now evaluate the requirement. For more information, see “Evaluate Design Requirements”
on page 4-60. When you perform evaluation, a positive requirement value indicates that the
requirement has been violated.

See Also

Related Examples
• “Specify Time-Domain Requirements” on page 4-21
• “Evaluate Design Requirements” on page 4-60
• “Design Exploration Using Parameter Sampling (GUI)” on page 4-112
• “Identify Key Parameters for Estimation (GUI)” on page 4-131

 Specify Frequency-Domain Requirements

4-59

Evaluate Design Requirements
This topic shows how to evaluate your design requirements in the Sensitivity Analyzer. After you
generate values for your parameter set and specify design requirements, you can evaluate your
design requirements (cost function) at each sample of parameter values in your parameter set.

The generated parameter set, the corresponding parameter set table, and specified requirements are
displayed in the app.

To evaluate the design requirements:

1 Select the parameter set to use for evaluation.

If you have multiple parameter sets defined, select the parameter set to use from the Parameter
Set to Evaluate drop-down list.

2 Select the requirements you want to evaluate.

If you have multiple requirements defined, they are all selected by default for evaluation. To
exclude a requirement from evaluation, click Select for Evaluation.

4 Sensitivity Analysis

4-60

3 Specify evaluation options.

Click Options. In the Evaluation Options dialog box, in the General Options tab, specify
options related to evaluation progress and results. If you have Parallel Computing Toolbox, you
can specify options for parallel computing in the Parallel Options tab. If you have Simulink
Control Design software, you can specify options for linearizing your model in the Linearization
Options tab. For details about these options, click Help.

4 Speed up successive evaluations of design requirements that require the same logged signals
and parameter values.

Click Store Intermediate Data. For more information, see “Store Intermediate Data in the App”
on page 4-100.

5 Evaluate the design requirements for each sample in your parameter set.

 Evaluate Design Requirements

4-61

Click Evaluate Model. The cost function associated with your design requirement is evaluated
using each sample in your parameter set. A sample corresponds to a row of values in the
parameter set table.

The app generates an evaluation result scatter plot. The plot updates to display the evaluated cost
function value as a function of each parameter in the parameter set. The last column of subplots
displays histograms of the probability distribution of the evaluated cost function values.

When the evaluation is complete, the app displays the evaluated requirement (normalized cost
function value) and the corresponding parameter values in the Evaluation Result table. The app
also creates a new variable with this information in the Results area.

4 Sensitivity Analysis

4-62

For requirements that involve a bound, a positive requirement value indicates that your requirement
was violated, while a negative value indicates that the requirement was satisfied for that sample of
parameter values. The parameter sample (row) corresponding to the least requirement value comes
closest to satisfying your requirement.

You can employ the evaluation results to configure estimation or optimization of your parameters. For
more information, see “Use Sensitivity Analysis to Configure Estimation and Optimization” on page 4-
74.

The app displays the final scatter plots and probability distribution histogram. The number of data
points in each scatter plot equals the number of samples (rows) in the parameter set table. Use this
plot to visually analyze the relation between parameters and requirements. For example, in this case,
the SignalMatching requirement looks monotonically related to the Gain parameter. To learn more
about the plot, see “Interact with Plots in the Sensitivity Analyzer” on page 4-79.

 Evaluate Design Requirements

4-63

You can make a contour plot of the evaluated results. To do so, select the evaluated result in the
Results area of the app, and choose a contour plot in the Plots tab of the app.

4 Sensitivity Analysis

4-64

The contour plot shows that the requirement does not vary systematically as a function of Delay, but
it does as a function of Gain.

You can also quantify the relation between parameters and requirements. For more information, see
“Analyze Relation Between Parameters and Design Requirements” on page 4-67.

See Also

Related Examples
• “Generate Parameter Samples for Sensitivity Analysis” on page 4-8
• “Specify Time-Domain Requirements” on page 4-21
• “Specify Frequency-Domain Requirements” on page 4-48
• “Analyze Relation Between Parameters and Design Requirements” on page 4-67

 Evaluate Design Requirements

4-65

• “Validate Sensitivity Analysis” on page 4-96
• “Identify Key Parameters for Estimation (GUI)” on page 4-131

4 Sensitivity Analysis

4-66

Analyze Relation Between Parameters and Design
Requirements

To analyze how the parameters and states (collectively referred to as parameters) of a Simulink
model influence the design requirement on the model signals, you first generate samples of the
parameters. You then define the cost function by creating a design requirement on the model signals,
and evaluate the cost function for each sample. Finally, you analyze the relationship between the
parameter variations and the cost function values. You can perform this analysis in the following
ways:

• “Visual Analysis” on page 4-67
• “Statistical Analysis” on page 4-68

Visual Analysis
View a plot of the cost function evaluations against the parameter samples to identify trends. This
method is informal and provides visual intuition about how the various parameters affect the cost
function.

In the Sensitivity Analyzer, after the evaluation is complete, an evaluation result scatter plot is
generated in the app. The plot displays the evaluated cost function value as a function of each
parameter in the parameter set. The last column subplot displays the probability distribution of the
evaluated cost function values. You can add a best-fit line to the scatter subplots by right-clicking in
the plot, and selecting Overlay linear fit in the context menu. In this plot, the best-fit line indicates
that the Gain parameter has a lot of influence on the requirement.

 Analyze Relation Between Parameters and Design Requirements

4-67

You can also plot a contour plot of the evaluated results. To learn more about these plots, see
“Interact with Plots in the Sensitivity Analyzer” on page 4-79. For an example, see “Identify Key
Parameters for Estimation (GUI)” on page 4-131.

At the command line, you can use tools such as:

• sdo.scatterPlot — Scatter plot of the parameter samples against the cost function evaluation
• surf, mesh, contour — 3-D plot of samples of two parameters against the cost function

evaluation

For an example, see “Identify Key Parameters for Estimation (Code)” on page 4-169.

Statistical Analysis
In addition to visually analyzing the effect of parameters on the cost function, you can also compute
statistics to quantify the relation.

Obtain summary statistics about the relationship between cost function evaluations and parameters
samples. Available analysis methods include:

4 Sensitivity Analysis

4-68

Method Description
Correlation on page 4-70 Use to analyze how a model parameter and the

cost function output are correlated.
Partial Correlation on page 4-70 Use to analyze how a model parameter and the

cost function are correlated, removing the effects
of the remaining parameters.

Standardized Regression on page 4-70 Use when you expect that the model parameters
linearly influence the cost function.

For each of these methods, you specify what data to use for the analysis by choosing from the
following analysis types:

• Linear analysis, also referred to as Pearson analysis — Uses raw data for analysis. Use linear
analysis when you expect a linear relation between the parameters and cost function, and when
the residuals about the best-fit line are expected to be normally distributed. Linear analysis is also
recommended when the number of samples, and so the number of residual points is large.

• Ranked analysis, also referred to as Spearman analysis and ranked transformation — Uses ranks
of data for analysis. Use ranked analysis when you expect a nonlinear monotonic relation between
the parameters and the cost function and when the residuals about the best-fit line are not
normally distributed. Ranked analysis is also recommended when the number of samples, and so
the number of residual points is small.

Linear analysis retains information about intervals between data values, whereas ranked analysis
does not. Suppose that you had the following data set:

x1 x2 y
9 20 340
5 60 106
2.3 50.4 870.5

Here x1 and x2 are model parameters, and y is the cost function. Each row represents a sample
and the associated cost function evaluation.

The data is ranked on a per column basis. For example, when you rank the data in column 1 (x1),
which contains the entries 9, 5, and 2.3, the ranked data is equal to 3, 2, and 1. The ranked data
set for the samples of x1, x2 and y are as follows:

x1 x2 y
3 1 2
2 3 1
1 2 3

The ranked data set can be used for correlation, partial correlation, or standardized regression
analysis.

• Kendall — Kendall’s tau rank correlation coefficient is calculated.

Applicable when the analysis method is Correlation. Requires Statistics and Machine Learning
Toolbox software.

 Analyze Relation Between Parameters and Design Requirements

4-69

Correlation Method

Calculates the correlation coefficients, R. Use this method to analyze how a model parameter and the
cost function outputs are correlated.

R is calculated as follows:

R(i, j) = C(i, j)
C(i, i)C(j, j)

C = cov(x, y)
= E[(x− μx)(y − μy)]

μx = E[x]
μy = E[y]

x contains Ns samples of Np model parameters. y contains Ns rows, each row corresponds to the cost
function evaluation for a sample in x.

R values are in the [-1 1] range. The (i,j) entry of R indicates the correlation between x(i) and y(j).

• R(i,j) > 0 — Variables have positive correlation. The variables increase together.
• R(i,j) = 0 — Variables have no correlation.
• R(i,j) < 0 — Variables have negative correlation. As one variable increases, the other

decreases.

Partial Correlation Method

Calculates the partial correlation coefficients, R. This method requires Statistics and Machine
Learning Toolbox software. Use this method to analyze how a model parameter and the cost function
are correlated, adjusting to remove the effect of the other parameters.

R is calculated using partialcorri from the Statistics and Machine Learning Toolbox software.

Standardized Regression Method

Calculates the standardized regression coefficients, R. Use this method when you expect that the
model parameters linearly influence the cost function.

R is calculated as follows:

R = bx
σx
σy

Consider a single sample (x1,...,xNp) and the corresponding single output, y. bx is the regression

coefficient vector calculated using least squares assuming a linear model y = b0 + ∑
i = 1

Np
b xixi. R

standardizes each element of bx by multiplying it with the ratio of the standard deviation of the
corresponding x sample (σx) to the standard deviation of y (σy).

Perform Statistical Analysis

In the Sensitivity Analyzer, after you have evaluated the design requirements on page 4-60, specify
the analysis methods and types in the Statistics tab of the app.

4 Sensitivity Analysis

4-70

Select the evaluation results you want to analyze in the Evaluation Results to Analyze list. After

that, you specify the analysis methods and types, and click Compute Statistics. You can compute
all applicable combinations of analysis methods and types.

The results of the analysis are returned in the StatsResult variable, in the Results area of the app.
In this case, the StatsResult variable includes the linear (Pearson) correlation coefficients and
linear standardized regression coefficients calculated between the cost function and each parameter.
To see the coefficients, right-click StatsResult, and select Open in the context-menu.

A tornado plot is generated that displays the results of the analysis in order of influence of
parameters on the cost function. The parameter that most influences the cost function is displayed on
the top. As was seen in the results scatter plot, in this tornado plot the Gain parameter has the most
influence on the design requirement cost function.

 Analyze Relation Between Parameters and Design Requirements

4-71

To learn more about tornado plots, see “Interact with Plots in the Sensitivity Analyzer” on page 4-79.
For an example, see “Identify Key Parameters for Estimation (GUI)” on page 4-131.

At the command line, specify the analysis methods and types using sdo.analyze. This function
performs linear correlation analysis by default. To specify other analysis methods, use
sdo.AnalyzeOptions. For an example, see “Identify Key Parameters for Estimation (Code)” on
page 4-169.

See Also
sdo.AnalyzeOptions | sdo.analyze | sdo.evaluate | sdo.sample

Related Examples
• “What is Sensitivity Analysis?” on page 4-2
• “Evaluate Design Requirements” on page 4-60
• “Identify Key Parameters for Estimation (GUI)” on page 4-131
• “Identify Key Parameters for Estimation (Code)” on page 4-169

4 Sensitivity Analysis

4-72

• “Use Sensitivity Analysis to Configure Estimation and Optimization” on page 4-74

 Analyze Relation Between Parameters and Design Requirements

4-73

Use Sensitivity Analysis to Configure Estimation and
Optimization

This topic shows how to use the results generated in the Sensitivity Analyzer to configure
parameter estimation or response optimization.

You can use sensitivity analysis to evaluate how the parameters of a Simulink model influence the
model output or model design requirements. You first generate samples of the parameters, and then
define a cost function by creating a design requirement on the model signals. For more information
see, “Generate Parameter Samples for Sensitivity Analysis” on page 4-8, “Specify Time-Domain
Requirements” on page 4-21, and “Specify Frequency-Domain Requirements” on page 4-48. You then
evaluate the requirement (cost function) for each sample. You can use the evaluated results to
configure parameter estimation or response optimization in the following ways:

1 Analyze the relationship between the parameters and the evaluated requirement values, and
rank parameters in order of influence. For more information, see “Analyze Relation Between
Parameters and Design Requirements” on page 4-67. You can then choose to estimate or optimize
the more influential parameters.

2 Obtain initial guesses for parameter values for estimation or optimization.

After you evaluate the requirements in the Sensitivity Analyzer, the evaluated requirement
(cost function value) and the corresponding parameter values are displayed in the Evaluation
Result table of the app. A new variable, EvalResults, with this information is created in the
Results area of the app. For example, the table below lists the evaluated signal matching
requirement and corresponding values for the parameters Gain, Delay, Tc, and Tp of the model,
sdoVOR.

4 Sensitivity Analysis

4-74

To extract parameter values to use as an initial guess during estimation or optimization:

a Sort the evaluated cost function values in ascending order by clicking the evaluated
requirement column.

b To choose the parameter values that minimize the cost function, right-click corresponding
row, and select Extract Parameter Values.

A new variable, ParamValues, is created in the Results area of the app.

c When exporting to a Parameter Estimator or Response Optimizer app session on page 4-76,
choose this variable to specify the initial guess for parameters.

 Use Sensitivity Analysis to Configure Estimation and Optimization

4-75

3 To test the robustness of your design during optimization in the Response Optimizer app,
specify the values for uncertain parameters. For more information, see “Optimizing Parameters
for Robustness” on page 3-170.

You can specify the values for uncertain parameters using all the parameter values in
EvalResults. You can also choose a subset of the parameter values:

a Select the relevant rows of parameter values in the Evaluation Result table of the app.

b Right-click, and select Create new evaluation result. A new variable is created in the
Results area of the app.

c When exporting to a Response Optimizer app session on page 4-76, choose this variable to
specify the uncertain variables.

Export Sensitivity Analysis Results
You can export results from Sensitivity Analyzer to the Parameter Estimator and Response
Optimizer apps. To do so, in the Sensitivity Analyzer, click Optimize. In the drop-down menu,
choose the app to export to.

4 Sensitivity Analysis

4-76

Alternatively, if you have an open Parameter Estimator or Response Optimizer session, in these
apps, click Sensitivity Analysis. In the drop-down menu, choose Import from Open Session or
Import from Session file. The latter option loads results from a previously saved Sensitivity
Analyzer session.

 Use Sensitivity Analysis to Configure Estimation and Optimization

4-77

Note

• Only signal matching requirements are exported from Sensitivity Analysis to a Parameter
Estimator session. In the Parameter Estimator, they are referred to as experiments.

• Only requirements other than signal matching requirements are exported from Sensitivity
Analysis to a Response Optimizer session.

See Also

Related Examples
• “What is Sensitivity Analysis?” on page 4-2
• “Design Exploration Using Parameter Sampling (GUI)” on page 4-112
• “Identify Key Parameters for Estimation (GUI)” on page 4-131

4 Sensitivity Analysis

4-78

Interact with Plots in the Sensitivity Analyzer
This topic shows how to interact with and interpret plots generated in the Sensitivity Analyzer app.

Parameter Set Plots
After you have generated parameter values for sensitivity analysis, you can plot the generated
parameter set. For information about parameter generation, see “Generate Parameter Samples for
Sensitivity Analysis” on page 4-8.

The app displays the generated parameter set and the corresponding parameter set table. The
number of rows in the parameter set table correspond to the number of samples you specified. To plot
the generated parameters in the app:

1 Select the generated parameter set in the Parameter Sets area of the app.

2 On the Plots tab, select Scatter Plot.

Alternatively, right-click the parameter set, and select Plot in the drop-down menu.

The diagonal subplots display the histograms of generated parameter values. The off-diagonal
subplots are pair-wise scatter plots of the parameters. The number of data points in each scatter
plot equals the number of rows in the parameter set table.

 Interact with Plots in the Sensitivity Analyzer

4-79

You can inspect the histograms to ensure that the generated parameter values match the desired
parameter distributions within the constraints of a finite sample size. Inspect the off-diagonal
scatter plots to ensure that any specified correlations between parameters are present. For more
information, see “Inspect the Generated Parameter Set” on page 4-96.

3 To access additional plot features, right-click in the white area of any scatter plot.

You can choose from the following options:

• Variables — Select the parameters to plot.
• Groups — Select grouping variables for the plots, and configure how the groups are

displayed.

To select a parameter as a grouping variable, click Groups > New Grouping Variable. For
example, the following plot is generated when the grouping variable is Gain.

4 Sensitivity Analysis

4-80

The app creates three groups based on low, medium, and high values of the grouping variable.
The app computes these grouping values, but you can change them in the Manage Groups
dialog box. The second diagonal plot shows the distribution of the gain values in the low
(blue), medium (red), and high (yellow) groups. The other diagonal plots show the distribution
of the remaining parameters when the corresponding gain value is low, medium, or high. The
off-diagonal scatter plots show points belonging to the same group using the same color.

You can demarcate the groups based on marker size and marker type instead of color, add
more groups corresponding to the grouping variable, and change the grouping values. You
can also add more grouping variables. To do so, click Groups > Manage Groups.

 Interact with Plots in the Sensitivity Analyzer

4-81

In the Manage Groups dialog box, you configure how the groups are displayed. You can
perform tasks such as:

• Select the plotting Style as either Color, MarkerSize, or MarkerType. In the plots, the
app uses the selected style to demarcate the groups corresponding to a grouping variable.

• Select whether a grouping variable is Active. If a grouping variable is inactive, the scatter
plot points are not demarcated in groups corresponding to that variable. To delete a
grouping variable, click in the corresponding Remove column.

• Add more grouping variables using the Create Grouping Variable drop-down list.
• For a grouping variable, specify the range of values for each group in the Bin/Value

column. For example, currently the dialog box shows that the Gain values in the groups
are:

• Low — below 0.7736
• Medium — 0.7736–0.8265
• High — above 0.8265

To change the Low group values to be 0.79 or lower, type 0.79 in the corresponding row
of the Bin/Value column.

• Add more groups corresponding to a grouping variable. For example, to add a group with
values from 0.8265 through 0.9, type 0.9 in New Bin/Value, and click Add Group.

• Upper triangle plot — Plot the off-diagonal subplots above the diagonal in addition to the
existing plots.

• Marginal Box Plots — Requires Statistics and Machine Learning Toolbox software. Plot box
plots for each of the parameters in the parameter set, and choose the position of the plots.

4 Sensitivity Analysis

4-82

• Histograms — Plot the probability distribution of the parameters, and choose the position of
the plots.

• Kernel Density Plots — Requires Statistics and Machine Learning Toolbox software. Plot the
probability distribution of the parameters using a kernel density estimator, and choose the
position of the plots. For more information, see “Kernel Distribution” (Statistics and Machine
Learning Toolbox).

• Overlay linear fit — Plot the best-fit line on the scatter subplots. You can choose to plot the
best-fit lines for one, all, a row, or a column of scatter subplots.

• Enable brushing/data selection — Enable selection of data points in the scatter subplots.

When you highlight parameter values in one plot, the values corresponding to other
parameters from the same row in the parameter set table are also highlighted. In addition,
the rows in the parameter set table that correspond to these values are highlighted.

 Interact with Plots in the Sensitivity Analyzer

4-83

To remove the highlighting, invert the selection to all other data points in the plot, or disable
the feature, right-click the highlighted data points, and choose from the context-menu.

• Pop-out plot — View a subplot in a new window.

Requirement Plots
After you have specified design requirements, you can plot the requirements and associated model
response. For information about specifying the requirements, see “Specify Time-Domain
Requirements” on page 4-21 and “Specify Frequency-Domain Requirements” on page 4-48.

The specified requirements are displayed in the Requirements area of the app. To plot the
requirement in the app, right-click the requirement, and select Plot.

4 Sensitivity Analysis

4-84

Alternatively, select the requirement, and in the Plots tab of the app, select the plot type. A plot is
generated and a new tab associated with the plot appears in the app. In the new tab, you can perform
additional tasks such as preprocessing imported data on page 1-13 (for signal matching requirement
only), zooming, and plotting the associated model response. The model response is the signal or
system on which the requirement is applied. The response is plotted using the parameter values
specified in the model workspace and is not updated during evaluation.

 Interact with Plots in the Sensitivity Analyzer

4-85

Evaluated Result Scatter Plots
After you have evaluated your design requirements on page 4-60, an evaluation results table lists the
samples in the parameter set and the corresponding evaluated requirement (cost function) values.
For requirements that involve a bound, a positive requirement value indicates that your requirement
was violated, while a negative value indicates that the requirement was satisfied for that sample of
parameter values.

4 Sensitivity Analysis

4-86

An evaluation result plot is also generated. The scatter subplots display the evaluated requirement
(cost function value) as a function of each parameter in the parameter set. The number of points in
each scatter plot equals the number of rows in the parameter set. The last column of subplots
displays histograms of the probability distribution of the evaluated cost function values.

 Interact with Plots in the Sensitivity Analyzer

4-87

Use this plot to visually analyze the relation between parameters and requirements on page 4-67. For
example, in this case, the SignalMatching requirement looks monotonically related to the Gain
parameter.

You can also plot best-fit lines on the scatter subplots. To do so, and to access additional plot features,
right-click in the white area of any scatter subplot.

You can choose from the following options:

• X-Variables — Select the parameters and requirements to use as x-variables in the scatter
subplots.

• Y-Variables — Select the parameters and requirements to use as y-variables in the scatter
subplots.

• Grouping — Select grouping variables for the subplots, and configure how the groups are
displayed.

4 Sensitivity Analysis

4-88

To select a parameter or evaluated requirement as a grouping variable, click Groups > New
Grouping Variable. For example, the following plot is generated when the grouping variable is
Gain. The app creates three groups based on low, medium, and high values of the grouping
variable. The app computes these grouping values, but you can change them in the Manage
Groups dialog box. The scatter subplots display the evaluated requirement values when the
corresponding gain value is low (blue), medium (red), and high (yellow). The histogram plots the
probability distribution of the evaluated requirement corresponding to the groups.

You can demarcate the groups based on marker size and marker type instead of color, add more
groups corresponding to the grouping variable, and change the grouping values. You can also add
more grouping variables. To do so, click Groups > Manage Groups. For more information, see
“Parameter Set Plots” on page 4-79.

• Marginal Box Plots — Requires Statistics and Machine Learning Toolbox software. Plot box plots
for each of the parameters in the parameter set, and choose the position of the plots.

• Histograms — Plot the probability distribution of the parameters, and choose the position of the
plots.

• Kernel Density Plots — Requires Statistics and Machine Learning Toolbox software. Plot the
probability distribution of the parameters using a kernel density estimator, and choose the
position of the plots. For more information, see “Kernel Distribution” (Statistics and Machine
Learning Toolbox).

 Interact with Plots in the Sensitivity Analyzer

4-89

• Overlay linear fit — Plot the best-fit line on the scatter subplots. You can choose to plot the best-
fit lines for one, all, a row, or a column of scatter plots.

• Enable brushing/data selection — Enable selection of data points in the scatter subplots.

When you highlight parameter values in one scatter subplot, the values corresponding to other
parameters from the same row in the evaluated results table are also highlighted. In addition, the
rows in the evaluated results table that correspond to these values are highlighted.

4 Sensitivity Analysis

4-90

 Interact with Plots in the Sensitivity Analyzer

4-91

To remove the highlighting, invert the selection to all other data points in the plot, or disable the
feature, right-click the highlighted data points, and choose from the context-menu.

• Pop-out plot — View a subplot in a new window.

Evaluated Result Contour Plots
After you have evaluated your design requirements, an evaluation results table lists the samples in
the parameter set and the corresponding evaluated requirement (cost function) values. For
information about evaluation, see “Evaluate Design Requirements” on page 4-60.

You can plot a contour plot of the evaluated results. To do so, select the evaluated result in the
Results area of the app, and choose a contour plot in the Plots tab of the app.

4 Sensitivity Analysis

4-92

Use this plot to visually analyze the relation between parameters and design requirements. Select the
parameters to plot in the X parameter and Y parameter drop-down lists. The evaluated requirement
value is plotted as a function of these parameters.

Statistical Analysis Tornado Plots
After you have evaluated the design requirements for each parameter, you can perform statistical
analysis to analyze how the parameters of your Simulink model influence the requirements.

To generate a tornado plot ranking the influence of parameters on requirements:

1 In the Statistics tab of the app, select the evaluation results you want to analyze in the
Evaluation Results to Analyze list.

 Interact with Plots in the Sensitivity Analyzer

4-93

2 Specify the statistical analysis methods.

You can choose to calculate a correlation coefficient, standardized regression coefficient, and
partial correlation coefficient (requires Statistics and Machine Learning Toolbox software).

For more information, see “Analyze Relation Between Parameters and Design Requirements” on
page 4-67.

3 For each of these methods, specify what data to use for the analysis. You can choose from Linear
(Pearson), Ranked (Spearman), and Kendall analysis types. Kendall is applicable when the
analysis method is Correlation, and requires Statistics and Machine Learning Toolbox software.

You can compute all applicable combinations of analysis methods and types.
4 Calculate the coefficients, and generate a tornado plot.

Click Compute Statistics.

The resulting tornado plot displays the calculated coefficients for each specified analysis method and
type. The coefficients are plotted in order of influence of parameters on the cost function. The
parameter with the greatest magnitude of influence on the cost function is displayed on the top,
giving the plot a tornado shape. When more than one type of coefficient is calculated, the tornado
plot sorts the parameters based on the first calculated coefficient. The coefficients are calculated in
the following order:

• Correlation
• Rank correlation
• Kendall correlation
• Partial correlation
• Rank partial correlation
• Standardized regression
• Rank Standardized Regression

In this tornado plot, the parameters are sorted based on the Correlation coefficient. For all calculated
coefficients, the Gain parameter has the most influence on the design requirement cost function.

4 Sensitivity Analysis

4-94

See Also

Related Examples
• “Generate Parameter Samples for Sensitivity Analysis” on page 4-8
• “Specify Time-Domain Requirements” on page 4-21
• “Specify Frequency-Domain Requirements” on page 4-48
• “Evaluate Design Requirements” on page 4-60
• “Analyze Relation Between Parameters and Design Requirements” on page 4-67

 Interact with Plots in the Sensitivity Analyzer

4-95

Validate Sensitivity Analysis
You can validate sensitivity analysis by checking generated parameter values, evaluation results, and
analysis results.

Inspect the Generated Parameter Set
To perform sensitivity analysis, you select model parameters for evaluation, and generate a
representative set of parameter values to explore the design space. You create the parameter set by
specifying parameter distributions such as normal or uniform. You can also specify correlations
between parameters. For more information, see “Generate Parameter Samples for Sensitivity
Analysis” on page 4-8. After generating the parameter values, plot them to check if generated
parameter values match the desired specifications. This is particularly important if you generate a
small number of random samples for each parameter set.

If you see a discrepancy in the generated parameters and the specified distribution and correlations,
you can try one of the following:

• Generate the random samples again, until you achieve the specified distributions and correlations.
• Increase the sample size at the expense of increasing the evaluation time.
• Specify different sampling methods. Use Latin hypercube sampling method for a more systematic
space-filling approach than random sampling. If you have Statistics and Machine Learning Toolbox
software, use the Sobol and Halton quasirandom sampling methods for a more space-filling
approach than the Latin hypercube method.

To plot the generated parameters in the Sensitivity Analyzer:

1 Select the generated parameter set in the Parameter Sets area of the app.

2 In the Plots tab, select Scatter Plot.

4 Sensitivity Analysis

4-96

The generated plot displays histograms of generated values for each parameter on the diagonal,
and the pairwise scatter plot of the parameters on the off-diagonals. For more information about
the scatter plot, see “Interact with Plots in the Sensitivity Analyzer” on page 4-79.

3 Inspect the histograms to ensure that the generated parameter values match the intended
parameter distributions. Inspect the off-diagonal scatter plots to ensure that any specified
correlations between parameters are present.

To plot the generated parameter values at the command line, use sdo.scatterPlot. Use functions
such as mean to check the sample statistics.

Check Evaluation Results
After generating a parameter set, you define a cost function by creating a design requirement on the
model signals. You then evaluate the cost function at each set of parameter values on page 4-60. To
validate the evaluation results, inspect the evaluated cost function values. If the cost function
evaluations contain NaN values, that could indicate an issue.

To check for NaN values in the Sensitivity Analyzer after the evaluation is complete:

1 Open the evaluation results table if it is not already open.

In the Results area of the app, right-click the evaluated result, and select Open in the menu.

 Validate Sensitivity Analysis

4-97

In the Evaluation Results table, each row of the table lists the parameter set values and the
corresponding evaluated design requirement cost function values.

2 Sort the evaluated requirement values in descending order. To do so, click twice on the evaluated
requirement column. Any NaN values are listed at the top of the evaluated requirement column.

3 Inspect the parameter values that resulted in the NaN values for evaluated requirements. If you
do not expect an NaN result for that row of parameter values, investigate your model further.

To view the evaluated results at the command line, inspect the cost function evaluation output of
sdo.evaluate.

4 Sensitivity Analysis

4-98

Perform Sensitivity Analysis with Different Parameter Set
After evaluation, you analyze the effect of the parameters on the design requirements, and identify
most influential parameters. For more information, see “Analyze Relation Between Parameters and
Design Requirements” on page 4-67. To validate the analysis results, generate a different parameter
set and reevaluate the design requirements. If the analysis results are not consistent, consider
increasing the number of samples in your parameter set.

See Also

Related Examples
• “What is Sensitivity Analysis?” on page 4-2
• “Generate Parameter Samples for Sensitivity Analysis” on page 4-8
• “Analyze Relation Between Parameters and Design Requirements” on page 4-67

 Validate Sensitivity Analysis

4-99

Store Intermediate Data in the App
This topic shows how to speed up successive evaluations of design requirements in the Sensitivity
Analyzer by storing intermediate data during evaluation. Use this option when memory usage is not
a concern. Choosing this option results in a memory-time trade-off.

To store intermediate data during evaluation, in the Sensitivity Analysis tab, click Store
Intermediate Data.

After creating a parameter set and specifying design requirements, you can evaluate your model.
When you click Evaluate Model, the app saves the logged signals that are used to compute the
design requirements at each combination of parameter values in your parameter set. The logged
signal values are stored in the RAM. After the evaluation is complete, you can view the number of
logged entries by hovering over Store Intermediate Data.

If you now evaluate your model for a different design requirement that uses the same logged signals
and parameter set values, the app uses the stored signal values. As a result, successive evaluations
take less time.

If your system is running out of memory during evaluation, stop the evaluation, and clear Store
Intermediate Data. Doing so will delete the stored data from memory.

See Also

Related Examples
• “Specify Parameters for Design Exploration” on page 4-4
• “Generate Parameter Samples for Sensitivity Analysis” on page 4-8
• “Specify Time-Domain Requirements” on page 4-21
• “Specify Frequency-Domain Requirements” on page 4-48

4 Sensitivity Analysis

4-100

• “Evaluate Design Requirements” on page 4-60
• “Ways to Speed Up Design Optimization Tasks”

 Store Intermediate Data in the App

4-101

Specify Steady-State Operating Point for Sensitivity Analysis

What is a Steady-State Operating Point?
An operating point of a dynamic system defines the states and root-level input signals of the model at
a specific time. For example, in a car engine model, variables such as engine speed, throttle angle,
engine temperature, and surrounding atmospheric conditions typically describe the operating point.

A steady-state operating point of a model, also called an equilibrium or trim condition, includes state
variables that do not change with time.

A model can have several steady-state operating points. For example, a hanging damped pendulum
has two steady-state operating points at which the pendulum position does not change with time. A
stable steady-state operating point occurs when a pendulum hangs straight down. When the
pendulum position deviates slightly, the pendulum always returns to equilibrium. In other words,
small changes in the operating point do not cause the system to leave the region of good
approximation around the equilibrium value.

When using optimization search to compute operating points for nonlinear systems, your initial
guesses for the states and input levels must be near the desired operating point to ensure
convergence.

When linearizing a model with multiple steady-state operating points, it is important to have the right
operating point. For example, linearizing a pendulum model around the stable steady-state operating
point produces a stable linear model, whereas linearizing around the unstable steady-state operating
point produces an unstable linear model.

For more information on operating points, see “What Is an Operating Point?” (Simulink Control
Design) and “What Is a Steady-State Operating Point?” (Simulink Control Design).

Setting up a Steady-State Operating Point
This topic shows how to setup a steady-state operating point in the Sensitivity Analyzer. To improve
the fit between the model and measured data, the model must be set to steady-state when parameters
are evaluated.

1 Open the Sensitivity Analyzer and setup your requirements using the steps outlined in “Identify
Key Parameters for Estimation (GUI)” on page 4-131.

2 In the toolstrip, click Options and select Operating Point Options from the drop down
menu.

3 The following Operating Point dialog box opens.

4 Sensitivity Analysis

4-102

The Evaluate at steady-state option is checked by default when you open the operating point
dialog. Select the appropriate requirement to change the parameters for from the
Requirement: drop down menu. Use the States, Inputs and Outputs tabs to specify the
known parameters, bounds and deviations. For instance, there is one state in the above figure.
Use the operating point dialog to specify that this state should be treated as an unknown, and it
should be set to steady state. During sensitivity analysis, the operating point computation will
vary this state to set it at steady-state.

You can also sync operating point specifications from your Simulink model or another
requirement using the Sync with specification from: drop-down list. After you make your

selection, click on the button to copy the parameters.
4 The Simulink Design Optimization software uses optimization methods to search for operating

points in a model. Use the Options tab of the dialog to specify these optimization methods. These
options specify the optimization algorithm, tolerances, and stopping conditions. For instance, the
option Gradient descent with projection is often used to find the operating point for
systems that use physical modeling. For more information, click on the button.

5 Having specified the operating point parameters, continue with the sensitivity analysis workflow
as described in “Identify Key Parameters for Estimation (GUI)” on page 4-131.

See Also

More About
• “What Is an Operating Point?” (Simulink Control Design)
• “What Is a Steady-State Operating Point?” (Simulink Control Design)
• “Set Model to Steady-State When Estimating Parameters (Code)” on page 2-97
• “Set Model to Steady-State When Estimating Parameters (GUI)” on page 2-117

 Specify Steady-State Operating Point for Sensitivity Analysis

4-103

Use Parallel Computing for Sensitivity Analysis

Configure Your System for Parallel Computing
To perform global sensitivity analysis, you sample the model parameters and states, define a cost
function by creating a design requirement on the model signals, and evaluate the cost function for
each sample. Evaluating the model for many samples can be time consuming. You can speed up
evaluation in the Sensitivity Analyzer, or at the command line, using parallel computing on
multicore processors or multiprocessor networks.

When you evaluate the cost function with the parallel computing option enabled, the software uses
the available parallel pool. If none is available, and Automatically create a parallel pool is selected
in your Parallel Computing Toolbox preferences, the software starts a parallel pool using the settings
in those preferences. To open a parallel pool that uses a specific cluster profile, use:

parpool(MyProfile);

MyProfile is the name of a cluster profile.

For information regarding creating a cluster profile, see “Add and Modify Cluster Profiles” (Parallel
Computing Toolbox).

Model Dependencies
Model dependencies are any referenced models, data such as model variables, S-functions, or
additional files necessary to run the model. Before starting the parallel model evaluation, verify that
the model dependencies are complete. Otherwise, you may get unexpected results.

Making Model Dependencies Accessible to Remote Workers

When you use parallel computing, the Simulink Design Optimization software helps you identify
model dependencies. To do so, the software uses the Dependency Analyzer. The dependency analysis
may not find all the files required by your model. To learn more, see “Dependency Analyzer Scope and
Limitations”. If your model has dependencies that are undetected or inaccessible by the parallel pool
workers, then add them to the list of model dependencies.

The dependencies are made accessible to the parallel pool workers by specifying one of the following:

• File dependencies: the model dependency files are copied to the parallel pool workers.
• Path dependencies: the paths to the model dependencies are added to the paths of the parallel

pool workers. If you are working in a multi-platform scenario, ensure that the paths are
compatible across platforms.

Using file dependencies is recommended, however, in some cases it can be better to choose path
dependencies. For example, if parallel computing is set up on a local multi-core computer, using path
dependencies is preferred as using file dependencies creates multiple copies of the dependent files on
the local computer.

Perform Sensitivity Analysis Using Parallel Computing (GUI)
To perform sensitivity analysis using parallel computing in the Sensitivity Analyzer:

4 Sensitivity Analysis

4-104

1 Ensure that the software can access parallel pool workers that use the appropriate cluster
profile.

For more information, see “Configure Your System for Parallel Computing” on page 4-104.
2 Open the Sensitivity Analyzer for the Simulink model.
3 Specify the parameter set, generate parameter samples, and specify the requirements for

sensitivity analysis. For example, see “Design Exploration Using Parameter Sampling (GUI)” on
page 4-112 and “Identify Key Parameters for Estimation (GUI)” on page 4-131.

4
On the Sensitivity Analysis tab, click Options to open the Evaluation Options dialog box.

5 Select the Parallel Options tab.

6 Select the Use the parallel pool during evaluation check box.

This option checks for dependencies in your Simulink model. The file dependencies are displayed
in the Model file dependencies list box, and corresponding path to the files in Model path
dependencies. The files listed in Model file dependencies are copied to the remote workers.

Note The automatic dependencies check may not detect all the dependencies in your model.

For more information, see “Model Dependencies” on page 4-104. In this case, add the undetected
dependencies manually.

 Use Parallel Computing for Sensitivity Analysis

4-105

7 Add any file dependencies that the automatic check does not detect.

Specify the files in the Model file dependencies list box separated by semicolons or on separate
lines.

4 Sensitivity Analysis

4-106

Alternatively, click Add file dependency to open a dialog box, and select the file to add.

Note If you do not want to copy the files to the remote workers, delete all entries in the Model
file dependencies list box. Populate the Model path dependencies list box by clicking the
Sync path dependencies from model, and add any undetected path dependencies. In addition,
in the list box, update the paths on local drives to make them accessible to remote workers. For
example, change C:\ to \\\\hostname\\C$\\.

8 If you modify the Simulink model, resync the dependencies to ensure that any new dependencies
are detected. Click Sync file dependencies from model in the Parallel Options tab to rerun
the automatic dependency check for your model.

This action updates the Model file dependencies list box with any new file dependency found in
the model.

9 Click OK.
10 In the Sensitivity Analyzer, click Evaluate to perform sensitivity analysis using parallel

computing. The design requirements are evaluated for each combination of parameter values in
your parameter set.

Perform Sensitivity Analysis Using Parallel Computing (Code)
To evaluate a model using parallel computing:

1 Ensure that the software can access parallel pool workers that use the appropriate cluster
profile.

For more information, see “Configure Your System for Parallel Computing” on page 4-104.
2 Open the model.
3 Specify the cost function and generate parameter samples for sensitivity analysis. For example,

see “Design Exploration Using Parameter Sampling (Code)” on page 4-157.
4 Enable parallel computing using an evaluation option set.

opt = sdo.EvaluateOptions;
opt.UseParallel = true;

5 Find the model dependencies.

[dirs,files] = sdo.getModelDependencies(modelname)

Note sdo.getModelDependencies may not detect all the dependencies in your model. For
more information, see “Model Dependencies” on page 4-104. In this case, add the undetected
dependencies manually.

6 Modify files to include any file dependencies that sdo.getModelDependencies does not
detect.

files = vertcat(files,'C:\matlab\work\filename.m')

Note If you do not want to copy the files to the remote workers, add any undetected path
dependencies to dirs and update the paths on local drives to make them accessible to remote
workers. See sdo.getModelDependencies for more details.

 Use Parallel Computing for Sensitivity Analysis

4-107

7 Add the file dependencies for evaluation.

opt.ParallelFileDependencies = files;
8 Specify the name of the model to be evaluated in parallel.

opt.EvaluatedModel = modelname;
9 Evaluate the model.

[pOpt,opt_info] = sdo.evaluate(fcn,samples,opt);

Troubleshooting
Why Don’t I See the Evaluation Speed up I Expected Using Parallel Computing?

When you evaluate a model that does not require a large number of evaluations or does not take long
to simulate, you might not see a speedup in the evaluation time. In such cases, the overhead
associated with creating and distributing the parallel tasks outweighs the benefits of running the
evaluation in parallel.

See Also
parpool | sdo.EvaluateOptions | sdo.evaluate | sdo.getModelDependencies

More About
• “Ways to Speed Up Design Optimization Tasks”
• “Store Intermediate Data in the App” on page 4-100

4 Sensitivity Analysis

4-108

Use Fast Restart Mode During Sensitivity Analysis
This topic shows how to speed up sensitivity analysis using Simulink fast restart. You can use the fast
restart feature to speed up sensitivity analysis of tunable parameters of a model.

Fast restart enables you to perform iterative simulations without compiling a model or terminating
the simulation each time. Using fast restart, you compile a model only once. You can then tune
parameters and simulate the model again without spending time on compiling. Fast restart associates
multiple simulation phases with a single compile phase to make iterative simulations more efficient.
You see a speedup of design optimization tasks using fast restart in models that have a long
compilation phase. See “How Fast Restart Improves Iterative Simulations”.

When you enable fast restart, you can only change tunable properties of the model during simulation.
For more information about the limitations, see “Limitations”.

You can perform sensitivity analysis using fast restart in the Sensitivity Analyzer or at the command
line on page 4-109.

Sensitivity Analyzer Workflow for Fast Restart
To evaluate a model using fast restart in the Sensitivity Analyzer:

1 Open the Simulink model.
2 Enable fast restart in the model.

Click Fast Restart in the model window.
3 Open the Sensitivity Analyzer for the model.
4 Specify the parameter set, generate parameter samples, and specify the requirements for

sensitivity analysis. Optionally, specify evaluation settings. For example, see “Design Exploration
Using Parameter Sampling (GUI)” on page 4-112 and “Identify Key Parameters for Estimation
(Code)” on page 4-169.

5 Click Evaluate to evaluate the model in fast restart mode. The design requirements are
evaluated for each combination of parameter values in your parameter set.

6 Disable fast restart.

In the model window, click Fast Restart .

Command-Line Workflow for Fast Restart
You can use sensitivity analysis to evaluate which model parameters most influence a cost function.
You can use these parameters during parameter estimation or response optimization. Suppose that
you want to use sensitivity analysis to reduce the number of parameters that you need to estimate to
fit a model.

To evaluate the model in fast restart mode using a cost function aimed at parameter estimation:

1 Open the Simulink model.

 Use Fast Restart Mode During Sensitivity Analysis

4-109

2 Specify the model parameter values, params, to estimate and generate parameter samples,
params_samples. For an example, see “Identify Key Parameters for Estimation (Code)” on page
4-169.

3 Create an experiment object, Exp.

Exp = sdo.Experiment('model');

Store the measured input-output data in Exp. For an example, see “Identify Key Parameters for
Estimation (Code)” on page 4-169.

4 Create a model simulator from the experiment.

Simulator = createSimulator(Exp);

Simulator is an sdo.SimulationTest object.

Note You must create a simulation scenario with logging information before configuring the
model for fast restart. You cannot modify logging information once the model has been compiled
for fast restart.

5 Configure the model and simulator for fast restart.

Simulator = fastRestart(Simulator,'on');
6 Create a cost function, myCostfcn, and pass Simulator to the cost function as an input. For

more information, see “Write a Cost Function” on page 2-49. In the cost function, the simulator
configured for fast restart is used to update the model parameters, simulate the model, and log
signals.

Use an anonymous function with one argument that calls myCostfcn.

evalfcn = @(param) myCostfcn(param,Simulator,Exp);
7 Evaluate the model.

[param_opt,opt_info] = sdo.evaluate(evalfcn,param,param_samples);
8 Restore the simulator fast restart settings.

Simulator = fastRestart(Simulator,'off');

The fast restart workflow is similar for sensitivity analysis that identifies design variables using a cost
function aimed at response optimization. See “Use Fast Restart Mode During Response Optimization”
on page 3-189.

Troubleshooting
Why Don’t I See the Evaluation Speedup I Expected Using Fast Restart?

You see a speedup of design optimization tasks using fast restart in models that have a long
compilation phase. If the compilation phase of your model is not long, you do not see a significant
change in estimation speed.

See Also
fastRestart | sdo.SimulationTest | sdo.evaluate

4 Sensitivity Analysis

4-110

More About
• “Ways to Speed Up Design Optimization Tasks”
• “Store Intermediate Data in the App” on page 4-100

 Use Fast Restart Mode During Sensitivity Analysis

4-111

Design Exploration Using Parameter Sampling (GUI)
This example shows how to sample and explore a design space using the Sensitivity Analyzer. You
explore the design of a Continuously Stirred Tank Reactor (CSTR) to minimize product concentration
variation and production cost. The design must also account for the uncertainty in the temperature
and concentration of the input feed to the reactor.

You explore the CSTR design by characterizing model parameters using probability distributions. You
use the distributions to generate random samples and perform Monte-Carlo evaluation of the design
at these sample points. You then create plots to visualize the design space and select the best design.
You then use the best design as an initial guess for optimization of the design.

Continuously Stirred Tank Reactor (CSTR) Model

Continuously Stirred Tank Reactors (CSTRs) are common in the process industry. The Simulink
model, sdoCSTR, models a jacketed diabatic (i.e., non-adiabatic) tank reactor described in [1]. The
CSTR is assumed to be perfectly mixed, with a single first-order exothermic and irreversible reaction,

. , the reactant, is converted to , the product.

In this example, you use the following two-state CSTR model, which uses basic accounting and
energy conservation principles:

• , and - Concentrations of A in the CSTR and in the feed [kgmol/m^3]

• , , and - CSTR, feed, and coolant temperatures [K]

• and - Volumetric flow rate [m^3/h] and the density of the material in the CSTR [1/m^3]

• and - Height [m] and heated cross-sectional area [m^2] of the CSTR.

• - Pre-exponential non-thermal factor for reaction [1/h]

• and - Activation energy and heat of reaction for [kcal/kgmol]

• - Boltzmann's gas constant [kcal/(kgmol * K)]

• and - Heat capacity [kcal/K] and heat transfer coefficients [kcal/(m^2 * K * h)]

Open the Simulink model.

open_system('sdoCSTR');

4 Sensitivity Analysis

4-112

CSTR Design Problem

Assume that the CSTR is cylindrical, with the coolant applied to the base of the cylinder. Tune the
CSTR cross-sectional area, , and CSTR height, , to meet the following design goals:

• Minimize the variation in residual concentration, . Variations in the residual concentration
negatively affect the quality of the CSTR product. Minimizing the variations also improves CSTR
profit.

• Minimize the mean coolant temperature . Heating or cooling the jacket coolant is expensive.
Minimizing the mean coolant temperature improves CSTR profit.

The quality of the feed to the reactor can differ amongst suppliers. Thus, the design must allow for
variations in the supply feed concentration, , and feed temperature, . The quality of the feed
differs from supplier to supplier and also varies within each supply batch.

Specify Design Variables

Open the Sensitivity Analyzer. In the Simulink model from the Apps tab, click Sensitivity Analyzer
under Control Systems. The app opens with an empty Sensitivity Analysis session.

 Design Exploration Using Parameter Sampling (GUI)

4-113

Create a parameter set that includes the CSTR design variables A and h and the feed variation
parameters FeedConc0 and FeedTemp0. You randomly generate multiple values for these
parameters to evaluate the CSTR design.

• In the Sensitivity Analysis tab, in the Select Parameters drop-down menu, select New.
• In the dialog box, select A, FeedCon0, FeedTemp0, and h.
• Click OK. An empty parameter set, ParamSet is created in the Parameter Set area of the app

browser.

4 Sensitivity Analysis

4-114

Specify the parameter distributions and correlations. ParamSet will be populate with parameter
values selected randomly from the specified distributions:

• Sample A from a uniform distribution with lower bound 0.2 m^2 and upper bound 2 m^2.
• Sample h from a uniform distribution with lower bound 0.5 m and upper bound 3 m.
• Sample FeedConc0 from a normal distribution with mean 10 kgmol/m^3 and standard deviation

0.5 kgmol/m^3.
• Sample FeedTemp0 from a normal distribution with mean 295 K and standard deviation 3 K.
• Specify FeedCon0 and FeedTemp0 as negatively correlated with covariance 0.6.

To generate 100 parameter values using the above distribution and correlation information, click
Generate Values, and select Generate Random Values. For repeatability of the example reset the
random number generator.

rng('default')

In the Generate Random Parameter Values dialog box, specify the following:

• Set the number of samples to 100
• For parameter A select Uniform distribution, set the lower bound to 0.2 and upper bound to 2.
• For parameter FeedCon0 select Normal distribution, set mu to 10 and sigma to 0.5, and check

cross-correlated.
• For parameter FeedTemp0 select Normal distribution, set mu to 295 and sigma to 3, and check

cross-correlated.
• For parameter h select Uniform distribution, set the lower bound to 0.5 and upper bound to 3.
• In the Correlation Matrix tab, set the FeedCon0, FeedTemp0 covariance to -0.6.
• Click OK to generate the parameter values.

 Design Exploration Using Parameter Sampling (GUI)

4-115

The ParamSet table is updated with the generated parameter values. Note that you can manually
edit the generated parameter values in the ParamSet table.

To plot the parameter set click ParamSet in the Parameter Sets area of the app browser. In the
Plots tab, select Scatter Plot in the plots gallery. The plot shows the histogram of the generated
parameters on the diagonal and pair-wise parameter values on the off-diagonal.

Note that due to the random number generator the specific values in the plots and tables below may
differ from what you get when running the example.

Each marker on the plot represents one row of the ParamSet table, with each row being
simultaneously displayed on all the plots. The correlation between FeedCon0 and FeedTemp0 can be
seen on the plot.

4 Sensitivity Analysis

4-116

Specify Requirements for Evaluation

The CSTR design is required to minimize the variation in residual concentration and minimize the
mean coolant temperature. Select New Requirement and click Signal Property to create a
requirement to minimize the residual concentration variation.

In the Create Requirement dialog box, specify the following fields:

• In the Property drop-down list, select Signal Variance.
• In the type drop-down list, select Minimize.
• In the Select Signals area, select a logged signal to apply the requirement to. To do so click +. A

Create Signal Set dialog box opens where you specify the logged signal. In the Simulink
model, click the signal at the CA output of the CSTR block. The dialog box now displays this signal.
Add the signal to the signal set and click OK.

 Design Exploration Using Parameter Sampling (GUI)

4-117

• Close the Signal Property requirement dialog by clicking the x in the upper right dialog corner.

Close the Create Requirement dialog box. A new requirement, SignalProperty is listed in the
Requirements area of the app browser

• Right-click SignalProperty, select Rename; rename the requirement to ConcVar.

4 Sensitivity Analysis

4-118

Select New Requirement and click Signal Property to create a requirement to minimize the
coolant mean (output of block sdoCSTR/Controller) temperature.

In the Create Requirement dialog box, specify the following fields:

• In the Property drop-down list, select Signal Mean.
• In the Type drop-down list, select Minimize.
• In the Select Signals area, add the sdoCSTR/Controller signal to the requirement.

 Design Exploration Using Parameter Sampling (GUI)

4-119

Close the Create Requirement dialog box. A new requirement, SignalProperty is created in the
Requirements area of the app browser. Rename the requirement CoolMean.

Evaluate

In the Sensitivity Analysis tab, click Select for Evaluation. By default, all requirements are
selected to be evaluated. Click Evaluate Model to evaluate the ConcVar and CoolMean
requirements for each row of parameter values in ParamSet. Note you can speed up evaluation by
using parallel computing if you have the Parallel Computing Toolbox (TM), or by using fast restart.
For more information, see "Use Parallel Computing for Sensitivity Analysis" and "use Fast Restart
Mode During Sensitivity Analysis" in the Simulink Design Optimization™ documentation.

A results scatter plot showing each parameter vs each requirement is updated during model
evaluation. At the end of evaluation a table with the evaluation results is created, each row in the
evaluation result table contains values for A, FeedCon0, FeedTemp0, h and the resulting requirement
values ConcVar and CoolMean. The evaluation results are stored in the EvalResult variable in the
Results area of the app.

4 Sensitivity Analysis

4-120

 Design Exploration Using Parameter Sampling (GUI)

4-121

Analyze the Evaluation Results

The results scatter plot for EvalResult shows that CoolMean is inversely correlated with h
(increasing h decreases CoolMean) and that low values of h can result in high values for ConcVar.
The plot shows that low values of A can result in high values for ConcVar, but it is not clear from the
plot how A is correlated with ConcVar or CoolMean or which parameter influences ConcVar the
most. To investigate further, in the Statistics tab, select all the analysis methods and types and click
Compute Statistics. This performs analysis on the evaluation results and creates a tornado plot. The
tornado plot shows the influence of each parameter on each requirement:

• h is inversely correlated with CoolMean, and is the parameter that influences CoolMean the most.
• A is inversely correlated with CoolMean.
• FeedCon0 and FeedTemp0 are inversely correlated with CoolMean.
• A is inversely correlated with ConcVar, and is the parameter that influences ConcVar the most.
• h is inversely correlated with ConcVar.
• FeedCon0 and FeedTemp0 have mixed correlation with ConVar, but have minimal correlation

with ConcVar.

4 Sensitivity Analysis

4-122

The analysis shows that choosing a large h, to reduce CoolMean and choosing a large A to reduce
CoolVar would appear to be a good design choice. You can confirm this by creating a contour plot of
CoolMean and CoolVar versus h and A. Select EvalResult from the Results area of the app
browser, and in the Plots tab, in the plots gallery click Contour plot. On the contour plot select h for
the Y parameter, note that large h medium values of A give low values for both ConcVar and
CoolMean.

 Design Exploration Using Parameter Sampling (GUI)

4-123

Choose an Initial Guess for Optimization

Sort the Evaluation Result table by decreasing h, and select a row that has low ConcVar and
CoolMean values. Right-click the selected row and click Extract Parameter Values. The extracted
parameter values are saved in the ParamValues variable in the Results area of the app browser.
These parameter values are used as the initial guess for optimization.

4 Sensitivity Analysis

4-124

Optimize

Use the data in the Sensitivity Analyzer to create an optimization problem to optimize A and h. In
the Sensitivity Analysis tab click Optimize, and select Create Response Optimization Session.
This opens a dialog to import data from Sensitivity Analysis to Response Optimizer.

• Select both the ConcVar and CoolMean requirements to import.
• Select ParamValues to import as design variables for optimization.
• Select EvalResult to import as uncertain variables to use during optimization.
• Click OK to import the data to the Response Optimizer

 Design Exploration Using Parameter Sampling (GUI)

4-125

4 Sensitivity Analysis

4-126

Configure the Response Optimizer to optimize the CSTR design:

• Click the pencil icon to edit the ParamValues design variable set, and remove the FeedCon0 and
FeedTemp0 variables from the design variable set.

 Design Exploration Using Parameter Sampling (GUI)

4-127

• Select EvalResult as the uncertain variable set, click the pencil icon to edit EvalResult, and
remove A and h from the uncertain variable set.

Add iteration plots to see how the variables ParamValues (A and h), and optimization requirements
ConcVar and CoolMean change during optimization.

• Select the variables in the Data to Plot drop-down list, and select Iteration Plot in the Add
Plot drop-down list.

• Click Optimize.

4 Sensitivity Analysis

4-128

The optimization minimizes CoolMean and ConcVar in the presence of varying FeedCon0 and
FeedTemp0.

Related Examples

To learn how to explore the CSTR design space using the sdo.evaluate command, see “Design
Exploration Using Parameter Sampling (Code)” on page 4-157.

References

[1] Bequette, B.W. Process Dynamics: Modeling, Analysis and Simulation. 1st ed. Upper Saddle River,
NJ: Prentice Hall, 1998.

Close the model

 Design Exploration Using Parameter Sampling (GUI)

4-129

bdclose('sdoCSTR')

See Also

More About
• “Design Exploration Using Parameter Sampling (Code)” on page 4-157
• “Use Parallel Computing for Sensitivity Analysis” on page 4-104
• “Use Fast Restart Mode During Sensitivity Analysis” on page 4-109
• “Generate Parameter Samples for Sensitivity Analysis” on page 4-8
• “Analyze Relation Between Parameters and Design Requirements” on page 4-67
• “Validate Sensitivity Analysis” on page 4-96

4 Sensitivity Analysis

4-130

Identify Key Parameters for Estimation (GUI)
This example shows how to use sensitivity analysis to narrow down the number of parameters that
you need to estimate when fitting a model. This example uses a model of the vestibulo-ocular reflex,
which generates compensatory eye movements.

Model Description

The vestibulo-ocular reflex (VOR) enables the eyes to move at the same speed and in the opposite
direction as the head, so that vision is not blurred when the head moves during normal activity. For
example, if the head turns to the right, the eyes turn to the left at the same speed. This happens even
in the dark. In fact, the VOR is most easily characterized by measurements in the dark, to ensure that
eye movements are predominantly driven by the VOR.

Head rotation is sensed by organs in the inner ears, known as semicircular canals. These detect head
motion and transmit signals about head motion to the brain, which sends motor commands to the eye
muscles, so that eye movements compensate for head motion. We would like to use eye movement
data to estimate model parameters for these various stages. The model we will use is shown below.
There are four parameters in the model: Delay, Gain, Tc, and Tp.

open_system('sdoVOR')

The file sdoVOR_Data.mat contains uniformly sampled data of stimulation and eye movements. If
the VOR were perfectly compensatory, then a plot of eye movement data, when flipped vertically,
would overlay exactly on top of a plot of head motion data. Such a system would be described by a
gain of 1 and a phase of 180 degrees. However, real eye movements are close, but not perfectly
compensatory.

load sdoVOR_Data.mat; % Column vectors: Time HeadData EyeData

We will use Sensitivity Analysis UI to see how well the model output fits the data, and explore which
model parameters have the most influence on the goodness of fit. To open Sensitivity Analysis UI, in
the Apps tab, click Sensitivity Analyzer under Control Systems to launch the Sensitivity
Analyzer.

To associate the data with the model, click New Requirement and select a Signal Matching
requirement. This specifies an objective function consisting of the sum of squared error between the
data and model output. In the Signal Matching dialog, specify the output as [Time EyeData], and
specify the input as [Time HeadData].

 Identify Key Parameters for Estimation (GUI)

4-131

To view the eye movement data, navigate to the data browser on the left side of the UI, right-click the
SignalMatching requirement, and select Plot & Simulate. The bottom plot shows the stimulation,
consisting of a series of pulses. The top plot shows eye movement data, which resembles but does not
exactly match the stimulation. It also shows that the model simulated output does not match the eye
movement data, because model parameters need to be estimated.

4 Sensitivity Analysis

4-132

Explore the Design Space

The model attempts to capture the phenomena which cause the difference between head movements
and eye movements. Here we will explore the design space formed by the model parameters. To
specify the parameters to explore in Sensitivity Analysis UI, click Select Parameters and create a
new parameter set. Select all model parameters: Delay, Gain, Tc and Tp.

 Identify Key Parameters for Estimation (GUI)

4-133

Explore the design space by generating parameter values. Click Generate Values and select random
values. For repeatability of the example, reset the random number generator.

rng('default')

Since there are 4 parameters, we will generate 40 samples.

The Delay parameter models the fact that there is some delay in communicating the signals from the
inner ear to the brain and eyes. This delay is due to the time needed for chemical neurotransmitters
to traverse the synaptic clefts between nerve cells. Based on the number of synapses in the vestibulo-
ocular reflex, this delay is expected to be around 5 ms. We will model it with a uniform distribution
with a lower bound of 2 ms and an upper bound of 9 ms.

The Gain parameter models the fact that in the dark, the eyes do not move quite as much as the
head. We will model it with a uniform distribution with a lower bound of 0.6 and an upper bound of 1.

The Tc parameter models the dynamics associated with the semicircular canals, as well as some
additional neural processing. The canals are high-pass filters, because after a subject has been put
into rotational motion, the neurally active membranes in the canals slowly relax back to resting
position, so the canals stop sensing motion. Thus, after the stimulation undergoes transition edges,
eye movements tend to depart from the stimulation over time. Based on mechanical characteristics of
the canals, combined with additional neural processing which prolongs this time constant to improve
the accuracy of the VOR, we will model Tc with a normal (i.e., bell curve) distribution with a mean of
15 seconds and a standard deviation of 3 seconds.

Finally, the Tp parameter models the dynamics of the oculomotor plant, i.e. the eye and the muscles
and tissues attached to it. The plant can be modeled by two poles, however it is believed that the pole
with the larger time constant is cancelled by precompensation in the brain, to enable the eye to make
quick movements. Thus in the plot, when the stimulation undergoes transition edges, the eye
movements follow with only a little delay. We will model Tp with a uniform distribution with a lower
bound of 0.005 seconds and an upper bound of 0.05 seconds.

4 Sensitivity Analysis

4-134

When the sample values are generated, they appear in a table in the Sensitivity Analysis UI. To plot
them, select ParamSet in the data browser, click the Plots tab, and make a scatter plot. The
sampling above used default options, and these are reflected in the scatter plot. For parameters
modeled by a uniform distribution, the histograms appear approximately uniform. However,
parameter Tc was modeled by a normal distribution, and its histogram has a bell curve profile. If
Statistics and Machine Learning Toolbox™ is available, many other distributions may be used, and
sampling can be done using Sobol or Halton low-discrepancy sequences. The off-diagonal plots show
scatter plots between pairs of different variables. Since we did not specify cross-correlations between
parameters, the scatter plots appear uncorrelated. However, if parameters were believed to be
correlated, this can be specified using Correlation Matrix tab in the dialog for generating random
parameter values.

 Identify Key Parameters for Estimation (GUI)

4-135

Evaluate the Model

Now that we have generated values for the parameter set and specified a requirement
(SignalMatching), we can evaluate the model. In the Sensitivity Analysis tab, click Evaluate
Model.

The model is run once for each set of parameter values, and the results scatter plot is updated as new
computations become available. Evaluation could also be sped up using parallel computing. After
evaluation is complete, all results are also displayed in a table.

4 Sensitivity Analysis

4-136

From the scatter plot of evaluation results, the SignalMatching requirement seems to vary
systematically as a function of Gain and Tc, but not Delay or Tp. Something similar can be seen in a
contour plot. Select the EvalResults variable in the data browser, click the Plots tab, and make a
contour plot. The requirement does not vary systematically from left to right as a function of Delay,
but it does vertically as a function of Gain.

 Identify Key Parameters for Estimation (GUI)

4-137

Statistical Analysis

We can use statistical analysis to quantify how much each parameter influences the requirement.
Click the Statistics tab and select both correlation and standardized regression; and both linear and
ranked analysis types. If Statistics and Machine Learning Toolbox is available, partial correlation and
Kendall correlation can also be selected. Click Compute Statistics to carry out the calculations and
show a tornado plot. The tornado plot displays results from top to bottom in order of which parameter
most influences the requirement. The statistical values range from -1 to 1, where the magnitude
indicates how much the parameter influences the requirement, and the sign indicates whether an
increase in the parameter value corresponds to an increase or decrease in the requirement value. By
most measures, this SignalMatching requirement is more sensitive to Gain and Tc, and less
sensitive to Delay and Tp.

4 Sensitivity Analysis

4-138

Select Parameters for Estimation

For parameter estimation, we need to specify starting values for the parameters. Click the evaluation
results table and click the SignalMatching column header to sort results. Select the row of
parameter values that minimizes the SignalMatching requirement. Right-click on the row and
extract these parameter values. A new variable, ParamValues, is shown in the data browser.

 Identify Key Parameters for Estimation (GUI)

4-139

To transition from sensitivity analysis to parameter estimation, navigate to the Sensitivity Analysis
tab, click Optimize, and open a parameter estimation session. In the dialog that appears, specify that
you want to use the parameter values in ParamValues, and the SignalMatching requirement.

4 Sensitivity Analysis

4-140

Since we found above that parameters Gain and Tc have the most influence on the value of
SignalMatching, we would like to estimate only these two parameters, since the time for
estimation increases with the number of parameters being estimated. In Parameter Estimation UI,
click Select Parameters and select only Gain and Tc for estimation.

 Identify Key Parameters for Estimation (GUI)

4-141

Since the experiment definition has been imported from SignalMatching and the parameter values
have been imported from ParamValues, we have everything needed for estimation. Click Estimate
to carry out parameter estimation for Gain and Tc. Because we are only estimating the two most
influential parameters, estimation converges quickly and the model output closely matches the data.
As was the case with model evaluations in sensitivity analysis, parallel computing could be used to
speed up estimation.

4 Sensitivity Analysis

4-142

In summary, Sensitivity Analysis UI was used to explore the parameter design space and determine
that two parameters, Gain and Tc, were substantially more influential than the others. A start point
for estimation was also determined. This start point and the requirement of obtaining a good fit to
experimental data were imported into Parameter Estimation UI. Estimation completed quickly
because only two parameters needed to be estimated, and the model output fit the data with very
little residual error.

Close the model

 Identify Key Parameters for Estimation (GUI)

4-143

bdclose('sdoVOR')

See Also

Related Examples
• “Identify Key Parameters for Estimation (Code)” on page 4-169
• “Use Parallel Computing for Sensitivity Analysis” on page 4-104
• “Use Fast Restart Mode During Sensitivity Analysis” on page 4-109
• “Generate Parameter Samples for Sensitivity Analysis” on page 4-8
• “Analyze Relation Between Parameters and Design Requirements” on page 4-67
• “Validate Sensitivity Analysis” on page 4-96

4 Sensitivity Analysis

4-144

Explore Design Reliability Using Parameter Sampling (GUI)
This example shows how to use the Sensitivity Analyzer to explore the behavior of a PI controller
for a DC motor. The controller is susceptible to variations caused by component tolerances, and the
impact on controller reliability is explored.

You explore the controller reliability by characterizing the components using probability distributions.
You use the distributions to generate random samples and perform Monte-Carlo evaluation of the
controller design at these sample points. You evaluate the impact of the component tolerances on the
controller behavior, and use statistical analysis to determine which components have the most
influence on whether the controller meets its requirements. This analysis guides the selection of
component tolerances.

This example requires Statistics and Machine Learning Toolbox™.

Implementation of Controller for DC Motor

The controller enables the DC motor's angular position to match a desired reference value. The load
on the motor is subject to disturbances, and the controller needs to reject these disturbances. The
Simulink model can be used to probe how well the controller rejects a step disturbance at 1 second.

open_system('sdoMotorPosition');

The gains of the PI controller, Kp and Ki, are set using resistors in the circuit below:

The resistances R1 through R4 are 47 kOhm, 180 kOhm, 10 kOhm and 10 kOhm respectively. These
were chosen to set Kp and Ki to values that enable the controller to meet the requirements for
disturbance rejection. However, in practice the actual resistor values will differ from the nominal
ones, within a tolerance. This raises concern about whether the actual controller will still satisfy the
requirements. To explore the effect of different resistance values, use the Sensitivity Analyzer. In

 Explore Design Reliability Using Parameter Sampling (GUI)

4-145

the Simulink model from the Apps tab, click Sensitivity Analyzer under Control Systems to open
the app.

Design Requirements

The controller needs to maintain the motor at a reference position in the presence of disturbances. If
a step disturbance occurs, the motor needs to deviate no more than 20 degrees, and needs to settle
back to within 5 degrees of the reference position by 4 seconds after the disturbance.

Load previously specified design requirements for disturbance rejection. In the app, click Open
Session and select Open from model workspace in the drop-down menu.

You can plot the requirements and verify that they are met when the resistances have the nominal
values. In the Results area in the data browser, right-click on the LowerBound requirement, and
select Plot and Simulate. Do the same for the UpperBound requirement.

4 Sensitivity Analysis

4-146

Parameter Sampling

The motor position satisfies the disturbance rejection requirements, when the resistances are at their
nominal values. However, in practice the actual resistor values will differ from the nominal ones, and
we need to determine whether the controller will still meet the requirements. Click Select
Parameters and make a new parameter set. This creates ParamSet in the Parameter Sets area of
the app. Specify that R1, R2, R3, and R4 are in the parameter set, and click OK.

 Explore Design Reliability Using Parameter Sampling (GUI)

4-147

Click Generate Values and generate random values. For repeatable results, reset the state of the
random number generator in MATLAB®.

rng('default')

In the Generate Random Parameters dialog box, specify 500 samples to generate.

Specify the probability distribution for each parameter. Standard precision resistors match their
nominal component value within a tolerance of 5%. This could be modeled using a uniform probability
distribution. However, because resistors that measure within 1% of the nominal value are separated
out and sold as higher-priced precision resistors, the 5% resistors can be more accurately modeled by
a probability distribution with a well that excludes values within 1% of nominal. This can be modeled
using a piecewise linear probability distribution if Statistics and Machine Learning Toolbox™ is
available.

Specify the distribution of R1 as piecewise linear with 4 points. Specify the x values as [0.95 0.99 1.01
1.05] times 47 (the nominal value of the resistor). Specify the Fx values as [0 0.5 0.5 1]; these are the
values of the cumulative distribution function corresponding to each x value. Similarly, set the
distributions of R2, R3 and R4 to piecewise linear with 4 points, the x values as [0.95 0.99 1.01 1.05]
times the nominal values (180, 10, and 10, respectively), and the Fx values as [0 0.5 0.5 1].

4 Sensitivity Analysis

4-148

Click OK to generate parameter values. The generated values are stored in the ParamSet variable in
the Parameter Set area of the app. (Note that due to the random number generator, the specific
values in the table below may differ from what you get when running the example.)

To plot the parameter set click ParamSet in the Parameter Sets area of the app browser. In the
Plots tab, select Scatter Plot in the plot gallery. The plot shows the histogram of the generated
parameters on the diagonal and pair-wise parameter scatter plots off the diagonal. Each marker on
the plot represents one row of the ParamSet table, with each row being simultaneously displayed on
all the scatter plots. You can use the View tab to arrange the layout of the table and plot so they are
both visible.

 Explore Design Reliability Using Parameter Sampling (GUI)

4-149

Evaluate Requirements with 5% Components

Evaluate the requirements for each row of parameter values in the table to see if the requirements
are satisfied. In the Sensitivity Analysis tab, click Select for Evaluation. By default, all
requirements are selected to be evaluated. Click Evaluate Model to evaluate the UpperBound and
LowerBound requirements for each row of parameter values in ParamSet. Note you can speed up
evaluation by using parallel computing if you have the Parallel Computing Toolbox™, or by using fast
restart. For more information, see "Use Parallel Computing for Sensitivity Analysis" and "Use Fast
Restart Mode During Sensitivity Analysis" in the Simulink Design Optimization™ documentation.

A results scatter plot showing each requirement vs. each parameter is updated during model
evaluation. At the end of evaluation a table with the evaluation results is shown. Each row in the
evaluation result table contains values for R1, R2, R3, R4 and the resulting requirement values
UpperBound and LowerBound. The evaluation results are stored in the EvalResult variable in the
Results area of the app. You can use the View tab to arrange the layout of the table and plot so they
are both visible.

You can sort the evaluation results table by clicking on the column headers in the table. The
LowerBound requirement is still met, as indicated by the fact that all evaluation results for the signal
bound requirement are negative. That is not the case for the UpperBound requirement, which has
several positive values. By selecting the rows of the table with these positive values, you can also see
the corresponding points highlighted in the scatter plot.

4 Sensitivity Analysis

4-150

Analyze the Evaluation Results

Using 5% tolerance components resulted in violation of the UpperBound requirement. Precision
components with 1% tolerance would satisfy the design requirements, but they are more costly, so it
is desirable to use only as many as necessary. You can use statistical analysis to identify the
components that most influence the design requirements.

In the Statistics tab, select a variety of analyses to be done, including Correlation and
Standardized Regression methods, and Linear and Ranked types of processing. Click Compute
Statistics. The analysis result is stored in StatsResult in the Results area of the app, and a
tornado plot shows the analysis results. For each requirement, the tornado plot shows the most
influential parameters at the top, and the others in decreasing order of the magnitude of their
influence on the requirement. For the UpperBound requirement, R3 and R4 have the most influence,
so we will try replacing these by higher precision 1% components.

 Explore Design Reliability Using Parameter Sampling (GUI)

4-151

Evaluate Requirements with Mixed Components

Explore the use of 1% component tolerances only for resistors R3 and R4. In the Sensitivity Analysis
tab, click Generate Values and generate gridded values. For R1 and R2, specify that the nominal
value is to be perturbed by plus-and-minus 5%. For R3 and R4, specify that the nominal value is to be
perturbed by plus-and-minus 1%.

4 Sensitivity Analysis

4-152

Click Overwrite to generate the new parameter values. To plot the parameter set click ParamSet in
the Parameter Sets area of the app browser. In the Plots tab, select Scatter Plot in the plot gallery.

 Explore Design Reliability Using Parameter Sampling (GUI)

4-153

In the Sensitivity Analysis tab, click Evaluate Model. The requirements are evaluated for each row
in the table of parameter values, and results are stored in EvalResults_1 shown in the Results
area of the app. The evaluation results scatter plot and the evaluation results table show that both
requirements are met for all combinations of component values.

4 Sensitivity Analysis

4-154

The Sensitivity Analyzer was used to explore the effect of standard precision components on the
design requirements of a PI controller. With standard precision components, some requirements were
found to be violated. Statistical analysis was used to identify which parameters most influence the
requirements. The analysis resulted in replacement of only two of the four components with most
costly high-precision components.

Close the model.

bdclose('sdoMotorPosition')

See Also

Related Examples
• “Specify Parameters for Design Exploration” on page 4-4
• “Generate Parameter Samples for Sensitivity Analysis” on page 4-8
• “Analyze Relation Between Parameters and Design Requirements” on page 4-67

 Explore Design Reliability Using Parameter Sampling (GUI)

4-155

• “Validate Sensitivity Analysis” on page 4-96
• “Interact with Plots in the Sensitivity Analyzer” on page 4-79

4 Sensitivity Analysis

4-156

Design Exploration Using Parameter Sampling (Code)
This example shows how to sample and explore a design space. You explore the design of a
Continuously Stirred Tank Reactor to minimize product concentration variation and production cost.
The design includes feed stock uncertainty.

You explore the CSTR design by characterizing design parameters using probability distributions. You
use the distributions to generate random samples in the design space and perform Monte-Carlo
evaluation of the design at these sample points. You then create plots to visualize the design space
and select the best design. You can then use the best design as an initial guess for optimization of the
design.

You can also use the sampled design space and Monte-Carlo evaluation output to analyze the
influence of design parameters on the design, see “Identify Key Parameters for Estimation (Code)” on
page 4-169

Continuously Stirred Tank Reactor (CSTR) Model

Continuously Stirred Tank Reactors (CSTRs) are common in the process industry. The Simulink
model, sdoCSTR, models a jacketed diabatic (i.e., non-adiabatic) tank reactor described in [1]. The
CSTR is assumed to be perfectly mixed, with a single first-order exothermic and irreversible reaction,

. , the reactant, is converted to , the product.

In this example, you use the following two-state CSTR model, which uses basic accounting and
energy conservation principles:

• , and - Concentrations of A in the CSTR and in the feed [kgmol/m^3]

• , , and - CSTR, feed, and coolant temperatures [K]

• and - Volumetric flow rate [m^3/h] and the density of the material in the CSTR [1/m^3]

• and - Height [m] and heated cross-sectional area [m^2] of the CSTR.

• - Pre-exponential non-thermal factor for reaction [1/h]

• and - Activation energy and heat of reaction for [kcal/kgmol]

• - Boltzmann's gas constant [kcal/(kgmol * K)]

• and - Heat capacity [kcal/K] and heat transfer coefficients [kcal/(m^2 * K * h)]

Open the Simulink model.

open_system('sdoCSTR');

 Design Exploration Using Parameter Sampling (Code)

4-157

CSTR Design Problem

Assume that the CSTR is cylindrical, with the coolant applied to the base of the cylinder. Tune the
CSTR cross-sectional area, , and CSTR height, , to meet the following design goals:

• Minimize the variation in residual concentration, . Variations in the residual concentration
negatively affect the quality of the CSTR product. Minimizing the variations also improves CSTR
profit.

• Minimize the mean coolant temperature . Heating or cooling the jacket coolant temperature is
expensive. Minimizing the mean coolant temperature improves CSTR profit.

The design must allow for variations in the quality of supply feed concentration, , and feed
temperature, . The CSTR is fed with feed from different suppliers. The quality of the feed differs
from supplier to supplier and also varies within each supply batch.

Specify Design Variables

Select the following model parameters as design variables:

• Cylinder cross-sectional area

• Cylinder height

p = sdo.getParameterFromModel('sdoCSTR',{'A','h'});

Limit the cross-sectional area to a range of [0.2 2] m^2.

p(1).Minimum = 0.2;
p(1).Maximum = 2;

Limit the height to a range of [0.5 3] m.

4 Sensitivity Analysis

4-158

p(2).Minimum = 0.5;
p(2).Maximum = 3;

Sample the Design Space

Create a parameter space for the design variables. The parameter space characterizes the allowable
parameter values and combinations of parameter values.

pSpace = sdo.ParameterSpace(p);

The parameter space uses default uniform distributions for the design variables. The distribution
lower and upper bounds are set to the design variable minimum and maximum value respectively.

Use the sdo.sample function to generate samples from the parameter space. You use the samples to
evaluate the model and explore the design space.

rng default; % For reproducibility
pSmpl = sdo.sample(pSpace,30);

Use the sdo.scatterPlot command to visualize the sampled parameter space. The scatter plot
shows the parameter distributions on the diagonal subplots and pairwise parameter combinations on
the off diagonal subplots.

figure, sdo.scatterPlot(pSmpl)

 Design Exploration Using Parameter Sampling (Code)

4-159

Specify Uncertain Variables

Select the feed concentration and feed temperature as uncertain variables. You evaluate the design
using different values of feed temperature and concentration.

pUnc = sdo.getParameterFromModel('sdoCSTR',{'FeedCon0','FeedTemp0'});

Create a parameter space for the uncertain variables. Use normal distributions for both variables.
Specify the mean as the current parameter value. Specify a variance of 5% of the mean for the feed
concentration and 1% of the mean for the temperature.

uSpace = sdo.ParameterSpace(pUnc);
uSpace = setDistribution(uSpace,'FeedCon0',makedist('normal',pUnc(1).Value,0.05*pUnc(1).Value));
uSpace = setDistribution(uSpace,'FeedTemp0',makedist('normal',pUnc(2).Value,0.01*pUnc(2).Value));

The feed concentration is inversely correlated with the feed temperature. Add this information to the
parameter space.

uSpace.RankCorrelation = [1 -0.6; -0.6 1];

The rank correlation matrix has a row and column for each parameter with the (i,j) entry specifying
the correlation between the i and j parameters.

Sample the parameter space. The scatter plot shows the correlation between concentration and
temperature.

uSmpl = sdo.sample(uSpace,60);
sdo.scatterPlot(uSmpl)

4 Sensitivity Analysis

4-160

Ideally you want to evaluate the design for every combination of points in the design and uncertain
spaces, which implies 30*60 = 1800 simulations. Each simulation takes around 0.5 sec. You can use
parallel computing to speed up the evaluation. For this example you instead only use the samples that
have maximum & minimum concentration and temperature values, reducing the evaluation time to
around 1 min.

[~,iminC] = min(uSmpl.FeedCon0);
[~,imaxC] = max(uSmpl.FeedCon0);
[~,iminT] = min(uSmpl.FeedTemp0);
[~,imaxT] = max(uSmpl.FeedTemp0);
uSmpl = uSmpl(unique([iminC,imaxC,iminT,imaxT]) ,:)

uSmpl =

 4x2 table

 FeedCon0 FeedTemp0
 ________ _________

 9.4555 303.58
 11.175 288.13
 11.293 290.73
 8.9308 294.16

Create Evaluation Function

Create a function that evaluates the design for a given sample point in the design space. The design
is evaluated on how well it minimizes the variation in residual concentration and mean coolant
temperature.

Specify Design Requirements

Evaluating a point in the design space requires logging model signals. Logged signals are used to
evaluate the design requirements.

Log the following signals:

• CSTR concentration, available at the second output port of the sdoCSTR/CSTR block

Conc = Simulink.SimulationData.SignalLoggingInfo;
Conc.BlockPath = 'sdoCSTR/CSTR';
Conc.OutputPortIndex = 2;
Conc.LoggingInfo.NameMode = 1;
Conc.LoggingInfo.LoggingName = 'Concentration';

• Coolant temperature, available at the first output of the sdoCSTR/Controller block

Coolant = Simulink.SimulationData.SignalLoggingInfo;
Coolant.BlockPath = 'sdoCSTR/Controller';
Coolant.OutputPortIndex = 1;
Coolant.LoggingInfo.NameMode = 1;
Coolant.LoggingInfo.LoggingName = 'Coolant';

Create and configure a simulation test object to log the required signals.

 Design Exploration Using Parameter Sampling (Code)

4-161

simulator = sdo.SimulationTest('sdoCSTR');
simulator.LoggingInfo.Signals = [Conc,Coolant];

Evaluation Function

Use an anonymous function with one argument that calls the sdoCSTR_design function.

evalDesign = @(p) sdoCSTR_design(p,simulator,pUnc,uSmpl);

The evalDesign function:

• Has one input argument that specifies the CSTR dimensions

• Returns the optimization objective value

The sdoCSTR_design function uses a for loop that iterates through the sample values specified for
the feed concentration and temperature. Within the loop, the function:

• Simulates the model using the current design point, feed concentration, and feed temperature
values

• Calculates the residual concentration variation and coolant temperature costs

To view the objective function, type edit sdoCSTR_design.

type sdoCSTR_design

function design = sdoCSTR_design(p,simulator,pUnc,smplUnc)
%SDOCSTR_DESIGN
%
% The sdoCSTR_design function is used to evaluate a CSTR design.
%
% The |p| input argument is the vector of CSTR dimensions.
%
% The |simulator| input argument is a sdo.SimulinkTest object used to
% simulate the |sdoCSTR| model and log simulation signals.
%
% The |pUnc| input argument is a vector of parameters to specify the CSTR
% input feed concentration and feed temperature. The |smplUnc| argument is
% a table of different feed concentration and temperature values.
%
% The |design| return argument contains information about the design
% evaluation that can be used by the |sdo.optimize| function to optimize
% the design.
%
% see also sdo.optimize, sdoExampleCostFunction
%

% Copyright 2012-2013 The MathWorks, Inc.

%% Model Simulations and Evaluations
%
% For each value in |smplUnc|, configure and simulate the model. Use
% the logged concentration and coolant signals to compute the design cost.
%
costConc = 0;
costCoolant = 0;

4 Sensitivity Analysis

4-162

for ct=1:size(smplUnc,1)
 %Set the feed concentration and temperature values
 pUnc(1).Value = smplUnc{ct,1};
 pUnc(2).Value = smplUnc{ct,2};

 %Simulate model
 simulator.Parameters = [p; pUnc];
 simulator = sim(simulator);
 logName = get_param('sdoCSTR','SignalLoggingName');
 simLog = get(simulator.LoggedData,logName);

 %Compute Concentration cost based on the standard deviation of the
 %concentration from a nominal value.
 Sig = find(simLog,'Concentration');
 costConc = costConc+10*std(Sig.Values-2);

 %Compute coolant cost based on the mean deviation from room
 %temperature.
 Sig = find(simLog,'Coolant');
 costCoolant = costCoolant+abs(mean(Sig.Values - 294))/30;
end

%% Return Total Cost
%
% Compute the total cost as a sum of the concentration and coolant costs.
%
design.F = costConc + costCoolant;

%%
% Add the individual cost terms to the return argument. These are not used
% by the optimizer, but included for convenience.
design.costConc = costConc;
design.costCoolant = costCoolant;
end

Evaluate

Use the sdo.evaluate command to evaluate the model at the sample design points.

y = sdo.evaluate(evalDesign,p,pSmpl);

Model evaluated at 30 samples.

View the results of the evaluation using a scatter plot. The scatter plot shows pairwise plots for each
design variable (A,h) and design cost. The plot include the total cost, F, as well as coolant and
concentration costs, costCoolant and costConc respectively.

sdo.scatterPlot(pSmpl,y);

 Design Exploration Using Parameter Sampling (Code)

4-163

The plot shows that larger cross-sectional areas result in lower total costs. However it is difficult to
tell how the height influences the total cost.

Create a mesh plot showing the total cost as a function of A and h.

Ftotal = scatteredInterpolant(pSmpl.A,pSmpl.h,y.F);
xR = linspace(min(pSmpl.A),max(pSmpl.A),60);
yR = linspace(min(pSmpl.h),max(pSmpl.h),60);
[xx,yy] = meshgrid(xR,yR);
zz = Ftotal(xx,yy);
mesh(xx,yy,zz)
view(56,30)
title('Total cost as function of A and h')
zlabel('Ftotal')
xlabel(p(1).Name), ylabel(p(2).Name);

4 Sensitivity Analysis

4-164

The plot shows that high values of A and h result in lower costs. The best design in the sampled space
corresponds to the design with the lowest cost value.

[~,idx] = min(y.F);
pBest = [y(idx,:), pSmpl(idx,:)]

pBest =

 1x5 table

 F costConc costCoolant A h
 _____ ________ ___________ ______ ______

 2.106 1.5505 0.55552 1.9271 2.3867

Refine the Design Space

The total cost surface plot shows that low cost designs are designs with A in the range [1.5 2] and h
in the range [2 3]. Modify the parameter space distributions for A and h and resample the design
space to focus on this region.

pSpace = setDistribution(pSpace,'A',makedist('uniform',1.5,2));
pSpace = setDistribution(pSpace,'h',makedist('uniform',2,3));
pSmpl = sdo.sample(pSpace,30);

Add the pBest found earlier to the new samples so that it is part of the refined design space.

 Design Exploration Using Parameter Sampling (Code)

4-165

pSmpl = [pSmpl;pBest(:,4:5)];
sdo.scatterPlot(pSmpl)

Evaluate using Refined Design Space

y = sdo.evaluate(evalDesign,p,pSmpl);

Model evaluated at 31 samples.

Create a mesh plot for this section of the design space. The surface indicates that better designs are
near the A = 1.9, h = 2.1 point.

Ftotal = scatteredInterpolant(pSmpl.A,pSmpl.h,y.F);
xR = linspace(min(pSmpl.A),max(pSmpl.A),60);
yR = linspace(min(pSmpl.h),max(pSmpl.h),60);
[xx,yy] = meshgrid(xR,yR);
zz = Ftotal(xx,yy);
mesh(xx,yy,zz)
view(56,30)
title('Total cost as function of A and h')
zlabel('Ftotal')
xlabel(p(1).Name), ylabel(p(2).Name);

4 Sensitivity Analysis

4-166

Find the best design from the new design space and compare with the best design point found earlier.

[~,idx] = min(y.F);
pBest = [pBest; [y(idx,:), pSmpl(idx,:)]]

pBest =

 2x5 table

 F costConc costCoolant A h
 ______ ________ ___________ ______ ______

 2.106 1.5505 0.55552 1.9271 2.3867
 1.9754 1.4824 0.49295 1.9695 2.1174

The best design in the refined design space is better than the design found earlier. This indicates that
there may be better designs in the same region and warrants refining the design space further.
Alternatively you can use the best design point as an initial guess for optimization.

Related Examples

To learn how to explore the CSTR design space using the Sensitivity Analyzer, see “Design
Exploration Using Parameter Sampling (GUI)” on page 4-112.

To learn how to optimize the CSTR design using the sdo.optimize command, see “Design
Optimization with Uncertain Variables (Code)” on page 3-152.

 Design Exploration Using Parameter Sampling (Code)

4-167

To learn how to analyze the influence of design parameters on the design using the sdo.analyze
command, see “Identify Key Parameters for Estimation (Code)” on page 4-169

References

[1] Bequette, B.W. Process Dynamics: Modeling, Analysis and Simulation. 1st ed. Upper Saddle River,
NJ: Prentice Hall, 1998.

Close the model

bdclose('sdoCSTR')

See Also

More About
• “Design Exploration Using Parameter Sampling (GUI)” on page 4-112
• “Use Parallel Computing for Sensitivity Analysis” on page 4-104
• “Use Fast Restart Mode During Sensitivity Analysis” on page 4-109
• “Generate Parameter Samples for Sensitivity Analysis” on page 4-8
• “Analyze Relation Between Parameters and Design Requirements” on page 4-67
• “Validate Sensitivity Analysis” on page 4-96

4 Sensitivity Analysis

4-168

Identify Key Parameters for Estimation (Code)
This example shows how to use sensitivity analysis to narrow down the number of parameters that
you need to estimate to fit a model. This example uses a model of the vestibulo-ocular reflex, which
generates compensatory eye movements.

Model Description

The vestibulo-ocular reflex (VOR) enables the eyes to move at the same speed and in the opposite
direction as the head, so that vision is not blurred when the head moves during normal activity. For
example, if the head turns in one direction, the eyes turn in the opposite direction, with the same
speed. This happens even in the dark. In fact, the VOR is most easily characterized by measurements
in the dark, to ensure that eye movements are predominantly driven by the VOR.

The file sdoVOR_Data.mat contains uniformly sampled data of stimulation and eye movements. If
the VOR were perfectly compensatory, then a plot of eye movement data, when flipped vertically,
would overlay exactly on top of a plot of head motion data. Such a system would be described by a
gain of 1 and a phase of 180 degrees. However, when we plot the data in the file sdoVOR_Data.mat,
the eye movements are close, but not perfectly compensatory.

load sdoVOR_Data.mat; % Column vectors: Time HeadData EyeData
figure
plot(Time, HeadData, ':b', Time, EyeData, '-g')
xlabel('Time (sec)')
ylabel('Angular Velocity (deg/sec)')
ylim([-110 110])
legend('Head Data', 'Eye Data')

 Identify Key Parameters for Estimation (Code)

4-169

The eye movement data does not perfectly overlay the head motion data, and this can be modeled by
several factors. Head rotation is sensed by organs in the inner ears, known as semicircular canals.
These detect head motion and transmit signals about head motion to the brain, which sends motor
commands to the eye muscles, so that eye movements compensate for head motion. We would like to
use this eye movement data to estimate the parameters in the models for these various stages. The
model we will use is shown below. There are four parameters in the model: Delay, Gain, Tc, and Tp.

model_name = 'sdoVOR';
open_system(model_name)

4 Sensitivity Analysis

4-170

The Delay parameter models the fact that there is some delay in communicating the signals from the
inner ear to the brain and the eyes. This delay is due to the time needed for chemical
neurotransmitters to traverse the synaptic clefts between nerve cells. Based on the number of
synapses involved in the vestibulo-ocular reflex, this delay is expected to be around 5 ms. For
estimation purposes, we will assume it is between 2 and 9 ms.

Delay = sdo.getParameterFromModel(model_name, 'Delay');
Delay.Value = 0.005; % seconds
Delay.Minimum = 0.002;
Delay.Maximum = 0.009;

The Gain parameter models the fact that the eyes do not move quite as much as the head does. We
will use 0.8 as our initial guess, and assume it is between 0.6 and 1.

Gain = sdo.getParameterFromModel(model_name, 'Gain');
Gain.Value = 0.8;
Gain.Minimum = 0.6;
Gain.Maximum = 1;

The Tc parameter models the dynamics associated with the semicircular canals, as well as some
additional neural processing. The canals are high-pass filters, because after a subject has been put
into rotational motion, the neurally active membranes in the canals slowly relax back to resting
position, so the canals stop sensing motion. Thus in the plot above, after the stimulation undergoes
transition edges, the eye movements tend to depart from the stimulation over time. Based on
mechanical characteristics of the canals, combined with additional neural processing which prolongs
this time constant to improve the accuracy of the VOR, we will estimate the Tc parameter to be 15
seconds, and assume it is between 10 and 30 seconds.

Tc = sdo.getParameterFromModel(model_name, 'Tc');
Tc.Value = 15;
Tc.Minimum = 10;
Tc.Maximum = 30;

Finally, the Tp parameter models the dynamics of the oculomotor plant, i.e. the eye and the muscles
and tissues attached to it. The plant can be modeled by two poles, however it is believed that the pole
with the larger time constant is cancelled by precompensation in the brain, to enable the eye to make
quick movements. Thus in the plot, when the stimulation undergoes transition edges, the eye
movements follow with only a little delay. For the Tp parameter, we will use 0.01 seconds as our initial
guess, and assume it is between 0.005 and 0.05 seconds.

Tp = sdo.getParameterFromModel(model_name, 'Tp');
Tp.Value = 0.01;
Tp.Minimum = 0.005;
Tp.Maximum = 0.05;

Collect these parameters into a vector.

v = [Delay Gain Tc Tp];

Compare Measured Data to Initial Simulated Output

Create an Experiment object. Specify HeadData as input.

Exp = sdo.Experiment(model_name);
Exp.InputData = timeseries(HeadData, Time);

Associate eye movement data with model output.

 Identify Key Parameters for Estimation (Code)

4-171

EyeMotion = Simulink.SimulationData.Signal;
EyeMotion.Name = 'EyeMotion';
EyeMotion.BlockPath = [model_name '/Oculomotor Plant'];
EyeMotion.PortType = 'outport';
EyeMotion.PortIndex = 1;
EyeMotion.Values = timeseries(EyeData, Time);

Add EyeMotion to the experiment.

Exp.OutputData = EyeMotion;

Use the data's timing characteristics in the model.

stop_time = Time(end);
set_param(gcs, 'StopTime', num2str(stop_time));
dt = Time(2) - Time(1);
set_param(gcs, 'FixedStep', num2str(dt))

Create a simulation scenario using the experiment, and obtain the simulated output.

Exp = setEstimatedValues(Exp, v); % use vector of parameters/states
Simulator = createSimulator(Exp);
Simulator = sim(Simulator);

Search for the model_residual signal in the logged simulation data.

SimLog = find(Simulator.LoggedData, ...
 get_param(model_name, 'SignalLoggingName'));
EyeSignal = find(SimLog, 'EyeMotion');

The model output does not match the data very well, as shown by the residual, which we can compute
by calling the objective function.

estFcn = @(v) sdoVOR_Objective(v, Simulator, Exp, 'Residuals');
Model_Error = estFcn(v);
plot(Time, EyeData, '-g', ...
 EyeSignal.Values.Time, EyeSignal.Values.Data, '--c', ...
 Time, Model_Error.F, '-r');
xlabel('Time (sec)');
ylabel('Angular Velocity (deg/sec)');
legend('Eye Data', 'Model', 'Residual');

4 Sensitivity Analysis

4-172

The objective function used above is defined in the file "sdoVOR_Objective.m".

type sdoVOR_Objective.m

function vals = sdoVOR_Objective(v, Simulator, Exp, Method)
% Compare model output with data
%
% Inputs:
% v - vector of parameters and/or states
% Simulator - used to simulate the model
% Exp - Experiment object
% Method - 'SSE' for scalar output, 'Residuals' for vector of residuals

% Copyright 2014-2015 The MathWorks, Inc.

% Requirement setup
req = sdo.requirements.SignalTracking;
req.Type = '==';
req.Method = Method;

% If Residuals requested, keep on same scale as signals, for plotting
switch Method
 case 'Residuals'
 req.Normalize = 'off';
end

% Simulate the model

 Identify Key Parameters for Estimation (Code)

4-173

Exp = setEstimatedValues(Exp, v); % use vector of parameters/states
Simulator = createSimulator(Exp,Simulator);
Simulator = sim(Simulator);

% Compare model output with data
SimLog = find(Simulator.LoggedData, ...
 get_param(Exp.ModelName, 'SignalLoggingName'));
OutputModel = find(SimLog, 'EyeMotion');
Model_Error = evalRequirement(req, OutputModel.Values, Exp.OutputData.Values);
vals.F = Model_Error;

Sensitivity Analysis

Create an object to sample the parameter space.

ps = sdo.ParameterSpace([Delay ; Gain ; Tc ; Tp]);

Generate 100 samples from the parameter space.

rng default; % for reproducibility
x = sdo.sample(ps, 100);
sdo.scatterPlot(x);

The sampling above used default options, and these are reflected in the plots above. Parameter values
were selected at random from distributions that were uniform over the range of each parameter.
Consequently, the histogram plots along the diagonal appear approximately uniform. If Statistics and
Machine Learning Toolbox™ is available, many other distributions may be used, and sampling can be
done using Sobol or Halton low-discrepancy sequences.

4 Sensitivity Analysis

4-174

The off-diagonal plots above show scatter plots between pairs of different variables. Since we did not
specify a RankCorrelation matrix in ps, the scatter plots do not indicate correlations. However, if
parameters were believed to be correlated, this can be specified using the RankCorrelation property
of ps.

For sensitivity analysis, it is simpler to use a scalar objective, so we will specify the sum of squared
errors, "SSE":

estFcn = @(v) sdoVOR_Objective(v, Simulator, Exp, 'SSE');
y = sdo.evaluate(estFcn, ps, x);

Model evaluated at 100 samples.

Evaluation could also be sped up using parallel computing.

Obtain the standardized regression coefficients.

opts = sdo.AnalyzeOptions;
opts.Method = 'StandardizedRegression';
sensitivities = sdo.analyze(x, y, opts);

Other types of analysis include correlation and, if Statistics and Machine Learning Toolbox is
available, partial correlation.

We can view the analysis results.

disp(sensitivities)

 F

 Delay 0.01303
 Gain -0.90873
 Tc -0.044395
 Tp 0.19919

For standardized regression, parameters that highly influence the model output have sensitivity
magnitudes close to 1. On the other hand, less influential parameters have smaller sensitivity
magnitudes. We see that this objective function is sensitive to changes in the Gain and Tp
parameters, but much less sensitive to changes in the Delay and Tc parameters.

You can validate sensitivity analysis results by resampling and reevaluating the objective function for
the samples. You can also use engineering intuition for a quick analysis. For example, in this model,
the time constant Tc ranges from 10 to 30 seconds. Even the minimum value of 10 seconds is large
compared to the 2-second duration for which the head motion stimulation is held at constant velocity.
Therefore, Tc is not expected to affect the output greatly. However, even when this kind of intuition is
not readily available in other models, sensitivity analysis can help highlight which parameters are
influential.

Based on the results of sensitivity analysis, designate the Delay and Tc parameters as fixed when
optimizing. This reduction in the number of free parameters speeds up optimization.

Delay.Free = false;
Tc.Free = false;

 Identify Key Parameters for Estimation (Code)

4-175

Optimization

We can use the minimum from sensitivity analysis as the initial guess for optimization.

[fval, idx_min] = min(y.F);
Delay.Value = x.Delay(idx_min);
Gain.Value = x.Gain(idx_min);
Tc.Value = x.Tc(idx_min);
Tp.Value = x.Tp(idx_min);
%
v = [Delay Gain Tc Tp];
opts = sdo.OptimizeOptions;
opts.Method = 'fmincon';

As was the case with model evaluations in sensitivity analysis, parallel computing could be used to
speed up the optimization.

vOpt = sdo.optimize(estFcn, v, opts);
disp(vOpt)

 Optimization started 25-Aug-2020 20:47:57

 max First-order
 Iter F-count f(x) constraint Step-size optimality
 0 5 13.4798 0
 1 18 12.2052 0 0.129 305
 2 30 11.1441 0 0.0648 790
 3 41 10.0493 0 0.0843 290
 4 46 9.23607 0 0.0758 286
 5 51 8.76122 0 0.0183 10.1
 6 56 8.75862 0 0.00184 0.476
 7 57 8.75862 0 8.41e-05 0.476
Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

(1,1) =

 Name: 'Delay'
 Value: 0.0038
 Minimum: 0.0020
 Maximum: 0.0090
 Free: 0
 Scale: 0.0078
 Info: [1x1 struct]

(1,2) =

 Name: 'Gain'
 Value: 0.9012
 Minimum: 0.6000
 Maximum: 1
 Free: 1
 Scale: 1

4 Sensitivity Analysis

4-176

 Info: [1x1 struct]

(1,3) =

 Name: 'Tc'
 Value: 16.6833
 Minimum: 10
 Maximum: 30
 Free: 0
 Scale: 16
 Info: [1x1 struct]

(1,4) =

 Name: 'Tp'
 Value: 0.0157
 Minimum: 0.0050
 Maximum: 0.0500
 Free: 1
 Scale: 0.0156
 Info: [1x1 struct]

1x4 param.Continuous

Visualizing Result of Optimization

Obtain the model response after estimation. Search for the model_residual signal in the logged
simulation data.

Exp = setEstimatedValues(Exp, vOpt);
Simulator = createSimulator(Exp,Simulator);
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData, ...
 get_param(model_name, 'SignalLoggingName'));
EyeSignal = find(SimLog, 'EyeMotion');

Comparing the measured eye data with the optimized model response shows that the residuals are
much smaller.

estFcn = @(v) sdoVOR_Objective(v, Simulator, Exp, 'Residuals');
Model_Error = estFcn(vOpt);
plot(Time, EyeData, '-g', ...
 EyeSignal.Values.Time, EyeSignal.Values.Data, '--c', ...
 Time, Model_Error.F, '-r');
xlabel('Time (sec)');
ylabel('Angular Velocity (deg/sec)');
legend('Eye Data', 'Model', 'Residual');

 Identify Key Parameters for Estimation (Code)

4-177

Close the model

bdclose(model_name)

See Also

Related Examples
• “Identify Key Parameters for Estimation (GUI)” on page 4-131
• “Use Parallel Computing for Sensitivity Analysis” on page 4-104
• “Use Fast Restart Mode During Sensitivity Analysis” on page 4-109
• “Generate Parameter Samples for Sensitivity Analysis” on page 4-8
• “Analyze Relation Between Parameters and Design Requirements” on page 4-67
• “Validate Sensitivity Analysis” on page 4-96

4 Sensitivity Analysis

4-178

Generate MATLAB Code for Sensitivity Analysis Statistics to
Identify Key Parameters (GUI)

This example shows how to automatically generate a MATLAB function to solve a Sensitivity Analysis
statistics problem. You use the Sensitivity Analyzer to define a sensitivity statistics problem for a
model of the body's vestibulo-ocular reflex, and generate MATLAB code to solve this statistics
problem.

Vestibulo-Ocular Reflex Sensitivity Statistics Problem

The “Identify Key Parameters for Estimation (GUI)” on page 4-131 example shows how to use the
Sensitivity Analyzer to compute sensitivity statistics for different parameter values in a model of the
body's vestibulo-ocular reflex. In this example, we load a preconfigured Sensitivity Analyzer session
based on that example.

Open the Sensitivity Analyzer for the sdoVOR model:

ssatool('sdoVOR')

In the Sensitivity Analyzer, click Open Session and Open from model workspace. Open session
sdoVOR_sasessionForSensitivityStatistics.

This opens a preconfigured session in the Sensitivity Analyzer.

 Generate MATLAB Code for Sensitivity Analysis Statistics to Identify Key Parameters (GUI)

4-179

Generate MATLAB Code

From the Compute Statistics list, select Generate MATLAB Function.

The generated code is added to the MATLAB editor as an unsaved MATLAB function.

4 Sensitivity Analysis

4-180

Examine the generated code. Significant portions are:

• Statistics Analysis Variables - Specify the inputs and outputs, to determine which inputs have
the most influence on outputs.

• Statistics Options - Specify the types of analyses to be computed.
• Compute Statistics - Solve the sensitivity statistics problem using the sdo.analyze command.

Select Save from the MATLAB editor to save the generated function.

 Generate MATLAB Code for Sensitivity Analysis Statistics to Identify Key Parameters (GUI)

4-181

Run Generated Code

Run the generated function.

The computation shows the result of analyzing which inputs have the most influence on the output.
For example, the Correlation field shows that the Gain parameter has the largest magnitude
correlation with the output, and in a negative direction, meaning that when Gain increases, the
output decreases.

Modify the Generated Code

You can:

• Modify the specified input and output variables.
• Modify the options to change the types of analyses computed.

See Also

More About
• “Generate MATLAB Code for Sensitivity Analysis for Design Space Exploration and Evaluation

(GUI)” on page 4-183

4 Sensitivity Analysis

4-182

Generate MATLAB Code for Sensitivity Analysis for Design
Space Exploration and Evaluation (GUI)

This example shows how to automatically generate a MATLAB function to solve a Sensitivity Analysis
evaluation problem. You use the Sensitivity Analyzer to define an evaluation problem for a model of
the body's vestibulo-ocular reflex, and generate MATLAB code to solve this evaluation problem.

Vestibulo-Ocular Reflex Evaluation Problem

The “Identify Key Parameters for Estimation (GUI)” on page 4-131 example shows how to use the
Sensitivity Analyzer to evaluate a cost function for different parameter values in a model of the
body's vestibulo-ocular reflex. In this example we load a pre-configured Sensitivity Analyzer session
based on that example.

Open the Sensitivity Analyzer for the sdoVOR model:

ssatool('sdoVOR')

In the Sensitivity Analyzer, click Open Session and Open from model workspace. Open session
sdoVOR_sasessionForEvaluation.

This opens a preconfigured session in the Sensitivity Analyzer.

 Generate MATLAB Code for Sensitivity Analysis for Design Space Exploration and Evaluation (GUI)

4-183

Generate MATLAB Code

From the Evaluate Model list, select Generate MATLAB Function.

The generated code is added to the MATLAB editor as an unsaved MATLAB function.

4 Sensitivity Analysis

4-184

Examine the generated code. Significant code portions are:

• Specify Design Variables - Definition of the model parameters being varied.
• Define the Experiments (Signal Matching Requirements) - Definition of the measured and

expected signal data to use for signal matching requirements. In this case the signal matching
requirement is the only requirement. In other cases, there may be other requirements such as
signal bounds.

• Create the Objective Function - Creation of an anonymous function that calls the subfunction
sdoVOR_evalFcn, which evaluates the model using each experiment and compares simulation
and measured experiment outputs. This anonymous function is called by sdo.evaluate at each
iteration of the evaluation problem to evaluate the model at all combinations of parameters.

• Evaluate the Model - Solve the evaluation problem using the sdo.evaluate command.

Select Save from the MATLAB editor to save the generated function.

 Generate MATLAB Code for Sensitivity Analysis for Design Space Exploration and Evaluation (GUI)

4-185

Run Generated Code

Run the generated function.

The first output argument, EvalResult, contains the result of evaluating the model at each
combination of parameter values. The second output argument, Info, contains information about
each evaluation.

Modify the Generated Code

You can:

• Modify the generated sensitivityEvaluationSdoVOR function to include or exclude new
experiments or other requirements, or change evaluation options.

• Call the generated sensitivityEvaluationSdoVOR function with a different set of parameter
values to evaluate.

For details on how to write an objective/constraint function to use with the sdo.evaluate command,
type help sdoExampleCostFunction at the MATLAB command prompt.

Close the model.

See Also

More About
• “Generate MATLAB Code for Sensitivity Analysis Statistics to Identify Key Parameters (GUI)” on

page 4-179

4 Sensitivity Analysis

4-186

Optimization-Based Control Design

• “Time-Domain Design Requirements in Simulink” on page 5-2
• “Frequency-Domain Design Requirements in Simulink” on page 5-9
• “Time- and Frequency-Domain Requirements in Control System Designer App” on page 5-22
• “Time-Domain Simulations in Control System Designer App” on page 5-25
• “Design Optimization-Based Controllers for LTI Systems” on page 5-26
• “Optimize LTI System to Meet Frequency-Domain Requirements” on page 5-27
• “Design Linear Controllers for Simulink Models” on page 5-46
• “Enforcing Time and Frequency Requirements on a Single-Loop Controller Design” on page 5-48
• “Airframe Controller Tuning” on page 5-63
• “DC Motor Controller Tuning” on page 5-65
• “Hydraulic Piston Regulator Tuning” on page 5-67

5

Time-Domain Design Requirements in Simulink

Specify Piecewise-Linear Lower and Upper Bounds
To specify upper and lower bounds on a signal:

1 In the Response Optimizer , select Signal Bound in the New drop-down list. A window opens
where you specify upper or lower bounds on a signal.

2 Specify a requirement name in the Name box.
3 Select the requirement type using the Type list.
4 Specify the edge start and end times and corresponding amplitude in the Time (s) and

Amplitude columns.
5

Click to specify additional bound edges.

Select a row and click to delete a bound edge.
6 In the Select Signals to Bound area, select a logged signal to apply the requirement to.

If you have already selected signals, as described in “Specify Signals to Log” on page 3-10, they
appear in the list. Select the corresponding check-box.

If you have not selected a signal to log:

a
Click . A Create Signal Set dialog box opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a requirement.

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

c
Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Data area of the
Response Optimizer.

7 Click OK.

5 Optimization-Based Control Design

5-2

A variable with the specified requirement name appears in the Data area of the app. A graphical
display of the requirement also appears in the Response Optimizer app window.

8 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-14
• “Position Constraints Exactly” on page 3-15

Alternatively, you can add a Check Custom Bounds block to your model to specify piecewise-linear
bounds.

Specify Step Response Characteristics
To apply a step response requirement to a signal in your model, specify the step response
characteristics as follows:

1 Select a step response requirement from the Response Optimizer.

In the New drop-down menu of the app, in the New Time Domain Requirement section, select
Step Response Envelope.

A Create Requirement dialog box opens where you specify the step response requirements on a
signal.

2 Specify a requirement name in the Name field of the dialog box.
3 Specify the step response characteristics:

• Initial value — Input level before the step occurs
• Step time — Time at which the step takes place
• Final value — Input level after the step occurs
• Rise time — The time taken for the response signal to reach a specified percentage of the

step range. The step range is the difference between the final and initial values.
• % Rise — The percentage of the step range used with Rise time to define the overall rise

time characteristics.
• Settling time — Time taken until the response signal settles within a specified region around

the final value. This settling region is defined as the final step value plus or minus the
specified percentage of the final value.

• % Settling — The percentage of the final value that defines the settling range of settling time
characteristic specified in Settling time.

• % Overshoot — The amount by which the response signal can exceed the final value. This
amount is specified as a percentage of the step range. The step range is the difference
between the final and initial values.

• % Undershoot — The amount by which the response signal can undershoot the initial value.
This amount is specified as a percentage of the step range. The step range is the difference
between the final and initial values.

4 Specify the signal to be bound.

To apply this requirement to a model signal, in the Select Signals to Bound area, select a
logged signal to which you will apply the requirement.

 Time-Domain Design Requirements in Simulink

5-3

If you have already selected a signal to log, as described in “Specify Signals to Log” on page 3-
10, it appears in the list. Select the corresponding check-box.

If you have not selected a signal to log:

a
Click . The Create Signal Set dialog box opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a requirement.

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

c
Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Data area of the
Response Optimizer.

Alternatively, you can use the Check Step Response Characteristics block to specify step response
bounds for a signal.

See Also

“Design Optimization to Meet Step Response Requirements (GUI)”

Track Reference Signals
Use reference tracking to force a model signal to match a desired signal. To track a reference signal:

1 In the Response Optimizer, select Signal Tracking in the New drop-down list. A window
opens where you specify the reference signal to track.

2 Specify a requirement name in the Name box.
3 Define the reference signal by entering vectors, or variables from the workspace, in the Time

vector and Amplitude fields.

Click Update reference signal data to use the new amplitude and time vector as the reference
signal.

4 Specify how the optimization solver minimizes the error between the reference and model signals
using the Tracking Method list:

5 Optimization-Based Control Design

5-4

• SSE — Reduces the sum of squared errors
• SAE — Reduces the sum of absolute errors

5 In the Specify Signal to Track Reference Signal area, select a logged signal to apply the
requirement to.

If you already selected a signal to log, as described in “Specify Signals to Log” on page 3-10, they
appear in the list. Select the corresponding check-box.

If you have not selected a signal to log:

a
Click . A Create Signal Set dialog box opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a requirement.

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

c
Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Data area of the
Response Optimizer.

e Select the check-box corresponding to the signal and click OK.

A variable with the specified requirement name appears in the Data area of the app. A graphical
display of the signal bound also appears in the Response Optimizer app window.

Note When tracking a reference signal, the software ignores the maximally feasible solution option.
For more information on this option, in the Response Optimization tab, click Options >
Optimization Options, and click Help.

Alternatively, you can use the Check Against Reference block to specify a reference signal to track.

See Also

“Design Optimization to Track Reference Signal (GUI)”

 Time-Domain Design Requirements in Simulink

5-5

Specify Custom Requirements
You can specify custom requirements, such as minimizing system energy. To specify custom
requirements:

1 In the Response Optimizer, in New drop-down menu, select Custom Requirement. The
Create Requirement dialog box opens where you specify the custom requirement.

2 Specify a requirement name in Name.
3 Specify the requirement type in the Type drop-down menu.
4 Specify the name of the function that contains the custom requirement in Function. The field

must be specified as a function handle using @. The function must be on the MATLAB path. Click

 to review or edit the function.

If the function does not exist, clicking opens a template MATLAB file. Use this file to
implement the custom requirement. The default function name is myCustomRequirement.

5 (Optional) To prevent the solver from considering specific parameter combinations, select Error
if constraint is violated. Use this option for parameter-only constraints.

During an optimization iteration, the solver first evaluates requirements with this option
selected.

• If the constraint is violated, the solver skips evaluating any remaining requirements and
proceeds to the next iteration.

• If the constraint is not violated, the solver evaluates the remaining requirements for the
current iteration. If any of the remaining requirements bound signals or systems, then the
solver simulates the model.

For more information, see “Skip Model Simulation Based on Parameter Constraint Violation
(GUI)” on page 3-163.

Note If you select this check box, then do not specify signals or systems to bound. If you do
specify signals or systems, then this check box is ignored.

6 (Optional) Specify the signal or system, or both, to be bound.

You can apply this requirement to model signals, or a linearization of your Simulink model
(requires Simulink Control Design), or both.

Click Select Signals and Systems to Bound (Optional) to view the signal and linearization I/O
selection area.

• To apply this requirement to a model signal:

In the Signal area, select a logged signal to which you will apply the requirement.

If you have already selected a signal to log, as described in “Specify Signals to Log” on page
3-10, it appears in the list. Select the corresponding check box.

If you have not selected a signal to log:

a
Click . A Create Signal Set dialog box opens where you specify the logged signal.

5 Optimization-Based Control Design

5-6

b In the Simulink model window, click the signal to which you want to add a requirement.

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

c
Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Data area of the
Response Optimizer.

• To apply this requirement to a linear system:

a Specify the simulation time at which the model is linearized in Snapshot Times. For
multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select
the corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box. For more information on using this dialog box, see
“Create Linearization I/O Sets” on page 3-64.

For more information on linearization, see “What Is Linearization?” (Simulink Control
Design).

7 Click OK.

A new variable, with the specified name, appears in the Data area of the Response Optimizer.
A graphical display of the requirement also appears in the Response Optimizer app window.

See Also

• “Design Optimization to Meet a Custom Objective (GUI)” on page 3-103
• “Design Optimization to Meet a Custom Objective (Code)” on page 3-118

Edit Design Requirements
The Edit Design Requirement dialog box allows you to exactly position constraint segments and to
edit other properties of these constraints. The dialog box has two main components:

 Time-Domain Design Requirements in Simulink

5-7

• An upper panel to specify the constraint you are editing
• A lower panel to edit the constraint parameters

The upper panel of the Edit Design Requirement dialog box resembles the image in the following
figure.

In the Control System Designer app in Control System Toolbox, you can edit design requirements
from the analysis plots. The Design requirement drop-down list will contain all the requirements on
that plot.

Edit Design Requirement Dialog Box Parameters

The particular parameters shown within the lower panel of the Edit Design Requirement dialog box
depend on the type of constraint/requirement. In some cases, the lower panel contains a grid with
one row for each segment and one column for each constraint parameter. The following table
summarizes the various constraint parameters.

Edit Design Requirement Dialog Box Parameters

Parameter Found in Description
Time Upper and lower time response

bounds on step and impulse
response plots

Defines the time range of a segment within
a constraint/requirement.

Amplitude Upper and lower time response
bounds on step and impulse
response plots

Defines the beginning and ending amplitude
of a constraint segment.

Slope (1/s) Upper and lower time response
bounds

Defines the slope, in 1/s, of a constraint
segment. It is an alternative method of
specifying the magnitude values. Entering a
new Slope value changes any previously
defined magnitude values.

Final value Step response bounds Defines the input level after the step occurs.
Rise time Step response bounds Defines a constraint segment for a

particular rise time.
% Rise Step response bounds The percentage of the step's range used to

describe the rise time.
Settling time Step response bounds Defines a constraint segment for a

particular settling time.
% Settling Step response bounds The percentage of the final value that

defines the settling region used to describe
the settling time.

% Overshoot Step response bounds The percentage amount by which the signal
can exceed the final value before settling.

% Undershoot Step response bounds Defines the constraint segments for a
particular percent undershoot.

5 Optimization-Based Control Design

5-8

Frequency-Domain Design Requirements in Simulink

Specify Lower Bounds on Gain and Phase Margin
To specify lower bounds on the gain and phase margin of a linear system:

1 In the Response Optimizer, select Gain and Phase Margin in the New list. A window opens
where you specify lower bounds on the gain and phase margin of your linear system.

2 Specify a requirement name in Name.
3 Specify bounds on the gain margin or phase margin, or both.

• Gain margin — Amount of gain increase or decrease required to make the loop gain unity at
the frequency where the phase angle is –180°.

• Phase margin — Amount of phase increase or decrease required to make the phase angle –
180° when the loop gain is 1.0

To specify a lower bound on the gain margin or phase margin, or both, select the corresponding
check box and enter the lower bound value.

4 In the Select Systems to Bound section, select the linear systems to which this requirement
applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

 Frequency-Domain Design Requirements in Simulink

5-9

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
5 Click OK.

A variable with the specified requirement name appears in the Data area of the app. A graphical
display of the requirement also appears in the Response Optimizer app window.

6 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-14
• “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Gain and Phase Margins block to specify bounds on the gain and
phase margin. (Requires Simulink Control Design.)

Specify Piecewise-Linear Lower and Upper Bounds on Frequency
Response
To specify upper or lower bounds on the magnitude of a system response:

1 In the Response Optimizer, select Bode Magnitude in the New list. A window opens where
you specify the lower or upper bounds on the magnitude of the system response.

2 Specify a requirement name in the Name box.
3 Specify the requirement type using the Type list.
4 Specify the edge start and end frequencies and corresponding magnitude in the Frequency and

Magnitude columns.
5 Insert or delete bound edges.

Click to specify additional bound edges.

Select a row and click to delete a bound edge.
6 In the Select Systems to Bound section, select the linear systems to which this requirement

applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

5 Optimization-Based Control Design

5-10

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
7 Click OK.

A new variable with the specified name appears in the Data area of the Response Optimizer
app window. A graphical display of the requirement also appears in the Response Optimizer
app window.

8 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-14
• “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Bode Characteristics block to specify bounds on the magnitude
of the system response. (Requires Simulink Control Design.)

Specify Bound on Closed-Loop Peak Gain
To specify an upper bound on the closed-loop peak response of a system:

1 In the Response Optimizer, select Closed-Loop Peak Gain in the New list. A window opens
where you specify an upper bound on the closed-loop peak gain of the system.

2 Specify a requirement name in the Name box.
3 Specify the upper bound on the closed-loop peak gain in the Closed-Loop peak gain box.
4 In the Select Systems to Bound section, select the linear systems to which this requirement

applies.

 Frequency-Domain Design Requirements in Simulink

5-11

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
5 Click OK.

A new variable with the specified name appears in the Data area of the Response Optimizer
app window. A graphical display of the requirement also appears in the Response Optimizer
app window.

6 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-14
• “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Nichols Characteristics block to specify bounds on the
magnitude of the system response. (Requires Simulink Control Design.)

5 Optimization-Based Control Design

5-12

Specify Lower Bound on Damping Ratio
To specify a lower bound on the damping ratio of the system:

1 In the Response Optimizer, select Damping Ratio in the New list. A window opens where you
specify a lower bound on the damping ratio of the system.

2 Specify a requirement name in the Name box.
3 Specify the lower bound on the damping ratio in the Damping ratio box.
4 In the Select Systems to Bound section, select the linear systems to which this requirement

applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
5 Click OK.

A new variable with the specified name appears in the Data area of the Response Optimizer
app. A graphical display of the requirement also appears in the Response Optimizer app
window.

 Frequency-Domain Design Requirements in Simulink

5-13

6 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-14
• “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Pole-Zero Characteristics block to specify a bound on the
damping ratio. (Requires Simulink Control Design.)

Specify Upper and Lower Bounds on Natural Frequency
To specify a bound on the natural frequency of the system:

1 In the Response Optimizer, select Natural Frequency in the New list. A window opens where
you specify a bound on the natural frequency of the system.

2 Specify a requirement name in the Name box.
3 Specify a lower or upper bound on the natural frequency in the Natural frequency box.
4 In the Select Systems to Bound section, select the linear systems to which this requirement

applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

5 Optimization-Based Control Design

5-14

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
5 Click OK.

A new variable with the specified name appears in the Data area of the Response Optimizer
app. A graphical display of the requirement also appears in the Response Optimizer app
window.

6 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-14
• “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Pole-Zero Characteristics block to specify a bound on the natural
frequency. (Requires Simulink Control Design.)

Specify Upper Bound on Approximate Settling Time
To specify an upper bound on the approximate settling time of the system:

1 In the Response Optimizer, select Settling Time in the New list. A window opens where you
specify an upper bound on the approximate settling time of the system.

2 Specify a requirement name in the Name box.

 Frequency-Domain Design Requirements in Simulink

5-15

3 Specify the upper bound on the approximate settling time in the Settling time box.
4 In the Select Systems to Bound section, select the linear systems to which this requirement

applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
5 Click OK.

A new variable with the specified name appears in the Data area of the Response Optimizer
app. A graphical display of the requirement also appears in the Response Optimizer app
window.

6 (Optional) In the graphical display, you can:

5 Optimization-Based Control Design

5-16

• “Move Constraints Graphically” on page 3-14
• “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Pole-Zero Characteristics block to specify the approximate
settling time. (Requires Simulink Control Design.)

Specify Piecewise-Linear Upper and Lower Bounds on Singular Values
To specify piecewise-linear upper and lower bounds on the singular values of a system:

1 In the Response Optimizer, select Singular Values in the New list. A window opens where you
specify the lower or upper bounds on the singular values of the system.

2 Specify a requirement name in the Name box.
3 Specify the requirement type using the Type list.
4 Specify the edge start and end frequencies and corresponding magnitude in the Frequency and

Magnitude columns, respectively.
5 Insert or delete bound edges.

Click to specify additional bound edges.

Select a row and click to delete a bound edge.
6 In the Select Systems to Bound section, select the linear systems to which this requirement

applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
7 Click OK.

A new variable with the specified name appears in the Data area of the Response Optimizer
app. A graphical display of the requirement also appears in the Response Optimizer app
window.

 Frequency-Domain Design Requirements in Simulink

5-17

8 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-14
• “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Singular Value Characteristics block to specify bounds on the
singular value. (Requires Simulink Control Design).

Specify Step Response Characteristics
To apply a step response requirement to a linearization of your model (requires Simulink Control
Design), specify the step response characteristics as follows:

1 Select a step response requirement from the Response Optimizer.

In the New drop-down menu of the app, in the New Frequency Domain Requirement section,
select Step Response Envelope.

A Create Requirement dialog box opens where you specify the step response requirements.
2 Specify a requirement name in the Name field of the dialog box.
3 Specify the step response characteristics:

• Initial value — Input level before the step occurs
• Step time — Time at which the step takes place
• Final value — Input level after the step occurs
• Rise time — The time taken for the response signal to reach a specified percentage of the

step range. The step range is the difference between the final and initial values.

5 Optimization-Based Control Design

5-18

• % Rise — The percentage of the step range used with Rise time to define the overall rise
time characteristics.

• Settling time — Time taken until the response signal settles within a specified region around
the final value. This settling region is defined as the final step value plus or minus the
specified percentage of the final value.

• % Settling — The percentage of the final value that defines the settling range of settling time
characteristic specified in Settling time.

• % Overshoot — The amount by which the response signal can exceed the final value. This
amount is specified as a percentage of the step range. The step range is the difference
between the final and initial values.

• % Undershoot — The amount by which the response signal can undershoot the initial value.
This amount is specified as a percentage of the step range. The step range is the difference
between the final and initial values.

4 Specify the systems to be bound.

To apply this requirement to a linearization of your Simulink model:

a In the Select Systems to Bound area, specify the simulation time at which the model is
linearized in Snapshot Times. For multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).

Alternatively, you can use the Check Step Response Characteristics block to specify step response
bounds for a signal.

Specify Custom Requirements
You can specify custom requirements, such as minimizing system energy. To specify custom
requirements:

1 In the Response Optimizer, in New drop-down menu, select Custom Requirement. The
Create Requirement dialog box opens where you specify the custom requirement.

2 Specify a requirement name in Name.
3 Specify the requirement type in the Type drop-down menu.
4 Specify the name of the function that contains the custom requirement in Function. The field

must be specified as a function handle using @. The function must be on the MATLAB path. Click

 to review or edit the function.

 Frequency-Domain Design Requirements in Simulink

5-19

If the function does not exist, clicking opens a template MATLAB file. Use this file to
implement the custom requirement. The default function name is myCustomRequirement.

5 (Optional) To prevent the solver from considering specific parameter combinations, select Error
if constraint is violated. Use this option for parameter-only constraints.

During an optimization iteration, the solver first evaluates requirements with this option
selected.

• If the constraint is violated, the solver skips evaluating any remaining requirements and
proceeds to the next iteration.

• If the constraint is not violated, the solver evaluates the remaining requirements for the
current iteration. If any of the remaining requirements bound signals or systems, then the
solver simulates the model.

For more information, see “Skip Model Simulation Based on Parameter Constraint Violation
(GUI)” on page 3-163.

Note If you select this check box, then do not specify signals or systems to bound. If you do
specify signals or systems, then this check box is ignored.

6 (Optional) Specify the signal or system, or both, to be bound.

You can apply this requirement to model signals, or a linearization of your Simulink model
(requires Simulink Control Design), or both.

Click Select Signals and Systems to Bound (Optional) to view the signal and linearization I/O
selection area.

• To apply this requirement to a model signal:

In the Signal area, select a logged signal to which you will apply the requirement.

If you have already selected a signal to log, as described in “Specify Signals to Log” on page
3-10, it appears in the list. Select the corresponding check box.

If you have not selected a signal to log:

a
Click . A Create Signal Set dialog box opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a requirement.

5 Optimization-Based Control Design

5-20

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

c
Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Data area of the
Response Optimizer.

• To apply this requirement to a linear system:

a Specify the simulation time at which the model is linearized in Snapshot Times. For
multiple simulation snapshot times, specify a vector.

b Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select
the corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box. For more information on using this dialog box, see
“Create Linearization I/O Sets” on page 3-64.

For more information on linearization, see “What Is Linearization?” (Simulink Control
Design).

7 Click OK.

A new variable, with the specified name, appears in the Data area of the Response Optimizer.
A graphical display of the requirement also appears in the Response Optimizer app window.

See Also

• “Design Optimization to Meet a Custom Objective (GUI)” on page 3-103
• “Design Optimization to Meet a Custom Objective (Code)” on page 3-118

 Frequency-Domain Design Requirements in Simulink

5-21

Time- and Frequency-Domain Requirements in Control System
Designer App

Root Locus Diagrams
Settling Time

If you specify a settling time in the continuous-time root locus, a vertical line appears on the root
locus plot at the pole locations associated with the value provided (using a first-order approximation).
In the discrete-time case, the constraint is a curved line.

It is required that Re pole < − 4.6/Tsettling for continuous systems and
log(abs(pole))/Tdiscrete < − 4.6/Tsettling for discrete systems. This is an approximation of the settling
time based on second-order dominant systems.

Percent Overshoot

Specifying percent overshoot in the continuous-time root locus causes two rays, starting at the root
locus origin, to appear. These rays are the locus of poles associated with the percent value (using a
second-order approximation). In the discrete-time case, the constraint appears as two curves
originating at (1,0) and meeting on the real axis in the left-hand plane.

The percent overshoot p.o constraint can be expressed in terms of the damping ratio, as in this
equation:

p . o . = 100e−πζ / 1− ζ2

where ζ is the damping ratio.

Damping Ratio

Specifying a damping ratio in the continuous-time root locus causes two rays, starting at the root
locus origin, to appear. These rays are the locus of poles associated with the damping ratio. In the
discrete-time case, the constraint appears as curved lines originating at (1,0) and meeting on the real
axis in the left-hand plane.

The damping ratio defines a requirement on −Re pole /abs(pole) for continuous systems and on

r = abs(pSys)
t = angle(pSys)

c = − log(r)/ (log(r))2 + t2

for discrete systems.

Natural Frequency

If you specify a natural frequency, a semicircle centered around the root locus origin appears. The
radius equals the natural frequency.

The natural frequency defines a requirement on abs(pole) for continuous systems and on

5 Optimization-Based Control Design

5-22

r = abs(pSys)
t = angle(pSys)

c = (log(r))2 + t2/Tsmodel

for discrete systems.

Region Constraint

Specifies an exclusion region in the complex plane, causing a line to appear between the two
specified points with a shaded region below the line. The poles must not lie in the shaded region.

Open-Loop and Prefilter Bode Diagrams
Gain and Phase Margins

Specify a minimum phase and or a minimum gain margin.

Upper Gain Limit

You can specify an upper gain limit, which appears as a straight line on the Bode magnitude curve.
You must select frequency limits, the upper gain limit in decibels, and the slope in dB/decade.

Lower Gain Limit

Specify the lower gain limit in the same fashion as the upper gain limit.

Open-Loop Nichols Plots
Phase Margin

Specify a minimum phase amount.

While displayed graphically at only one location around a multiple of -180 degrees, this requirement
applies to phase margin regardless of actual phase (i.e., it is interpreted for all multiples of -180).

Gain Margin

Specify a minimum gain margin.

While displayed graphically at only one location around a multiple of -180 degrees, this requirement
applies to gain margin regardless of actual phase (i.e., it is interpreted for all multiples of -180).

Closed-Loop Peak Gain

Specify a peak closed-loop gain at a given location. The specified value can be positive or negative in
dB. The constraint follows the curves of the Nichols plot grid, so it is recommended that you have the
grid on when using this feature.

While displayed graphically at only one location around a multiple of -180 degrees, this requirement
applies to gain margin regardless of actual phase (i.e., it is interpreted for all multiples of -180).

 Time- and Frequency-Domain Requirements in Control System Designer App

5-23

Gain-Phase Requirement

Specifies an exclusion region for the response on the Nichols plot. The response must not pass
through the shaded region.

This only applies to the region (phase and gain) drawn.

Step/Impulse Response Plots
Upper Time Response Bound

You can specify an upper time response bound for step and impulse responses.

Lower Time Response Bound

You can specify a lower time response bound for step and impulse responses.

Step Response Bound

For a step response plot, you can also specify a step response bound design requirement.

To define a step response bound requirement, specify the following step response parameters:

• Final value — Final steady-state value
• Rise time — Time required to reach the specified percentage, % Rise, of the Final value.
• Settling time — Time at which the response enters and stays within the settling percentage, %

Settling, of the Final value.
• % Overshoot — Maximum percentage overshoot above the Final value.
• % Undershoot — Maximum percentage undershoot below the Initial value.

In the Control System Designer app, step response plots always use an Initial value and a Step
time of 0.

See Also

Related Examples
• “Design Optimization-Based Controllers for LTI Systems” on page 5-26
• “Optimize LTI System to Meet Frequency-Domain Requirements” on page 5-27
• “Design Optimization-Based PID Controller for Linearized Simulink Model (GUI)”

5 Optimization-Based Control Design

5-24

Time-Domain Simulations in Control System Designer App
When performing optimization-based tuning in the Control System Designer app, Simulink Design
Optimization software automatically sets the model simulation start and stop times; you cannot
directly change them. By default, the simulation starts at 0 and continues until the app determines
that the dynamics of the model have settled out. In addition, when the design requirements extend
beyond this point, the simulation continues to the extent of the design requirements. Although you
cannot directly adjust the start or stop time of the simulation, you can adjust the design requirements
to extend further in time and thus force the simulation to continue to a certain point.

See Also

Related Examples
• “Optimize LTI System to Meet Frequency-Domain Requirements” on page 5-27

 Time-Domain Simulations in Control System Designer App

5-25

Design Optimization-Based Controllers for LTI Systems
This topic shows how to design optimization-based linear controllers for an LTI model.

To design an optimization-based linear controller:

1 Create and import a linear model into the Control System Designer app. You can create an LTI
model at the MATLAB command line, as described in “Create an LTI Plant Model” on page 5-27.

2 Create a Control System Designer session, as described in “Open the Control System Designer
App” on page 5-28.

3 In the Tuning Methods drop-down list, select Optimization Based Tuning to open the
Response Optimization window. For more information, see “Open Optimization Based Tuning
Method” on page 5-31 .

4 In the Response Optimization window, select the Compensators tab to select and configure the
compensator elements you want to tune during the response optimization. For more information,
see “Select Tunable Compensator Elements” on page 5-33.

5 In the Design requirements tab, select the design requirements you want the system to satisfy.
For more information, see “Add Design Requirements” on page 5-34.

6 In the Response Optimization window, click Start Optimization. The optimization progress
results are displayed in the Optimization tab. The Compensators pane contains the new,
optimized compensator element values. For more information, see “Optimize the System
Response” on page 5-42.

See Also

Related Examples
• “Optimize LTI System to Meet Frequency-Domain Requirements” on page 5-27

5 Optimization-Based Control Design

5-26

Optimize LTI System to Meet Frequency-Domain Requirements
This example shows how to use frequency-domain design requirements to optimize the response of an
LTI system in the Control System Designer app.

When used with Control System Toolbox software, you can place Simulink Design Optimization design
requirements or constraints on plots in the Control System Designer app. You can include design
requirements for response optimization in the frequency-domain and time-domain.

You can specify frequency-domain design requirements to optimize response signals for any model
that you design in the Control System Designer app, such as:

• Command-line LTI models created with the Control System Toolbox commands
• Simulink models that have been linearized using Simulink Control Design software

Design Requirements
In this example, you use a linearized version of the Simulink model, srotut1.

You use optimization methods to design a compensator so that the closed-loop system meets the
following design specifications when you excite the system with a unit step input:

• Maximum 30-second settling time
• Maximum 10% overshoot
• Maximum 10-second rise time
• Limit of ±0.7 on the actuator signal

Create an LTI Plant Model
In the srotut1 model, the plant model is composed of a gain, a limited integrator, a transfer
function, and a transport delay block.

Design the compensator for the open-loop transfer function of the linearized srotut1 model. The
linearized srotut1 plant model is composed of the gain, an unlimited integrator, the transfer
function, and a Padé approximation to the transport delay.

To create an open-loop transfer function based on the linearized srotut1 model, enter the following
commands.

w0 = 1;
zeta = 1;
Kint = 0.5;
Tdelay = 1;
[delayNum,delayDen] = pade(Tdelay,1);
integrator = tf(Kint,[1 0]);

 Optimize LTI System to Meet Frequency-Domain Requirements

5-27

transfer_fcn = tf(w0^2,[1 2*w0*zeta w0^2]);
delay_block = tf(delayNum,delayDen);
open_loopTF = integrator*transfer_fcn*delay_block;

If the plant model is an array of models (Control System Toolbox), the controller is designed for a
nominal model only. You can also analyze the control design for the remaining models in the array.
For more information, see “Multimodel Control Design” (Control System Toolbox).

Tip You can directly linearize the Simulink model using Simulink Control Design software.

Open the Control System Designer App
This example uses a root locus diagram to design the response of the open-loop transfer function,
open_loopTF. To create a Control System Designer app session with a root locus plot for the
open-loop transfer function, use the following command:

controlSystemDesigner('rlocus',open_loopTF)

5 Optimization-Based Control Design

5-28

The Control System Designer app opens, and a Root Locus Editor is displayed. The app lets you
design controllers for single-input, single-output (SISO) systems in MATLAB and Simulink. For more
information, see the “Classical Control Design” (Control System Toolbox) category.

The app also displays the step response plot of the system. The plot shows the response of the closed-
loop system from r (input to the prefilter, F) to y (output of the plant model, G).

 Optimize LTI System to Meet Frequency-Domain Requirements

5-29

To choose the architecture for the control system you are designing, in the app click Edit
Architecture. This example uses the default architecture. In this system, the plant model, G, is the
open-loop transfer function open_loopTF. The prefilter, F, and the sensor, H, are set to 1, and the
compensator, C, is the compensator that is designed using response optimization methods.

5 Optimization-Based Control Design

5-30

Open Optimization Based Tuning Method
There are several possible methods for designing a SISO system; this example uses an automated
approach that uses response optimization methods.

To create a response optimization task, in the Tuning Methods drop-down list, select
Optimization Based Tuning.

 Optimize LTI System to Meet Frequency-Domain Requirements

5-31

The Response Optimization window has four tabs. Except for the first tab, each tab corresponds to a
step in the response optimization process:

• Overview — Schematic diagram of the response optimization process.
• Compensators — Select and configure the compensator elements that you want to tune. See

“Select Tunable Compensator Elements” on page 5-33.
• Design requirements — Select the design requirements that you want the system to meet after

tuning the compensator elements. See “Add Design Requirements” on page 5-34.
• Optimization — Configure optimization options, and view the progress of the response

optimization. See “Optimize the System Response” on page 5-42.

Note When optimizing responses in the app, you cannot add uncertainty to parameters or
compensator elements.

5 Optimization-Based Control Design

5-32

Select Tunable Compensator Elements
You can tune compensator elements or parameters within compensators in your system to meet the
design requirements you specify.

To specify the compensator elements to tune:

1 In the Response Optimization window, select the Compensators tab.
2 In the Compensators tab, select the check boxes in the Optimize column that correspond to the

compensator elements to tune.

In this example, select Gain in the compensator C.

 Optimize LTI System to Meet Frequency-Domain Requirements

5-33

Add Design Requirements
You can use both frequency-domain and time-domain design requirements to tune parameters in a
control system.

This example uses the design specifications described in “Design Requirements” on page 5-27. Create
design requirements to meet these specifications:

• “Settling Time Design Requirement” on page 5-35
• “Overshoot Design Requirement” on page 5-36
• “Rise Time Design Requirement” on page 5-37
• “Actuator Limit Design Requirement” on page 5-39

After you add the design requirements, you can select a subset of requirements for controller design,
as described in “Select the Design Requirements to Use During Response Optimization” on page 5-
41. In the Design requirements tab of the Response Optimization window, you can create design
requirements and select the requirements you want to use for optimization.

5 Optimization-Based Control Design

5-34

Settling Time Design Requirement

The first design requirement is to have a settling time of 30 seconds or less. This specification can be
represented on a root locus diagram as a constraint on the real parts of the poles of the open-loop
system.

To add the settling time design requirement:

1 In the Design requirements tab, click Add new design requirement. A New Design
Requirement dialog box opens.

In this dialog box, you can specify new design requirements, and add them to a new or existing
plot.

2 Add a design requirement to the existing root locus diagram.

a In the Design requirement type drop-down list, select Settling time.
b In the Requirement for response drop-down list, select LoopTransfer_C.
c Specify Settling time as 30 seconds.
d Click OK.

The settling time design requirement is listed in the Design Requirements tab of the Response
Optimization window.

In the app, the design requirement appears on the root locus plot as a vertical line.

 Optimize LTI System to Meet Frequency-Domain Requirements

5-35

Overshoot Design Requirement

The second design requirement is to have a percentage overshoot of 10% or less. This requirement is
related to the damping ratio on a root locus diagram. In addition to adding a design requirement with
the Add new design requirement button, you can also right-click directly on the plots to add the
requirement.

To add this design requirement:

1 In the Control System Designer app, right-click within the white space of the root-locus
diagram. Select Design Requirements > New to open the New Design Requirement dialog box.

2 In the Design requirement type drop-down list, select Percent overshoot.
3 Specify Percent overshoot as 10.
4 Click OK.

In the app, the design requirement appears on the root-locus plot as two lines radiating at an angle
from the origin.

5 Optimization-Based Control Design

5-36

Rise Time Design Requirement

The third design requirement is to have a rise time of 10 seconds or less. This requirement
corresponds to a lower limit on a Bode Magnitude diagram.

To add this design requirement:

1 In the app, in the Tuning Methods drop-down list, select Bode Editor.

 Optimize LTI System to Meet Frequency-Domain Requirements

5-37

2 In the Select Response to Edit dialog box, specify Select Response to Edit as
LoopTransfer_C, and click Plot.

A Bode plot is displayed in a Bode Editor.
3 Right-click within the white space of the open-loop Bode plot, and select Design Requirements

> New, to open the New Design Requirement dialog box.
4 Specify the design requirement to represent the rise time, and add it to the new Bode plot.

a In the Design requirement type drop-down list, select Lower gain limit.
b Specify the Frequency range as 1e-2 to 0.17.
c Specify the Magnitude range as 0 to 0.
d Click OK.

The design requirement appears on the plot as a horizontal line.

5 Optimization-Based Control Design

5-38

Actuator Limit Design Requirement

The fourth design requirement is to limit the actuator signal to within ±0.7.

To add this design requirement:

1 In the Response Optimization window, in the Design requirements, click Add new design
requirement. A New Design Requirement dialog box opens.

2 Create a time-domain design requirement to represent the upper limit on the actuator signal, and
add it to a new step response plot:

a In the Design requirement type drop-down list, select Step response upper
amplitude limit.

b In the Requirement for response drop-down list, select IOTransfer_r2u.
c Specify the Time range as 0 to 10.
d Specify the Amplitude range as 0.7 to 0.7.
e Click OK. A second step response plot for the closed-loop response from r to u is generated

in the app. The plot contains a horizontal line representing the upper limit on the actuator
signal.

f To extend this limit for all times (to t = ∞), right-click in the yellow shaded area, and select
Extend to inf.

 Optimize LTI System to Meet Frequency-Domain Requirements

5-39

To add the corresponding design requirement for the lower limit on the actuator signal:

1 In the Response Optimization window, in the Design requirements, click Add new design
requirement. A New Design Requirement dialog box opens.

2 Create a time-domain design requirement to represent the lower limit on the actuator signal, and
add it to the step response plot:

a In the Design requirement type drop-down list, select Step response lower
amplitude limit.

b In the Requirement for response drop-down list, select IOTransfer_r2u.
c Specify the Time range as 0 to 10.
d Specify the Amplitude range as -0.7 to -0.7.
e Click OK. The step response plot now contains a second horizontal line representing the

lower limit on the actuator signal.
f To extend this limit for all times (to t = ∞), right-click in the yellow shaded area of the design

requirement, and select Extend to inf.

5 Optimization-Based Control Design

5-40

Select the Design Requirements to Use During Response Optimization

The table in the Design requirements tab lists all the specified design requirements. Select the
design requirements you want to use in the response optimization. This example uses all the current
design requirements.

 Optimize LTI System to Meet Frequency-Domain Requirements

5-41

Optimize the System Response
After you select the compensator elements to tune and add design requirements, you can optimize
the system response.

To optimize the response of the system, in the Optimization tab of the Response Optimization
window, click Start Optimization.

The Optimization tab displays the progress of the optimization.

The status message indicates that the optimization solver found a solution that meets the design
requirements within the tolerances. Verify that the design requirements are satisfied.

5 Optimization-Based Control Design

5-42

Create and Display the Closed-Loop System
After designing a compensator, you can export it to the MATLAB workspace and create a model of the
full closed-loop system. To export the tuned compensator:

1 In the app, select Export.

 Optimize LTI System to Meet Frequency-Domain Requirements

5-43

2 In the Export Model dialog box, select C, the compensator you designed, and click Export.

At the command line, enter the following command to create the closed-loop system, CL, from the
open-loop transfer function, open_loopTF, and the compensator, C:

CL = feedback(C*open_loopTF,1)

The following model is returned:

CL =

 -0.19414 (s-2)
 --
 (s^2 + 0.409s + 0.1136) (s^2 + 3.591s + 3.418)

Continuous-time zero/pole/gain model.

To create a step response plot of the closed-loop system, enter the following command.

step(CL);

5 Optimization-Based Control Design

5-44

See Also

More About
• “Design Optimization-Based Controllers for LTI Systems” on page 5-26
• “Time-Domain Simulations in Control System Designer App” on page 5-25

 Optimize LTI System to Meet Frequency-Domain Requirements

5-45

Design Linear Controllers for Simulink Models
When you have Control System Toolbox and Simulink Control Design software, you can perform
frequency-domain optimization of Simulink models.

You can use Simulink Control Design software to configure the Control System Designer app with
compensators, inputs, outputs, and loops computed from a Simulink model. For more information, see
topics in the “Classical Control Design” (Simulink Control Design) category.

After you configure the Control System Designer app, use Simulink Design Optimization software
to optimize the controller parameters of the linearized Simulink model. For an example of
optimization-based control design for a model linearized using Simulink Control Design software, see
“Design Optimization-Based PID Controller for Linearized Simulink Model (GUI)”.

When tuning compensators derived from Simulink Control Design software, the tuning of
compensators from a Simulink model is done through the masks of the Simulink blocks representing
each compensator. When selecting parameters to optimize, you can tune the compensator in the pole,
zero, or gain format, or in a format consistent with the Simulink block mask.

Mask of a Simulink Compensator Block

5 Optimization-Based Control Design

5-46

Response Optimization Compensators Tab — Parameterized Format

Response Optimization Compensators Tab — Pole/Zero Format

Note You cannot change the compensator format if the compensator is not a Simulink block.

See Also

Related Examples
• “Design Optimization-Based PID Controller for Linearized Simulink Model (GUI)”

 Design Linear Controllers for Simulink Models

5-47

Enforcing Time and Frequency Requirements on a Single-Loop
Controller Design

This example shows how to use Simulink® Design Optimization™ to tune a compensator in a
Simulink model. You will add performance requirements to further refine and optimize an initial
compensator design performed with Simulink® Control Design™ (see “Single Loop Feedback/
Prefilter Compensator Design” (Simulink Control Design)).

With Simulink Design Optimization you can graphically specify design and performance requirements
for your system by positioning bounds on response plots such as Bode, Nichols, Pole/Zero, Step, or
Impulse. Then, using optimization-based methods you can automatically tune compensator elements
to satisfy the design requirements. Compensator elements that are tunable via optimization-based
tuning include gains, poles, and zeros.

Requires Simulink® Control Design™.

Opening the Model

Open the model using the command below, and double click on the orange block to launch the
Control System Designer app.

speedctrl_demo

Design Overview

This example designs a single feedback loop for the speed control of an engine. A preliminary PI
controller design has been created using Simulink Control Design (see “Single Loop Feedback/
Prefilter Compensator Design” (Simulink Control Design)) and is used as a starting point to further
refine the design using response optimization. This example will tune the controller to satisfy the
following time- and frequency-domain performance specifications:

Requirement 1. A lower amplitude limit on the step response output of -0.1 and a 3 second rise time
to reach 95% of the set-point value.

Requirement 2. A maximum overshoot of 1% for the unit step response from Speed Reference to
Speed Output.

5 Optimization-Based Control Design

5-48

Requirement 3. A minimum loop gain of 10db over the frequency range 1e-4 to 1 rad/sec to ensure
good output disturbance rejection and reference tracking over this frequency range.

Requirement 4. A maximum loop gain of -10db over the frequency range 10 to 1e4 rad/sec to ensure
adequate high frequency noise rejection, and together with the low frequency requirement, to ensure
a loop bandwidth of between 1 and 10 rad/sec.

Launching Simulink® Design Optimization™

Both time- and frequency-domain response optimization are integrated into the Control System
Designer app. In the Control System tab, in the Tuning Methods drop-down list, select
Optimization Based Tuning.

Configuring an Optimization

The first step in configuring an optimization is to select the compensator elements to tune. For this
example select the Gain and Real Zero of the PID controller; the reference filter is not tuned.

 Enforcing Time and Frequency Requirements on a Single-Loop Controller Design

5-49

Adding Design Requirements

The next step is to create the design requirements that the optimization should satisfy. Design
requirements are visualized on system response plots. You can add response plots by using the
Graphical Tuning or the New Plot drop down lists in the Control System Designer app. The
"Getting Started with the Control System Designer" example shows how to use the Control System
Designer.

There are two ways to add requirements; you can add them using the Add new design requirement
button on the Design Requirements tab in the Response Optimization window or by right clicking
on a response plot and selecting Design Requirements->New.

To add Requirement 1 to limit the lower amplitude of the output resulting from a step input,

1. Right click on the lower step response plot and select Design Requirements->New .

5 Optimization-Based Control Design

5-50

2. Specify the lower limit as -0.1 over the time range 0 to 5 seconds.

This creates the lower amplitude limit on the step response plot as shown in the next figure.

 Enforcing Time and Frequency Requirements on a Single-Loop Controller Design

5-51

To add the rise time requirement to the step response, you can graphically manipulate the lower
amplitude requirement on the step response plot.

1. Right click the lower amplitude limit requirement and select Split to split a segment into two
pieces.

5 Optimization-Based Control Design

5-52

2. Right click the second segment of the requirement and select Extend to inf to extend it to infinity.

 Enforcing Time and Frequency Requirements on a Single-Loop Controller Design

5-53

3. Right click the second segment of requirement, select Edit, and set the values to represent a 95%
rise time at 3 seconds.

5 Optimization-Based Control Design

5-54

Alternatively you can left click the second segment of the requirement and drag it into position.

Next add Requirement 2 for maximum overshoot to the step response plot. The time-domain
constraints on the step response plot are shown in the next figure.

 Enforcing Time and Frequency Requirements on a Single-Loop Controller Design

5-55

The plot shows the lower amplitude limit of -0.1, maximum overshoot and 95% of the unit step
response value of 1.01 and 0.95 respectively.

To add Requirement 3 for minimum loop gain,

1. Click Add new design requirement in the Design Requirements tab of the Response
Optimization window.

2. Specify the Bode magnitude lower limit for the open loop as 10db over the frequency range 1e-4 to
1 rad/sec.

5 Optimization-Based Control Design

5-56

This creates the minimum loop gain constraint on the Bode magnitude plot as shown in the next
figure.

 Enforcing Time and Frequency Requirements on a Single-Loop Controller Design

5-57

Add Requirement 4 for the maximum loop gain to the Bode magnitude plot to satisfy the overall
design specifications. The Bode magnitude plot shows the minimum and maximum loop gain over the
specified frequency range.

Select the design requirements for optimization from the Design Requirements tab. After you have
selected the requirements, the Design Requirements table appears as shown next:

5 Optimization-Based Control Design

5-58

Running an Optimization

After defining the design requirements and selecting the compensator elements to tune, the
optimization is ready to run. Select the Optimization tab and click the Start Optimization button.
During optimization the response plots update and numerical progress data is displayed in the
Optimization tab.

 Enforcing Time and Frequency Requirements on a Single-Loop Controller Design

5-59

Inspecting and Verifying the Final Design

You can check how well the optimized design meets the specified design requirements by viewing the
optimized responses (shown below).

To verify the compensator design on the full non-linear Simulink model, return to the Control
System Designer and click the Update Simulink Block Parameters button to write the
compensator back to the Simulink model. You can now simulate the Simulink model with the newly
designed compensator.

5 Optimization-Based Control Design

5-60

 Enforcing Time and Frequency Requirements on a Single-Loop Controller Design

5-61

bdclose('speedctrl_demo')

See Also

Related Examples
• “Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)” on page 3-76

More About
• “Specify Time-Domain Design Requirements in the App” on page 3-16
• “Specify Frequency-Domain Design Requirements in the App” on page 3-43

5 Optimization-Based Control Design

5-62

Airframe Controller Tuning
This example shows how to design two feedback loops in a cascaded control system to track
reference signals. The design uses the body rate (q) as an inner feedback loop and the acceleration
(az) as an outer feedback signal. This example is based on the Simulink® Control Design™ example
“Cascaded Multiloop Feedback Design” (Simulink Control Design).

After loading the model and pre-configured Control System Designer app session, you can design a
new controller using Response Optimization.

Requires Simulink® Control Design™.

Opening the Model

Open the model using the command below, and double click on the orange block to launch the
Control System Designer.

airframe_demo

Design Overview

The goal of the design is to have an overall rise time of under 0.5 seconds for the outer feedback loop.
A preliminary design is done using Simulink Control Design (see “Cascaded Multiloop Feedback
Design” (Simulink Control Design).) and is used as a starting point for optimization. The controller
must satisfy the following requirements:

• A Gain Margin >= 10db and Phase Margin >= 50 degrees for the inner feedback loop.
• A Gain Margin >= 10db and Phase Margin >= 60 degrees for the outer feedback loop.
• An overshoot of at most 1%, a 80% rise time of 0.5 seconds, and a 99% rise time of 0.6 seconds for

the step response of the outer loop.

These design requirements have been added to the Control System Designer app. To complete the
design using response optimization, in the Control System tab, in the Tuning Methods drop-down

 Airframe Controller Tuning

5-63

list, select Optimization Based Tuning. In the Response Optimization window, click Start
Optimization.

bdclose('airframe_demo')

See Also

More About
• “Specify Time-Domain Design Requirements in the App” on page 3-16
• “Specify Frequency-Domain Design Requirements in the App” on page 3-43

5 Optimization-Based Control Design

5-64

DC Motor Controller Tuning
This example shows how to design a PI control system to control the speed of a DC motor, and is
based on the Control System Toolbox™ example "DC Motor Control".

After loading the model and pre-configured Control System Designer, you can design a new controller
using Response Optimization.

Requires Control System Toolbox™.

Opening the Model and Control System Designer

Open the model and pre-configured Control System Designer using the command

controlSystemDesigner('dcmotor_demoproject')

 DC Motor Controller Tuning

5-65

Design Overview

The goal of the overall design is to track a reference change in speed with minimal overshoot and to
reject output disturbances. The controller must satisfy the following requirements:

• The closed-loop poles of the control loop are restricted to a region on the root locus plot that
implies less than a 5% overshoot.

• The closed-loop poles of the control loop are restricted to a region on the root locus plot that
implies a settling time less than 2 seconds.

• The output (y) of a unit step output disturbance is reduced by 80% within 0.5 seconds and by 95%
within 1 second.

These design requirements have been added to the Control System Designer. To complete the design,
using response optimization, click the Start Optimization button within the Response
Optimization dialog.

5 Optimization-Based Control Design

5-66

Hydraulic Piston Regulator Tuning
This example shows how to tune a lead-lag regulator for a simplified hydraulic piston. The piston
model is given by:

PlantModel = zpk(10,[0,0,-10],-1);

An initial controller design using the Control System Toolbox yields a controller:

Controller = zpk(-0.15, -3.5, 0.15);

After loading the model and pre-configured Control System Designer, you can design a new controller
using Response Optimization.

Requires Control System Toolbox™.

Opening the Model and Control System Designer

Open the model and pre-configured Control System Designer using the command

controlSystemDesigner('piston_demoproject');

 Hydraulic Piston Regulator Tuning

5-67

Design Overview

The goal of the design is to fine tune the designed regulator to better reject disturbances. The
controller must satisfy the following requirements:

• The closed-loop peak gain must be less than 1db; this ensures good regulation with minimum
overshoot.

• The output (y) resulting from a unit step output disturbance (dy) must be reduced by 99% within
10 seconds and no more than a 20% overshoot is allowed.

These design requirements have been added to the Control System Designer. To complete the design,
using response optimization, click Start Optimization button in the Response Optimization
window.

5 Optimization-Based Control Design

5-68

Lookup Tables

• “What are Adaptive Lookup Tables?” on page 6-2
• “How to Estimate Lookup Table Values” on page 6-4
• “Estimate Constrained Values of a Lookup Table” on page 6-5
• “Estimate Lookup Table Values from Data” on page 6-17
• “Building Models Using Adaptive Lookup Table Blocks” on page 6-28
• “Selecting an Adaptation Method” on page 6-31
• “Model Engine Using n-D Adaptive Lookup Table” on page 6-33
• “Using Adaptive Lookup Tables in Real-Time Environment” on page 6-43
• “Design Optimization Using Lookup Table Requirements for Gain Scheduling (Code)”

on page 6-44
• “Design Optimization Using Lookup Table Requirements for Gain Scheduling (GUI)”

on page 6-59
• “2-D Adaptive Lookup Table Generation” on page 6-70
• “Engine Volumetric Efficiency Surface Matching” on page 6-71

6

What are Adaptive Lookup Tables?

Lookup Tables
Lookup tables store numeric data in a multidimensional array format. In the simpler two-dimensional
case, lookup tables can be represented by matrices. Each element of a matrix is a numerical quantity,
which can be precisely located in terms of two indexing variables. At higher dimensions, lookup
tables can be represented by multidimensional matrices, whose elements are described in terms of a
corresponding number of indexing variables.

Lookup tables provide a means to capture the dynamic behavior of a physical (mechanical, electronic,
software) system. The behavior of a system with M inputs and N outputs can be approximately
described by using N lookup tables, each consisting of an array with M dimensions.

You usually generate lookup tables by experimentally collecting or artificially creating the input and
output data of a system. In general, you need as many indexing parameters as the number of input
variables. Each indexing parameter may take a value within a predetermined set of data points,
which are called the breakpoints. The set of all breakpoints corresponding to an indexing variable is
called a grid. Thus, a system with M inputs is gridded by M sets of breakpoints. The software uses the
breakpoints to locate the array elements, where the output data of the system are stored. For a
system with N outputs, the software locates the N array elements and then stores the corresponding
data at these locations.

After you create a lookup table using the input and output measurements as described previously, you
can use the corresponding multidimensional array of values in applications without having to
remeasure the system outputs. In fact, you need only the input data to locate the appropriate array
elements in the lookup table because the software reads the approximate system output from the
data stored at these locations. Therefore, a lookup table provides a suitable means of capturing the
input-output mapping of a static system in the form of numeric data stored at predetermined array
locations.

Adaptive Lookup Tables
Statically defined lookup tables, as described in “Lookup Tables” on page 6-2, cannot accommodate
the time-varying behavior (characteristics) of a physical plant. Static lookup tables establish a
permanent and static mapping of input-output behavior of a physical system. Conversely, the behavior
of actual physical systems often varies with time due to wear, environmental conditions, and
manufacturing tolerances. With such variations, the static mapping of input-output behavior of a
plant described by the lookup table may no longer provide a valid representation of the plant
characteristics.

Adaptive lookup tables incorporate the time-varying behavior of physical plants into the lookup table
generation and maintenance process while providing all of the functionality of a regular lookup table.

The adaptive lookup table receives the input and output measurements of a plant's behavior, which
are then used to dynamically create and update the content of the underlying lookup table. In
addition to requiring the input data to create the lookup table, the adaptive lookup table also uses the
output data of the plant to recalculate the table values. For example, you can collect the output data
of the plant by placing sensors at appropriate locations in a physical system.

The software uses the input measurements to locate the array elements by comparing these input
values with the breakpoints defined for each indexing variable. Next, it uses the output

6 Lookup Tables

6-2

measurements to recalculate the numeric value stored at these array locations. However, unlike a
regular table, which only stores the array data before the actual use of the lookup table, the adaptive
table continuously improves the content of the lookup table. This continuous improvement of the
table data is referred to as the adaptation process or learning process.

The adaptation process involves statistical and signal processing algorithms to recapture the input-
output behavior of the plant. The adaptive lookup table always tries to provide a valid representation
of the plant dynamics even though the plant behavior may be time varying. The underlying signal
processing algorithms are also robust against reasonable measurement noise and they provide
appropriate filtering of noisy output measurements.

See Also
Adaptive Lookup Table (1D Stair-Fit) | Adaptive Lookup Table (2D Stair-Fit) | Adaptive Lookup Table
(nD Stair-Fit)

Related Examples
• “Model Engine Using n-D Adaptive Lookup Table” on page 6-33

More About
• “About Lookup Table Blocks”
• “Building Models Using Adaptive Lookup Table Blocks” on page 6-28

 What are Adaptive Lookup Tables?

6-3

How to Estimate Lookup Table Values
You can use lookup table Simulink blocks to approximate a system's behavior, as described in “About
Lookup Table Blocks”. After you build your system using lookup tables, you can use Simulink Design
Optimization software to estimate the table values from measured I/O data.

Estimating lookup table values is an example of estimating parameters which are matrices or multi-
dimensional arrays. The workflow for estimating parameters of a lookup table consist of the following
tasks:

1 Creating a Simulink model using lookup table blocks.
2 Importing the measured input and output (I/O) data from which you want to estimate the table

values.
3 Analyzing and preparing the I/O data for estimation.
4 Estimating the lookup table values.
5 Validating the estimated table values using a validation data set.

See Also

Related Examples
• “Estimate Lookup Table Values from Data” on page 6-17
• “Estimate Constrained Values of a Lookup Table” on page 6-5

6 Lookup Tables

6-4

Estimate Constrained Values of a Lookup Table

Objectives
This example shows how to estimate constrained values of a lookup table in the Parameter
Estimator. Apply monotonically increasing constraints to the lookup table output values, and use the
Parameter Estimator to estimate the table values.

About the Data
In this example, use lookup_increasing.mat, which contains the measured I/O data for estimating
the lookup table values. The MAT-file includes the following variables:

• xdata1 — Input data consisting of 602 uniformly sampled data points in the range [-5,5].
• ydata1 — Output data corresponding to the input data samples.
• time1 — Time vector.

Use the I/O data to estimate monotonically increasing output values of the lookup table in the
lookup_increasing Simulink model.

Lookup Table Output
1 Open the lookup table model by typing the following command at the MATLAB prompt:

lookup_increasing

This command opens the Simulink model, and loads the estimation data in the MATLAB
workspace.

2 View the table output values by double-clicking the Lookup Table block.

 Estimate Constrained Values of a Lookup Table

6-5

The table contains 11 output values at breakpoints [-5:5], specified in the Function Block
Parameters dialog box. To learn more about how to specify the table values, see “Enter
Breakpoints and Table Data”.

The Table data field shows that the table output values are the cumulative sum of the values
stored in variable ydelta. Thus, if yn are the 11 table output values, ydelta is (y1, y2–y1, y3–
y2, ..., y11–y10). The initial ydelta values are loaded from lookup_increasing.mat.

The initial table output values are not monotonically increasing. To ensure monotonically
increasing table output values, the difference between adjacent table output values should be
positive. To do so, estimate ydelta in the Parameter Estimator using the measured I/O
estimation data, and constrain ydelta(2:end) to be positive during estimation.

Estimate the Monotonically Increasing Table Values Using Default
Settings
1 Open a parameter estimation session.

In the Simulink model, select Parameter Estimator from the Apps tab, in the gallery, under
Control Systems to open a session with the name lookup_increasing in the Parameter
Estimator.

6 Lookup Tables

6-6

2 Create an experiment and import the I/O data.

On the Parameter Estimation tab, click New Experiment. Type [time1,ydata1] in Outputs
and [time1,xdata1] in Inputs of the Edit Experiment dialog box. Click OK. A new experiment
with name Exp is created in the Experiments area of the app. Rename the experiment
EstimationData by right-clicking the default experiment name, Exp, and selecting Rename. For
more information, see “Import Data for Parameter Estimation” on page 1-5.

 Estimate Constrained Values of a Lookup Table

6-7

3 Run an initial simulation to view the measured data, simulated model values, and the initial table
values by typing the following commands at the MATLAB prompt.

sim('lookup_increasing')
figure(1); plot(xdata1,ydata1,'m*',xout,yout,'b^')
hold on; plot(-5:5,cumsum(ydelta),'k','LineWidth',2)
xlabel('Input Data'); ylabel('Output Data');
legend('Measured data','Initial simulated data','Initial table output')

6 Lookup Tables

6-8

The initial table output values and simulated data do not match the measured data.
4 Select parameter for estimation.

On the Parameter Estimation tab, click Select Parameters. The Edit: Estimated Parameters
dialog box opens. In the Parameters Tuned for all Experiments panel, click Select
parameters to open the Select Model Variables dialog box. Check the box next to ydelta, and
click OK.

The ydelta values are selected for estimation by default in the Edit: Estimated Parameters
dialog box.

 Estimate Constrained Values of a Lookup Table

6-9

5 Apply a monotonically increasing constraint on the table output values. For more details about
the table, see “Lookup Table Output” on page 6-5.

In the Edit: Estimated Parameters dialog box, click the arrow next to the ydelta values. In the
expanded menu, set Minimum ydelta values to [-Inf,zeros(1,10)]. Thus, while the first
value in ydelta can by anything, subsequent values which are the difference between adjacent
table output values, must be positive.

6 Select EstimationData experiment for estimation.

6 Lookup Tables

6-10

On the Parameter Estimation tab, click Select Experiment. By default, EstimationData is
selected for estimation. If not, check the box under the Estimation column, and click OK.

7 Estimate the table values using default settings.

On the Parameter Estimation tab, click Estimate.

The Parameter Trajectory plot shows the change in the parameter values at each iteration.

The Estimation Progress Report shows the iteration number, number of times the objective
function is evaluated, and value of the cost function at the end of each iteration.

 Estimate Constrained Values of a Lookup Table

6-11

The estimated parameters are saved in a new variable, EstimatedParams, in the Results area
of the app. To view the estimated parameters, right-click EstimatedParams and select Open.

The estimated ydelta(2:end) values are positive. Thus, the output of the table, which is the
cumulative sum of the values stored in ydelta, is monotonically increasing.

Validate the Estimation Results
After you estimate the table values, as described in “Estimate the Monotonically Increasing Table
Values Using Default Settings” on page 6-6, you use another measured data set to validate and check

6 Lookup Tables

6-12

that you have not over-fit the model. You can plot and examine the following plots to validate the
estimation results:

• Residuals plot
• Measured and simulated data plots

1 Create an experiment to use for validation and import the validation I/O data.

On the Parameter Estimation tab, click New Experiment. Type [time2,ydata2] in Outputs
and [time2,xdata2] in Inputs of the Edit Experiment dialog box. Name the experiment
ValidationData by right-clicking the default experiment name, Exp, in the Experiments area
of the app, and selecting Rename. For more information, see “Import Data for Parameter
Estimation” on page 1-5.

2 Select the experiment for validation.

Click Select Experiments on the Parameter Estimation tab. The ValidationData
experiment is selected for estimation by default. Clear Estimation and select the box for
Validation.

3 Select the results to validate.

On the Validation tab, click Select Results to Validate. Clear Use current parameter
values, select EstimatedParams, and click OK.

4 Select the plots to display during validation.

The Parameter Estimator displays the experiment plot after validation by default. Add the
residuals plot by selecting the corresponding box on the Validation tab.

 Estimate Constrained Values of a Lookup Table

6-13

Click Validate.
5 Examine the plots.

a The experiment plot shows the data simulated using estimated parameters agrees with the
measured validation data.

b To view the residuals plot, click Residual plot: ValidationData tab.

6 Lookup Tables

6-14

The residuals, which show the difference between the simulated and measured data, lie
within 15% of the maximum output variation. This indicates a good match between the
measured and simulated table data values.

c Plot and examine the validation data, simulated data, and estimated table values.

sim('lookup_increasing')
figure(2); plot(xdata2,ydata2,'m*',xout,yout,'b^')
hold on; plot(-5:5,cumsum(ydelta),'k','LineWidth', 2)
xlabel('Input Data'); ylabel('Output Data');
legend('Validation data','Simulated data','Table output values');

 Estimate Constrained Values of a Lookup Table

6-15

The table output values match both the measured data and the simulated table values. The
table output values cover the entire range of input values, which indicates that all the lookup
table values have been estimated.

See Also

Related Examples
• “Estimate Lookup Table Values from Data” on page 6-17

6 Lookup Tables

6-16

Estimate Lookup Table Values from Data

Objectives
This example shows how to estimate lookup table values from time-domain input-output (I/O) data in
the Parameter Estimator.

About the Data
In this example, use the I/O data in lookup_regular.mat to estimate the values of a lookup table.
The MAT-file includes the following variables:

• xdata1 — Consists of 63 uniformly-sampled input data points in the range [0,6.5]
• ydata1 — Consists of output data corresponding to the input data samples
• time1 — Time vector

Use the I/O data to estimate the lookup table values in the lookup_regular Simulink model. The
lookup table in the model contains ten values, which are stored in the MATLAB variable table. The
initial table values comprise a vector of 0s. To learn more about how to model a system using lookup
tables, see “Guidelines for Choosing a Lookup Table”.

Open a Parameter Estimation Session
To estimate the lookup table values, open a Parameter Estimation session.

1 Open the lookup table model by typing the following command at the MATLAB prompt:

lookup_regular

This command opens the Simulink model, and loads the estimation data into the MATLAB
workspace.

2 In the Simulink model, select Parameter Estimator from the Apps tab, in the gallery, under
Control Systems to open a new session with name lookup_regular in the Parameter
Estimator.

 Estimate Lookup Table Values from Data

6-17

Estimate the Table Values Using Default Settings
Use the following steps to estimate the lookup table values.

1 Create a new experiment by clicking New Experiment on the Parameter Estimation tab.
Name it EstimationData. Then import the I/O data, xdata1 and ydata1, and the time vector,
time1, into the experiment. To do this open the experiment editor by right-clicking
EstimationData and selecting Edit.... Type [time1,ydata1] in the output dialog box and
[time1,xdata1] in the input dialog box in the experiment editor. For more information, see
“Import Data for Parameter Estimation” on page 1-5. After you import the data the experiment
looks as follows:

6 Lookup Tables

6-18

2 Run an initial simulation to view the I/O data, simulated output, and the initial table values. To do
so, type the following commands at the MATLAB prompt:

sim('lookup_regular')
figure(1); plot(xdata1,ydata1, 'm*', xout, yout,'b^')
hold on; plot(linspace(0,6.5,10), table, 'k', 'LineWidth', 2);
legend('Measured data','Initial simulation data','Initial table values');

 Estimate Lookup Table Values from Data

6-19

The x-axis and y-axis of the figure represent the input and output data, respectively. The figure
shows the following plots:

• Measured data — Represented by the magenta stars (*).
• Initial table values — Represented by the black line.
• Initial simulation data — Represented by the blue deltas (Δ).

You can see that the initial table values and simulated data do not match with the measured data.
3 To select the table values to estimate, on the Parameter Estimation tab, click the Select

Parameters button to open the Edit:Estimated Parameters dialog. In the Parameters Tuned
for all Experiments panel, click Select parameters to launch the Select Model Variables
dialog. Check the box next to table, and click OK.

6 Lookup Tables

6-20

The Edit:Estimated Parameters window now looks as follows. The table values are selected for
estimation by default.

4 On the Parameter Estimation tab, click Select Experiment. EstimationData is selected for
estimation by default. If not, check the box under the Estimation column, and click OK.

5 To estimate the table values using the default settings, on the Parameter Estimation tab, click
Estimate to open the Parameter Trajectory plot and Estimation Progress Report window.
The Parameter Trajectory plot shows the change in the parameter values at each iteration.

 Estimate Lookup Table Values from Data

6-21

After the estimation converges, the Parameter Trajectory plot looks like this:

The Estimation Progress Report shows the iteration number, number of times the objective
function is evaluated, and the value of the cost function at the end of each iteration. After the
estimation converges, the Estimation Progress Report looks like this:

6 Lookup Tables

6-22

The estimated parameters are saved in EstimatedParams in the Results section of the Data
Browser pane on the left. To view the results, right-click on EstimatedParams and then select
Open. The report resembles the following.

This report includes the estimated parameter values, the final value of the cost function, and
other optimization results. You can see that the optimization stopped when the size of the
gradient, 1.18e-14 was less than the criteria value, 1e-3.

 Estimate Lookup Table Values from Data

6-23

Validate the Estimation Results
After you estimate the table values, as described in “Estimate the Table Values Using Default
Settings” on page 6-18, you must use another data set to validate that you have not over-fitted the
model. You can plot and examine the following plots to validate the estimation results:

• Residuals plot
• Measured and simulated data plots

To validate the estimation results:

1 Create a new experiment to use for validation. Name it ValidationData. Import the validation
I/O data, xdata2 and ydata2, and time vector, time2 in the ValidationData experiment. To
do this open the experiment editor by right-clicking ValidationData and selecting Edit....
Then, type [time2,ydata2] in the output dialog box and [time2,xdata2] in the input dialog
box in the experiment editor. For more information, see “Import Data for Parameter Estimation”
on page 1-5.

2 To select the experiment for validation, on the Parameter Estimation tab, click Select
Experiments. The ValidationData experiment is selected for estimation by default. Deselect
the box for estimation and check it for validation.

3 To select results to use, on the Validation tab, click Select Results to Validate. Deselect Use
current parameter values and select EstimatedParams, and click OK.

4 The Parameter Estimator, by default, displays the experiment plot after validation. Add the
residuals plot by checking the corresponding box on the Validation tab.

6 Lookup Tables

6-24

To start validation, on the Validation tab, click Validate.
5 Examine the plots

a Experiment plot

You can see that the data simulated using the estimated parameters agrees with the
measured validation data.

b Click Residual plot: ValidationData to open the residuals plot.

 Estimate Lookup Table Values from Data

6-25

The residuals, which show the difference between the simulated and measured data, lie in
the range [-0.15,0.15]— within 15% of the maximum output variation. This indicates a good
match between the measured and the simulated table data values.

c Plot and examine the estimated table values against the validation data set and the
simulated table values by typing the following commands at the MATLAB prompt.

sim('lookup_regular')
figure(2); plot(xdata2,ydata2, 'm*', xout, yout,'b^')
hold on; plot(linspace(0,6.5,10), table, 'k', 'LineWidth', 2)

6 Lookup Tables

6-26

The plot shows that the table values, displayed as the black line, match both the validation
data and the simulated table values. The table data values cover the entire range of input
values, which indicates that all the lookup table values have been estimated.

See Also

Related Examples
• “Estimate Constrained Values of a Lookup Table” on page 6-5

 Estimate Lookup Table Values from Data

6-27

Building Models Using Adaptive Lookup Table Blocks
Simulink Design Optimization software provides blocks for modeling systems as adaptive lookup
tables. You can use the adaptive lookup table blocks to create lookup tables from measured or
simulated data. You build a model using the adaptive lookup table blocks, and then simulate the
model to adapt the lookup table values to the time-varying I/O data. During simulation, the software
uses the input data to locate the table values, and then uses the output data to recalculate the table
values. The updated table values are stored in the adaptive lookup table block. For more information,
see “What are Adaptive Lookup Tables?” on page 6-2.

The Adaptive Lookup Table library has the following blocks:

• Adaptive Lookup Table (1D Stair-Fit) — One-dimensional adaptive lookup table
• Adaptive Lookup Table (2D Stair-Fit) — Two-dimensional adaptive lookup table
• Adaptive Lookup Table (nD Stair-Fit) — Multidimensional adaptive lookup table

Note Use the Adaptive Lookup Table (nD Stair-Fit) block to create lookup tables of three or more
dimensions.

To access the Adaptive Lookup Tables library:

1 Open the Simulink Library Browser.

At the MATLAB prompt, enter slLibraryBrowser.
2 Open the Simulink Design Optimization library.

In the Libraries pane, expand the Simulink Design Optimization node.
3 In the Simulink Design Optimization library tree, click Adaptive Lookup Tables.

By default, the Adaptive Lookup Table blocks have two inputs and outputs. You can display additional
inputs and outputs in a block by selecting the corresponding options in the Function Block
Parameters dialog box. To learn more about the options, see the block reference pages.

6 Lookup Tables

6-28

Adaptive Lookup Table Block Showing Inputs and Outputs

The 2-D Adaptive Lookup Table block has the following inputs and outputs:

• u and y — Input and output data of the system being modeled, respectively.

For example, to model an engine's efficiency as a function of engine rpm and manifold pressure,
specify u as the rpm, y as the pressure, and y as the efficiency signals.

• Tin — The initial table data.
• Enable — Signal to enable, disable, or reset the adaptation process.
• Lock — Signal to update only specified cells in the table.
• y — Value of the cell currently being adapted.
• N — Number of the cell currently being adapted.
• Tout — Values of the adapted table data.

For more information on how to use adaptive lookup tables, see “Model Engine Using n-D Adaptive
Lookup Table” on page 6-33.

A typical Simulink diagram using an adaptive lookup table block is shown in the next figure.

Simulink Diagram Using an Adaptive Lookup Table

In this figure, the Experiment Data block imports a set of experimental data into Simulink through
MATLAB workspace variables. The initial table is specified in the block mask parameters. When the
simulation runs, the initial table begins to adapt to new data inputs and the resulting table is copied
to the block's output.

See Also
Adaptive Lookup Table (1D Stair-Fit) | Adaptive Lookup Table (2D Stair-Fit) | Adaptive Lookup Table
(nD Stair-Fit)

 Building Models Using Adaptive Lookup Table Blocks

6-29

Related Examples
• “Model Engine Using n-D Adaptive Lookup Table” on page 6-33

More About
• “What are Adaptive Lookup Tables?” on page 6-2
• “Selecting an Adaptation Method” on page 6-31

6 Lookup Tables

6-30

Selecting an Adaptation Method
You specify the algorithm using the Adaptation Method drop-down list in the Function Block
Parameters dialog box of an adaptive lookup table block. This section discusses the details of these
algorithms.

Sample Mean
Sample mean provides the average value of n output data samples and is defined as:

y (n) = 1
n ∑i = 1

n
y(i)

where y(i) is the ith measurement collected within a particular cell. For each input data u, the sample
mean at the corresponding cell is updated using the output data measurement, y. Instead of
accumulating n samples of data for each cell, a recursive relation is used to calculate the sample
mean. The recursive expression is obtained by the following equation:

y (n) = 1
n ∑

i = 1

n− 1
y(i) + y(n) = n− 1

n
1

n− 1 ∑i = 1

n− 1
y(i) + 1

ny(n) = n− 1
n y (n− 1) + 1

ny(n)

where y(n) is the nth data sample.

Defining a priori estimation error as e(n) = y(n)− y (n− 1), the recursive relation can be written as:

y (n) = y (n− 1) + 1
ne(n)

where n ≥ 1 and the initial estimate y (0) is arbitrary.

In this expression, only the number of samples, n, for each cell— rather than n data samples—is
stored in memory.

Sample Mean with Forgetting
The adaptation method “Sample Mean” on page 6-31 has an infinite memory. The past data samples
have the same weight as the final sample in calculating the sample mean. Sample mean (with
forgetting) uses an algorithm with a forgetting factor or Adaptation gain that puts more weight
on the more recent samples. This algorithm provides robustness against initial response transients of
the plant and an adjustable speed of adaptation. Sample mean (with forgetting) is defined as:

y (n) = 1
∑i = 1

n λn− i ∑i = 1

n
λn− iy(i)

= 1
∑i = 1

n λn− i ∑i = 1

n− 1
λn− iy(i) + y(n) = s(n− 1)

s(n) y (n− 1) + 1
s(n) y(n)

where λ ∈ 0, 1 is the Adaptation gain and s(k) = ∑i = 1
k λn− i.

 Selecting an Adaptation Method

6-31

Defining a priori estimation error as e(n) = y(n)− y (n− 1), where n ≥ 1 and the initial estimate y (0)
is arbitrary, the recursive relation can be written as:

y (n) = y (n− 1) + 1
s(n)e(n) = y (n− 1) + 1− λ

1− λne(n)

A small value of λ results in faster adaptation. A value of 0 indicates short memory (last data becomes
the table value), and a value of 1 indicates long memory (average all data received in a cell).

6 Lookup Tables

6-32

Model Engine Using n-D Adaptive Lookup Table

Objectives
In this example, you learn how to capture the time-varying behavior of an engine using an n-D
adaptive lookup table. You accomplish the following tasks using the Simulink software:

• Configure an adaptive lookup table block to model your system.
• Simulate the model to update the lookup table values dynamically.
• Export the adapted lookup table values to the MATLAB workspace.
• Lock a specific cell in the table during adaptation.
• Disable the adaptation process and use the adaptive lookup table as a static lookup table.

About the Data
In this example, you use the data in vedata.mat which contains the following variables measured
from an engine:

• X — 10 input breakpoints for intake manifold pressure in the range [10,100]
• Y — 36 input breakpoints for engine speed in the range [0,7000]
• Z — 10x36 matrix of table data for engine volumetric efficiency

To learn more about breakpoints and table data, see “Anatomy of a Lookup Table”.

The output volumetric efficiency of the engine is time varying, and a function of two inputs—intake
manifold pressure and engine speed. The data in the MAT-file is used to generate the time-varying
input and output (I/O) data for the engine.

Building a Model Using Adaptive Lookup Table Blocks
In this portion of the tutorial, you learn how to build a model of an engine using an Adaptive Lookup
Table block.

1 Open a preconfigured Simulink model by typing the model name at the MATLAB prompt:

enginetable1_data

The Experimental Data subsystem in the Simulink model generates time-varying I/O data during
simulation.

 Model Engine Using n-D Adaptive Lookup Table

6-33

This command also loads the variables X, Y and Z into the MATLAB workspace. To learn more
about this data, see “About the Data” on page 6-33.

2 Add an Adaptive Lookup Table block to the Simulink model.

a Open the Simulink Library Browser.

At the MATLAB prompt, enter slLibraryBrowser.
b Open the Simulink Design Optimization library.

In the Libraries pane, expand the Simulink Design Optimization node.
c In the Simulink Design Optimization library tree, click Adaptive Lookup Tables.

d Drag and drop the Adaptive Lookup Table (nD Stair-Fit) block from the Adaptive Lookup
Tables library to the Simulink model window.

6 Lookup Tables

6-34

3 Double-click the Adaptive Lookup Table (nD Stair-Fit) block to open the Function Block
Parameters: Adaptive Lookup Table (nD Stair-Fit) dialog box.

4 In the Function Block Parameters dialog box:

a Specify the following block parameters:

• Table breakpoints (cell array) — Enter {[X; 110], [Y; 7200]} to specify the range
of input breakpoints.

• Table data (initial) — Enter rand(10,36) to specify random numbers as the initial
table values for the volumetric efficiency.

• Table numbering data — Enter reshape(1:360,10,36) to specify a numbering
scheme for the table cells.

b Verify that Sample mean (with forgetting) is selected in the Adaptation method
drop-down list.

 Model Engine Using n-D Adaptive Lookup Table

6-35

c Enter 0.98 in the Adaptation gain (0 to 1) field to specify the forgetting factor for the
Sample mean (with forgetting) adaptation algorithm.

An adaptation gain close to 1 indicates high robustness of the lookup table values to input
noise. To learn more about the adaptation gain, see “Sample Mean with Forgetting” on page
6-31 in “Selecting an Adaptation Method” on page 6-31.

d Select the Make adapted table an output check box.

This action adds a new port named Tout to the Adaptive Lookup Table block. You use this
port to plot the table values as they are being adapted.

e Select the Add adaptation enable/disable/reset port check box.

This action adds a new port named Enable to the Adaptive Lookup Table block. You use this
port to enable or disable the adaptation process.

f Select the Add cell lock enable/disable port check box.

This action adds a new port named Lock to the Adaptive Lookup Table block. You use this
port to lock a cell during the adaptation process.

g Verify that Ignore is selected in the Action for out-of-range drop-down list.

This selection specifies that the software ignores any time-varying inputs outside the range
of input breakpoints during adaptation.

Tip To learn more, see Adaptive Lookup Table (nD Stair-Fit) block reference page.

After you configure the parameters, the block parameters dialog box looks like the following
figure.

6 Lookup Tables

6-36

h Click OK to close the Function Block Parameters dialog box.

The Simulink model now looks similar to the following figure.

5 Assign the input and output data to the engine model by connecting the U and Y ports of the
Experimental Data block to the u and y ports of the Adaptive Lookup Table block, respectively.

 Model Engine Using n-D Adaptive Lookup Table

6-37

6 Design a logic using Simulink blocks to enable or disable the adaptation process. Connect the
logic to the Adaptive Lookup Table block, as shown in the following figure.

This logic outputs an initial value of 1 which enables the adaptation process.
7 Design a logic to lock a cell during adaptation. Connect the logic to the Adaptive Lookup Table

block, as shown in the following figure.

8 In the Simulink Library Browser, select the Simulink > Sinks library, and drag Display blocks to
the model window. Connect the blocks, as shown in the following figure.

During simulation, the Display blocks show the following:

• Display block — Shows the value of the current cell being adapted.
• Display1 block — Shows the number of the current cell being adapted.

9 Write a MATLAB function to plot the lookup table values as they adapt during simulation.

6 Lookup Tables

6-38

Alternatively, type enginetable at the MATLAB prompt to open a preconfigured Simulink
model. The Efficiency Surface subsystem contains a function to plot the lookup table values,
as shown in the next figure.

10 Connect a To Workspace block to export the adapted table values:

a In the Simulink Library Browser, select the Simulink > Sinks library, and drag the To
Workspace block to the model window.

To learn more about this block, see the To Workspace block reference page in the Simulink
documentation.

b Double-click the To Workspace block to open the Sink Block Parameters dialog box, and type
Tout in the Variable name field.

c Click OK.
d Connect the To Workspace block to the adaptive lookup table output signal Tout, as shown

in the next figure.

 Model Engine Using n-D Adaptive Lookup Table

6-39

You have now built the model for updating and viewing the adaptive lookup table values. You must
now simulate the model to start the adaptation, as described in “Adapting the Lookup Table Values
Using Time-Varying I/O Data” on page 6-40.

Adapting the Lookup Table Values Using Time-Varying I/O Data
In this portion of the tutorial, you learn how to update the lookup table values to adapt to the time-
varying input and output values.

You must have already built the Simulink model, as described “Building a Model Using Adaptive
Lookup Table Blocks” on page 6-33.

To perform the adaptation:

1 In the Simulink Editor, specify the simulation time as inf.

The simulation time of infinity specifies that the adaptation process continues as long as the
input and output values of the engine change.

2 In the Simulink Editor, click Run under Simulation to start the adaptation process.

A figure window opens that shows the volumetric efficiency of the engine as a function of the
intake manifold pressure and engine speed:

• The left plot shows the measured volumetric efficiency as a function of intake manifold
pressure and engine speed.

• The right plot shows the volumetric efficiency as it adapts with the time-varying intake
manifold pressure and engine speed.

6 Lookup Tables

6-40

During simulation, the lookup table values displayed on the right plot adapt to the variations in
the I/O data. The left and the right plots resemble each other after a few seconds, as shown in
the next figure.

Tip During simulation, the Cell Number and Adaptive Table Outputs blocks in the
Simulink model display the cell number, and the adapted lookup table value in the cell,
respectively.

3 Pause the simulation by clicking Pause under Simulation.

This action also exports the adapted table values Tout to the MATLAB workspace.

Note After you pause the simulation, the adapted table values are stored in the Adaptive Lookup
Table block.

4 Examine that the left and the right plots match. This resemblance indicates that the table values
have adapted to the time-varying I/O data.

5 Lock a table cell so that only one cell adapts. You may find this feature useful if a portion of the
data is highly erratic or otherwise difficult for the algorithm to handle.

 Model Engine Using n-D Adaptive Lookup Table

6-41

a Click Run under Simulation to restart the simulation.
b Double-click the Lock block. This action toggles the switch and feeds the output of the ON

block to theLock input port of the Adaptive Lookup Table(nD Stair-Fit) block.

You can view the number of the locked cell in the Cell Number block in the Simulink model.
6 After the table values adapt to the time-varying I/O data, you can continue to use the Adaptive

Lookup Table block as a static lookup table:

a In the Simulink model window, double-click the Enable block. This action toggles the switch,
and disables the adaptation.

b Click Run under Simulation to restart the simulation, if it is not already running.

During simulation, the Adaptive Lookup Table block works like a static lookup table, and
continues to estimate the output values as the input values change. You can see the current
lookup table value in the Adaptive Table Outputs block in the Simulink model window.

Note After you disable the adaptation, the Adaptive Lookup Table block does not update the
stored table values, and the figure that displays the table values does not update.

See Also
Adaptive Lookup Table (nD Stair-Fit)

More About
• “What are Adaptive Lookup Tables?” on page 6-2

6 Lookup Tables

6-42

Using Adaptive Lookup Tables in Real-Time Environment
You can use experimental data from sensor measurements collected by running various tests on a
system in real time. The measured data is then sent to the adaptive table block to generate a lookup
table describing the relation between the system inputs and output.

You can also use the Adaptive Lookup Table block in a real-time environment, where some time-
varying properties of a system need to be captured. To do so, generate C code using Simulink Coder™
code generation software that can then be run in Simulink Real-Time™ or dSPACE® software.
Because you can start, stop, or reset the adaptation if you want, use logic to enable the adaptation of
the table data only when it is desired. The cell number output N, and the Enable and Lock inputs
facilitate this process. Use the Enable input to start and stop the adaptation and the Lock input to
update only one of the table cells. The Lock input combined with some logic using the cell number
output N provide the means for updating only the desired table cells during a simulation run.

See Also
Adaptive Lookup Table (1D Stair-Fit) | Adaptive Lookup Table (2D Stair-Fit) | Adaptive Lookup Table
(nD Stair-Fit)

Related Examples
• “Model Engine Using n-D Adaptive Lookup Table” on page 6-33

More About
• “What are Adaptive Lookup Tables?” on page 6-2

 Using Adaptive Lookup Tables in Real-Time Environment

6-43

Design Optimization Using Lookup Table Requirements for
Gain Scheduling (Code)

This example shows how to tune parameters in a lookup table in a model that uses gain scheduling to
adjust the controller's response to a plant that varies. Model tuning uses the sdo.optimize
command.

Ship Steering Model

Open the Simulink Model.

mdl = 'sdoShipSteering';
open_system(mdl)

This model implements the Nomoto model which is commonly used for ship steering. The dynamic
characteristics of a ship vary significantly with factors such as the ship speed. Therefore the rudder
controller should also vary with speed, in order to meet requirements for steering the ship.

To keep the ship on course, a control loop compares the ship's heading angle with the reference
heading angle, and a PD controller sends command signals to the rudder. The Ship Plant block
implements the Nomoto model, a second order system whose parameters vary with the ship's speed.
The ship is initially traveling at its maximum speed of 15 m/s, but it will slow down when the
reference trajectory specifies a turn in the water. This turning, along with the force of the engine, is
used by the Force Dynamics block to compute the speed of the ship over time. The Kinematics block
computes the trajectory of the ship.

Open the Controller block.

open_system([mdl '/Controller'])

6 Lookup Tables

6-44

When the speed changes, the ship plant also changes. Therefore the PD controller gains need to
change, and speed is used as the scheduling variable. The controller is in the form K(1 + sTd)
where K is the overall gain and Td is the time constant associated with the derivative term. Gain
scheduling is implemented via lookup tables, and the table data are specified by K and Td. These are
vectors which specify different values for different speeds. The different speeds are specified in the
lookup table breakpoint vectors bpK and bpTd.

Design Problem

The reference specifies that at 200 seconds, the ship should turn 180 degrees and reverse course.
One requirement is that the ship heading angle needs to match the reference heading angle within an
envelope. For the safety and comfort of passengers, a second requirement is that the total
acceleration of the ship needs to stay within a bound of 0.25 g's, where 1 g is the acceleration of
gravity at Earth's surface, 9.8 m/s/s.

The controller parameter vectors K and Td will be design variables, and will be tuned to try to meet
the requirements. If it is not possible to meet both requirements, then the lookup table breakpoints
bpK and bpTd will also be used as design variables. In that case, we will need to specify an additional
requirement that bpK and bpTd must be monotonically strictly increasing, because this is required
for breakpoint vectors in Simulink lookup tables.

Specify Design Requirements

Specify the requirements which must be satisfied. First, the ship should follow the reference
trajectory. Since the reference is essentially a step change from 0 to 180 degrees, you specify a step
response envelope for the ship heading angle.

Requirements = struct;
Requirements.StepResponseEnvelope = sdo.requirements.StepResponseEnvelope(...
 'StepTime', 200, ... (seconds)
 'RiseTime', 75, ...
 'SettlingTime', 200, ...
 'PercentRise', 85, ... (%)
 'PercentOvershoot', 5, ...
 'PercentSettling', 1, ...

 Design Optimization Using Lookup Table Requirements for Gain Scheduling (Code)

6-45

 'FinalValue', pi ... (radians)
);

The second requirement is that for the safety and comfort of passengers, the total acceleration should
not exceed 0.25 g's at any time. The total acceleration is composed of two components, a tangential
component along the direction of the ship's motion, and a normal (horizontal) component. The
requirement that total acceleration not exceed 0.25 g's corresponds to requiring that in the phase
plane of tangential and normal acceleration, this ship's trajectory remain within a circle of radius
0.25*9.8.

accelGravity = 9.8;
Requirements.Comfort = sdo.requirements.PhasePlaneEllipse(...
 'Radius', 0.25*[1 1] * accelGravity);

Examine the behavior of the ship with the initial, untuned controller parameters, to see whether the
requirements are satisfied. Use the function sdoShipSteeringPlots to plot the ship's behavior.
The first plot below shows that the ship's heading angle stays within the tolerance bounds of the step
response envelope, satisfying the first requirement. The second plot shows the trajectory of the ship
in the water. The black arrow indicates the starting position and direction of motion. The ship turns
180 degrees and the diameter is approximately 415 meters. The third plot shows the ship
acceleration in the phase plane of tangential and normal acceleration. The black arrow indicates the
starting point and direction of evolution over time. The total acceleration exceeds the bound near 208
seconds, so the requirement for passenger safety and comfort is not satisfied.

hPlots = sdoShipSteeringPlots(mdl, Requirements);

6 Lookup Tables

6-46

 Design Optimization Using Lookup Table Requirements for Gain Scheduling (Code)

6-47

Specify Design Variables

Specify the design variables to be tuned by the optimization routine in order to satisfy the
requirements. Specify the gains of the PD controller, K and Td, as design variables. For initial values,
use -0.1 for all entries in the K vector, and 50 for all entries in the Td vector. If the requirements can't
all be satisfied, then later the breakpoint vectors bpK and bpTd can also be design variables.

DesignVars = sdo.getParameterFromModel(mdl, {'K','Td'});
DesignVars(1).Value = -0.1*[1 1 1 1];
DesignVars(2).Value = 50*[1 1 1 1];
sdo.setValueInModel(mdl, DesignVars);

Create Optimization Objective Function

Create an objective function that will be called at each optimization iteration to evaluate the design
requirements as the design variables are tuned. This cost function has input arguments for the model,
design variables, simulator (defined below), and design requirements. The cost function uses the
maximum of the Comfort requirements at all times when it is computed, in order to consolidate
requirement evaluation results to a scalar so the number of elements is the same regardless of time
steps taken by the Simulink solver.

type sdoShipSteering_Design

function Vals = sdoShipSteering_Design(mdl, P, Simulator, Requirements)
%SDOSHIPSTEERING_DESIGN Objective function for ship steering
%

6 Lookup Tables

6-48

% Function called at each iteration of the optimization problem.
%
% The function is called with the model named mdl, a set of parameter
% values, P, a Simulator, and the design Requirements to evaluate. It
% returns the objective value and constraint violations, Vals, to the
% optimization solver.
%
% See the sdoExampleCostFunction function and sdo.optimize for a more
% detailed description of the function signature.
%
% See also sdoShipSteering_cmddemo

% Copyright 2016 The MathWorks, Inc.

%% Model Evaluation

% Simulate the model.
Simulator.Parameters = P;
Simulator = sim(Simulator);

% Retrieve logged signal data.
SimLog = find(Simulator.LoggedData,get_param(mdl, 'SignalLoggingName'));
Heading = find(SimLog, 'Heading');
NormalAccel = find(SimLog, 'NormalAccel');
TangenAccel = find(SimLog, 'TangenAccel');

% Evaluate the step response envelope requirement
Cleq_StepResponseEnvelope = evalRequirement(Requirements.StepResponseEnvelope, Heading.Values);

% Evaluate the safety/comfort requirement on total acceleration.
Cleq_Comfort = evalRequirement(Requirements.Comfort, NormalAccel.Values, TangenAccel.Values);

%% Return Values.

% Collect the evaluated design requirement values in a structure to return
% to the optimization solver.
Vals.Cleq = Cleq_StepResponseEnvelope(:);
Vals.Cleq = [Vals.Cleq ; Cleq_Comfort];

% Evaluate monotonic variable requirement
if isfield(Requirements, 'Monotonic')
 Cleq_bpK = evalRequirement(Requirements.Monotonic, P(3).Value);
 Cleq_bpTd = evalRequirement(Requirements.Monotonic, P(4).Value);
 Vals.Cleq = [Vals.Cleq ; Cleq_bpK ; Cleq_bpTd];
end

end

The cost function requires a Simulator to run the model. Create the simulator and add model signals
to log, so their values are available to the cost function.

Simulator = sdo.SimulationTest(mdl);

% Ship Heading Angle
Heading = Simulink.SimulationData.SignalLoggingInfo;
Heading.BlockPath = 'sdoShipSteering/Ship Plant';
Heading.LoggingInfo.LoggingName = 'Heading';
Heading.LoggingInfo.NameMode = 1;

 Design Optimization Using Lookup Table Requirements for Gain Scheduling (Code)

6-49

Heading.OutputPortIndex = 1;

% Normal Acceleration
NormalAccel = Simulink.SimulationData.SignalLoggingInfo;
NormalAccel.BlockPath = 'sdoShipSteering/Kinematics';
NormalAccel.LoggingInfo.LoggingName = 'NormalAccel';
NormalAccel.LoggingInfo.NameMode = 1;
NormalAccel.OutputPortIndex = 4;

% Tangential Acceleration
TangenAccel = Simulink.SimulationData.SignalLoggingInfo;
TangenAccel.BlockPath = 'sdoShipSteering/Kinematics';
TangenAccel.LoggingInfo.LoggingName = 'TangenAccel';
TangenAccel.LoggingInfo.NameMode = 1;
TangenAccel.OutputPortIndex = 5;

% Collect logged signals
Simulator.LoggingInfo.Signals = [...
 Heading ; ...
 NormalAccel ; ...
 TangenAccel];

Optimize Lookup Table Data

Before optimizing, set up the simulator for fast evaluation by enabling Simulink Fast Restart.

Simulator = fastRestart(Simulator, 'on');

During optimization, the Simulink solver may generate a warning if the size of the time step becomes
too small. Temporarily suppress this warning.

warnState = warning('query', 'Simulink:Engine:SolverMinStepSizeWarn');
warnState1 = warning('query', 'Simulink:Solver:Warning');
warnState2 = warning('query', 'SimulinkExecution:DE:MinStepSizeWarning');
warning('off', 'Simulink:Engine:SolverMinStepSizeWarn');
warning('off', 'Simulink:Solver:Warning');
warning('off', 'SimulinkExecution:DE:MinStepSizeWarning');

To optimize, define a handle to the cost function that uses the Simulator and Requirements defined
above. Use an anonymous function that takes one argument (the design variables) and calls the
objective function. Finally, call sdo.optimize to optimize the design variables to try to meet the
requirements.

optimfcn = @(P) sdoShipSteering_Design(mdl, P, Simulator, Requirements);
[Optimized_DesignVars, Info] = sdo.optimize(optimfcn, DesignVars);

 Optimization started 25-Aug-2020 21:16:00

 max First-order
 Iter F-count f(x) constraint Step-size optimality
 0 17 0 0.6127
 1 34 0 0.3215 0.865 0.321
 2 57 0 0.3079 0.174 0.308
 3 103 0 0.3079 0.00127 0.308
Converged to an infeasible point.

fmincon stopped because the size of the current step is less than

6 Lookup Tables

6-50

the value of the step size tolerance but constraints are not
satisfied to within the value of the constraint tolerance.

The display indicates that the optimizer was not able to satisfy all requirements. Try the optimized
design variables in the model and plot the results. The heading angle is not within the required step
response envelope, and the total acceleration still exceeds the allowable level during part of the turn.
In addition, the turning diameter has increased to 660 meters, so the turn is not as tight as with
untuned gains.

sdo.setValueInModel(mdl, Optimized_DesignVars);
hPlots = sdoShipSteeringPlots(mdl, Requirements, hPlots);

 Design Optimization Using Lookup Table Requirements for Gain Scheduling (Code)

6-51

6 Lookup Tables

6-52

Optimize Lookup Table Data and Breakpoints

To try to meet the design requirements, use the optimization result from above as the start point, and
tune additional variables. Add breakpoints bpK and bpTd as design variables. The ship's maximum
speed is 15 m/s, and during turning it may slow to 60% of the maximum speed, or 9 m/s. Set the
breakpoint initial values to be equally spaced between 9 and 15 m/s. Constrain the breakpoint
minimum values to 9 m/s, and constrain the breakpoint maximum values to 15 m/s.

DesignVars = Optimized_DesignVars;
DesignVars(3:4) = sdo.getParameterFromModel(mdl, {'bpK','bpTd'});

% Set initial values
DesignVars(3).Value = [9 11 13 15];
DesignVars(4).Value = [9 11 13 15];

% Constrain min and max values
DesignVars(3).Minimum = 9;
DesignVars(3).Maximum = 15;
DesignVars(4).Minimum = 9;
DesignVars(4).Maximum = 15;

% Set values in the model
sdo.setValueInModel(mdl, DesignVars);

Breakpoints in the Simulink lookup table block must be strictly monotonically increasing. Add this to
the design requirements.

 Design Optimization Using Lookup Table Requirements for Gain Scheduling (Code)

6-53

Requirements.Monotonic = sdo.requirements.MonotonicVariable;
optimfcn = @(P) sdoShipSteering_Design(mdl, P, Simulator, Requirements);

Optimize the model by tuning all four design variables, to see if all requirements can be met.

[Optimized_DesignVars, Info] = sdo.optimize(optimfcn, DesignVars);

 Optimization started 25-Aug-2020 21:16:16

 max First-order
 Iter F-count f(x) constraint Step-size optimality
 0 29 0 0.3079
 1 62 0 0.1432 0.148 1.01
 2 96 0 0.03626 0.0858 0.597
 3 126 0 0.01911 0.0548 0.0859
 4 157 0 0.007837 0.0341 0.00627
 5 188 0 0 0.0256 0.000903
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

The display indicates that the optimizer was able to satisfy all requirements. Try the optimized design
variables in the model and plot the results. In the plots below, the heading angle is within the step
response envelope, and the total acceleration is within the allowed range of 0.25 g's. In addition, the
turning diameter is 615 meters, which is tighter than when breakpoints were not tuned.

sdo.setValueInModel(mdl, Optimized_DesignVars);
hPlots = sdoShipSteeringPlots(mdl, Requirements, hPlots);

6 Lookup Tables

6-54

 Design Optimization Using Lookup Table Requirements for Gain Scheduling (Code)

6-55

6 Lookup Tables

6-56

In this example, the ship plant varied with the ship speed, so the controller gains also needed to vary.
Gain scheduling was implemented using lookup tables. By tuning the gains and breakpoint values in
the controller, the ship was able to follow the reference heading angle, while also constraining total
acceleration to ensure a safe and comfortable ride for passengers.

Related Examples

To learn how to optimize the lookup tables in the gain scheduled controller using the Response
Optimizer, see “Design Optimization Using Lookup Table Requirements for Gain Scheduling (GUI)”
on page 6-59.

% Close the model and figures, and restore state of warnings.
fastRestart(Simulator, 'off'); % restore fast restart settings
bdclose(mdl)
close(hPlots)
warning(warnState); % restore state of warning
warning(warnState1); % restore state of warning
warning(warnState2); % restore state of warning

See Also
sdo.requirements.FunctionMatching | sdo.requirements.MonotonicVariable |
sdo.requirements.PhasePlaneEllipse | sdo.requirements.PhasePlaneRegion |
sdo.requirements.RelationalConstraint | sdo.requirements.SmoothnessConstraint

 Design Optimization Using Lookup Table Requirements for Gain Scheduling (Code)

6-57

Related Examples
• “Design Optimization Using Lookup Table Requirements for Gain Scheduling (GUI)” on page 6-

59
• “Estimate Lookup Table Values from Data” on page 6-17

6 Lookup Tables

6-58

Design Optimization Using Lookup Table Requirements for
Gain Scheduling (GUI)

This example shows how to tune parameters in a lookup table in a model that uses gain scheduling to
adjust the controller's response to a plant that varies. Model tuning uses the Response Optimizer
app.

Ship Steering Model

Open the Simulink Model.

open_system('sdoShipSteering')

This model implements the Nomoto model which is commonly used for ship steering. The dynamic
characteristics of a ship vary significantly with factors such as the ship speed. Therefore the rudder
controller should also vary with speed, in order to meet requirements for steering the ship.

To keep the ship on course, a control loop compares the ship's heading angle with the reference
heading angle, and a PD controller sends command signals to the rudder. The Ship Plant block
implements the Nomoto model, a second order system whose parameters vary with the ship's speed.
The ship is initially traveling at its maximum speed of 15 m/s, but it will slow down when the
reference trajectory specifies a turn in the water. This turning, along with the force of the engine, is
used by the Force Dynamics block to compute the speed of the ship over time. The Kinematics block
computes the trajectory of the ship.

Open the Controller block by double clicking it.

 Design Optimization Using Lookup Table Requirements for Gain Scheduling (GUI)

6-59

When the speed changes, the ship plant also changes. Therefore the PD controller gains need to
change, and speed is used as the scheduling variable. The controller is in the form K(1 + sTd)
where K is the overall gain and Td is the time constant associated with the derivative term. Gain
scheduling is implemented via lookup tables, and the table data are specified by K and Td. These are
vectors which specify different values for different speeds. The different speeds are specified in the
lookup table breakpoint vectors bpK and bpTd.

Design Problem

The reference specifies that at 200 seconds, the ship should turn 180 degrees and reverse course.
One requirement is that the ship heading angle needs to match the reference heading angle within an
envelope. For the safety and comfort of passengers, a second requirement is that the total
acceleration of the ship needs to stay within a bound of 0.25 g's, where 1 g is the acceleration of
gravity at Earth's surface, 9.8 m/s/s.

The controller parameter vectors K and Td will be design variables, and will be tuned to try to meet
the requirements. If it is not possible to meet both requirements, then the lookup table breakpoints
bpK and bpTd will also be used as design variables. In that case, we will need to specify an additional
requirement that bpK and bpTd must be monotonically strictly increasing, because this is required
for breakpoint vectors in Simulink lookup tables.

Open the Response Optimizer

In the Apps tab, click Response Optimizer under Control Systems.

Specify Design Requirements

Specify the requirements which must be satisfied. First, the ship should follow the reference
trajectory. Since the reference is essentially a step change from 0 to 180 degrees, you specify a step
response envelope for the ship heading angle. In the toolstrip, click New and select Step Response
Envelope. Set the initial value to 0 and the final value to pi radians. Set the step time to 200 seconds.
Set the rise time as 75 seconds and the rise percent to 85%. Set the settling time to 200 seconds and
the settling percent to 1%. Set the percent overshoot to 5%. To specify that this requirement applies
to the ship heading, click +.

6 Lookup Tables

6-60

In the Simulink model click the ship heading signal, which is the output of the Ship Plant block.
Select this signal in the Create Signal Set dialog, and click the arrow button to make it the
designated signal, and click OK.

 Design Optimization Using Lookup Table Requirements for Gain Scheduling (GUI)

6-61

The second requirement is that for the safety and comfort of passengers, the total acceleration should
not exceed 0.25 g's at any time. The total acceleration is composed of two components, a tangential
component along the direction of the ship's motion, and a normal (horizontal) component. The
requirement that total acceleration not exceed 0.25 g's corresponds to requiring that in the phase
plane of tangential and normal acceleration, this ship's trajectory remain within a circle of radius
0.25*9.8.

In the toolstrip, click New and select Ellipse Region Constraint. Specify the name as SafeAccel,
and the semi-axis length for both signals as 0.25*9.8 = 2.45. To specify that the requirement applies
to the tangential acceleration of the ship, click the Select button. In the Simulink model click the
tangential acceleration signal, which is output from the Kinematics block. Select this signal in the
Create Signal Set dialog, and click the arrow button to make it the designated signal, and click OK.
Similarly, to specify that the requirement applies to the normal acceleration of the ship, in the Ellipse
Region Constraint dialog click the other Select button, and use the Create Signal Set dialog to specify
the normal acceleration signal.

6 Lookup Tables

6-62

Specify Design Variables

Specify the design variables to be tuned by the optimization in order to satisfy the requirements. In
the toolstrip, click the selection box next to Design Variables Set and then click New. Select the
gains of the PD controller, K and Td, and click the arrow button to designate them as design
variables. Use -0.1 for all entries in the value of the K vector, and use 50 for all entries in the value of
the Td vector, and click OK. If the requirements can't all be satisfied, then later the breakpoint
vectors bpK and bpTd can also be tried as design variables.

Optimize Lookup Table Data

During optimization, the Simulink solver may generate a warning if the size of the time step becomes
too small. Temporarily suppress this warning.

warnState = warning('query', 'Simulink:Engine:SolverMinStepSizeWarn');
warning('off', 'Simulink:Engine:SolverMinStepSizeWarn');

In the Response Optimizer, click Optimize. The ship heading angle does not meet the required step
response envelope, as can be seen in the step response plot in the Response Optimizer app and in
the Optimization Progress dialog, where the value at the last iteration is still positive, which indicates
violation of the requirement. The requirement for safe acceleration is also not met, as seen in the
Optimization Progress dialog, where the value at the last iteration is also positive.

 Design Optimization Using Lookup Table Requirements for Gain Scheduling (GUI)

6-63

6 Lookup Tables

6-64

Optimize Lookup Table Data and Breakpoints

To try to meet the design requirements, use the optimization result from above as the start point, and
tune additional variables. Add breakpoints bpK and bpTd as design variables. The ship's maximum
speed is 15 m/s, and during turning it may slow to 60% of the maximum speed, or 9 m/s. Set the
breakpoint initial values to be equally spaced between 9 and 15 m/s. Constrain the breakpoint
minimum values to 9 m/s, and constrain the breakpoint maximum values to 15 m/s.

Breakpoints in the Simulink lookup table block must be strictly monotonically increasing. Add this to
the design requirements.

 Design Optimization Using Lookup Table Requirements for Gain Scheduling (GUI)

6-65

In the Response Optimizer, click Optimize. This time the ship heading angle meets the required
step response envelope, as can be seen in the step response plot in Response Optimizer app and in
the Optimization Progress dialog, where the value at the last iteration is negative, which indicates the
requirement is satisfied. The requirement for safe acceleration is also satisfied, as seen in the

6 Lookup Tables

6-66

Optimization Progress dialog, where the value at the last iteration is also negative. Similarly, the
lookup table breakpoints satisfy the monotonic requirements.

 Design Optimization Using Lookup Table Requirements for Gain Scheduling (GUI)

6-67

In this example, the ship plant varied with the ship speed, so the controller gains also needed to vary.
Gain scheduling was implemented using lookup tables. By tuning the gains and breakpoint values in
the controller, the ship was able to follow the reference heading angle, while also constraining total
acceleration to ensure a safe and comfortable ride for passengers.

Related Examples

To learn how to optimize the lookup tables in the gain scheduled controller using the sdo.optimize
command, see “Design Optimization Using Lookup Table Requirements for Gain Scheduling (Code)”
on page 6-44.

% Close the model and restore state of warnings.
bdclose('sdoShipSteering')
warning(warnState); % restore state of warning

See Also

Related Examples
• “Design Optimization Using Lookup Table Requirements for Gain Scheduling (Code)” on page 6-

44
• “Estimate Lookup Table Values from Data” on page 6-17

6 Lookup Tables

6-68

• “Specify Time-Domain Design Requirements in the App” on page 3-16
• “Specify Variable Requirements in the App” on page 3-31

 Design Optimization Using Lookup Table Requirements for Gain Scheduling (GUI)

6-69

2-D Adaptive Lookup Table Generation
This example shows how to create a 2-D lookup table from experimental data.

Click here to open the Adaptive Lookup Tables library.

See Also
Adaptive Lookup Table (2D Stair-Fit)

Related Examples
• “Model Engine Using n-D Adaptive Lookup Table” on page 6-33

More About
• “What are Adaptive Lookup Tables?” on page 6-2

6 Lookup Tables

6-70

Engine Volumetric Efficiency Surface Matching
This example shows how to generate a lookup table to approximate an engine volumetric efficiency
surface using experimental data.

Click here to open the Adaptive Lookup Tables library.

See Also
Adaptive Lookup Table (2D Stair-Fit)

Related Examples
• “Model Engine Using n-D Adaptive Lookup Table” on page 6-33

More About
• “What are Adaptive Lookup Tables?” on page 6-2

 Engine Volumetric Efficiency Surface Matching

6-71

	Data Analysis and Processing
	Model Requirements for Importing Data
	Select Input Signals
	Select Output Signals

	Import Data for Parameter Estimation
	Create Experiment
	Time-Domain Data
	Time-Series Data
	Complex Data

	Plot and Analyze Data
	Why Plot the Data Before Parameter Estimation
	Plot Data

	Preprocess Data
	Ways to Preprocess Data
	Remove Offset
	Scale Data
	Extract Data
	Filter Data
	Resample Data
	Replace Data

	Parameter Estimation
	What Is an Experiment?
	Specify Estimation Data
	Create Experiment
	Edit Experiment Data

	Specify Parameters for Estimation
	Choosing Which Parameters to Estimate First
	Add Model Parameters as Variables for Estimation
	Specify Parameters for Estimation

	Specify Known Initial States
	When to Specify Initial States Versus Estimate Initial States
	Specify Model Initial States

	Specify Estimation Options
	Estimate Parameters and States
	Validate Estimation Results
	Configure and Perform Validation
	Compare Measured and Simulated Responses

	Speed Up Parameter Estimation Using Parallel Computing
	When to Use Parallel Computing for Parameter Estimation
	How Parallel Computing Speeds Up Estimation

	Use Parallel Computing for Parameter Estimation
	Configure Your System for Parallel Computing
	Model Dependencies
	Estimate Parameters Using Parallel Computing in the Parameter Estimator App
	Estimate Parameters Using Parallel Computing (Code)
	Troubleshooting

	Estimating Initial Conditions for Blocks with External Initial Conditions
	Save and Load Estimation Sessions
	Structure of an Estimation Session
	Save Parameter Estimator App Sessions
	Load Parameter Estimator App Sessions
	Load Legacy Projects

	How the Software Formulates Parameter Estimation as an Optimization Problem
	Overview of Parameter Estimation as an Optimization Problem
	Cost Function
	Bounds and Constraints
	Optimization Methods and Problem Formulations

	Specify Steady-State Operating Point for Parameter Estimation
	What is a Steady-State Operating Point?
	Setting up a Steady-State Operating Point

	Write a Cost Function
	Anatomy of a Cost Function
	Specify Inputs of the Cost Function
	Compute Requirements
	Specify Outputs of the Cost Function
	Convenience Objects as Additional Inputs

	Gradient Computations
	Estimate Model Parameter Values (Code)
	Estimate Model Parameters and Initial States (Code)
	Estimate Model Parameters Using Multiple Experiments (Code)
	Estimate Model Parameters Per Experiment (Code)
	Set Model to Steady-State When Estimating Parameters (Code)
	Parameter Estimation for Power Plant Excitation System Starting at Steady-State (GUI)
	Set Model to Steady-State When Estimating Parameters (GUI)
	Estimate Model Parameters with Parameter Constraints (Code)
	Importing and Preprocessing Experiment Data (GUI)
	Estimate Model Parameter Values (GUI)
	Estimate Model Parameters Per Experiment (GUI)
	Estimate Model Parameters and Initial States (GUI)
	Generate MATLAB Code for Parameter Estimation Problems (GUI)
	Improving Optimization Performance Using Fast Restart (GUI)
	Improving Optimization Performance Using Fast Restart (Code)
	Deployed Application of Parameter Estimation
	Muscle Reflex Parameter Estimation
	DC Servo Motor Parameter Estimation
	Engine Speed Model Parameter Estimation
	Clutch Friction Coefficient Estimation
	Inverted Pendulum Parameter Estimation
	Simplified Alternator Parameter Estimation

	Response Optimization
	How the Optimization Algorithm Formulates Minimization Problems
	Feasibility Problem and Constraint Formulation
	Tracking Problem
	Gradient Descent Method Problem Formulations
	Simplex Search Method Problem Formulations
	Pattern Search Method Problem Formulations
	Gradient Computations

	Specify Signals to Log
	Specify Custom Requirements in the App
	Move Constraints
	Move Constraints Graphically
	Position Constraints Exactly

	Specify Time-Domain Design Requirements in the App
	Specify Piecewise-Linear Lower and Upper Bounds
	Specify Signal Property Requirements
	Specify Step Response Characteristics
	Track Reference Signals
	Impose Elliptic Bound on Phase Plane Trajectory of Two Signals
	Specify Custom Requirements
	Edit Design Requirements

	Edit Design Requirements
	Edit Design Requirement Dialog Box Parameters

	Specify Variable Requirements in the App
	Impose Monotonic Constraint Requirement on Variable
	Impose Upper Bound on Gradient Magnitude of Variable
	Specify Linear or Quadratic Function Matching Constraint
	Specify Requirement on a Vector Property
	Impose Relational Constraint Between Two Variables

	Specify Frequency-Domain Design Requirements in the App
	Specify Lower Bounds on Gain and Phase Margin
	Specify Piecewise-Linear Lower and Upper Bounds on Frequency Response
	Specify Bound on Closed-Loop Peak Gain
	Specify Lower Bound on Damping Ratio
	Specify Upper and Lower Bounds on Natural Frequency
	Specify Upper Bound on Approximate Settling Time
	Specify Piecewise-Linear Upper and Lower Bounds on Singular Values
	Specify Step Response Characteristics
	Specify Custom Requirements

	Specify Design Variables
	Add Model Parameters as Variables for Optimization
	Specify Design Variables

	Update Model with Design Variables Set
	Specify Optimization Options
	Create Linearization I/O Sets
	Interact with Plots
	Response Plots
	Spider Plots
	Iteration Plots

	Compare Requirements and Design Variables Using Spider Plot
	Save Design Variable Values for Specific Iteration
	Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)
	Design Optimization Tuning Parameters in Referenced Models (GUI)
	Design Optimization Tuning Parameters in Referenced Models (Code)
	Specify Steady-State Operating Point for Response Optimization
	What is a Steady-State Operating Point?
	Setting up a Steady-State Operating Point

	Design Optimization to Meet a Custom Objective (GUI)
	Design Optimization to Meet a Custom Objective (Code)
	Design Optimization to Meet Custom Signal Requirements (GUI)
	Design Optimization to Meet Frequency-Domain Requirements (GUI)
	Specify Custom Signal Objective with Uncertain Variable (GUI)
	Design Optimization with Uncertain Variables (Code)
	Generate MATLAB Code for Design Optimization Problems (GUI)
	Skip Model Simulation Based on Parameter Constraint Violation (GUI)
	Optimizing Parameters for Robustness
	What Is Robustness?
	Sampling Methods for Uncertain Parameters
	Optimize Parameters for Robustness (GUI)

	Use Accelerator Mode During Simulations
	About Accelerating Optimization
	Limitations
	Setting Accelerator Mode

	Speed Up Response Optimization Using Parallel Computing
	When to Use Parallel Computing for Response Optimization
	How Parallel Computing Speeds Up Optimization

	Use Parallel Computing for Response Optimization
	Configure Your System for Parallel Computing
	Model Dependencies
	Optimize Design Using Parallel Computing (GUI)
	Optimize Design Using Parallel Computing (Code)
	Troubleshooting

	Use Fast Restart Mode During Response Optimization
	Response Optimizer App Workflow for Fast Restart
	Command-Line Workflow for Fast Restart
	Troubleshooting

	Optimization Does Not Make Progress
	Should I worry about the scale of my responses and how constraints and design requirements are discretized?
	Why don't the responses and parameter values change at all?
	Why does the optimization stall?

	Optimization Convergence
	What to do if the optimization does not get close to an acceptable solution?
	Why does the optimization terminate before exceeding the maximum number of iterations, with a solution that does not satisfy all the constraints or design requirements?
	What to do if the optimization takes a long time to converge even though it is close to a solution?
	What to do if the response becomes unstable and does not recover?

	Optimization Speed and Parallel Computing
	How can I speed up the optimization?
	Why are the optimization results with and without using parallel computing different?
	Why do I not see the optimization speedup I expected using parallel computing?
	Why does the optimization using parallel computing not make any progress?
	Why does the optimization using parallel computing not stop when I click the Stop optimization button?

	Undesirable Parameter Values
	What to do if the optimization drives the tuned compensator elements and parameters to undesirable values?
	What to do if the optimization violates bounds on parameter values?

	Reverting to Initial Parameter Values
	How do I quit an optimization and revert to my initial parameter values?

	Save and Load Optimization Sessions
	Structure of an Optimization Session
	Save a Session
	Load a Session

	Improving Optimization Performance Using Parallel Computing
	Optimizing Time-Domain Response of Simulink® Models Using Parallel Computing
	Design Optimization to Meet Frequency-Domain Requirements (Code)
	PID Tuning with Actuator Constraints
	PID Tuning with Reference Tracking and Plant Uncertainty
	Engine Design and Cost Tradeoffs
	Magnetic Levitation Controller Tuning
	LQG Controller Tuning
	Inverted Pendulum Controller Tuning
	Pitch Rate Controller Tuning
	Tuning of Airframe Autopilot Gains
	Distillation Controller Tuning
	Heat Exchanger Controller Tuning
	Power Converter Tuning
	Servomechanism Tuning
	Stewart Platform Controller Tuning
	Phase Lock Loop Tuning

	Sensitivity Analysis
	What is Sensitivity Analysis?
	Specify Parameters for Design Exploration
	Add Model Parameters as Variables
	Select Parameters for Design Exploration

	Generate Parameter Samples for Sensitivity Analysis
	Generate Random Parameter Values
	Generate Gridded Parameter Values

	Specify Time-Domain Requirements
	Match Model Outputs to Measured Signals
	Specify Piecewise-Linear Lower and Upper Bounds
	Specify Signal Property Requirements
	Specify Step Response Characteristics
	Track Reference Signals
	Impose Elliptic Bound on Phase Plane Trajectory of Two Signals
	Specify Custom Requirements

	Specify Parameters Requirements
	Impose Monotonic Constraint Requirement on Variable
	Impose Upper Bound on Gradient Magnitude of Variable
	Specify Linear or Quadratic Function Matching Constraint
	Specify Requirement on a Vector Property
	Impose Relational Constraint Between Two Variables

	Specify Frequency-Domain Requirements
	Specify Lower Bounds on Gain and Phase Margin
	Specify Piecewise-Linear Lower and Upper Bounds on Frequency Response
	Specify Bound on Closed-Loop Peak Gain
	Specify Lower Bound on Damping Ratio
	Specify Upper and Lower Bounds on Natural Frequency
	Specify Upper Bound on Approximate Settling Time
	Specify Piecewise-Linear Upper and Lower Bounds on Singular Values
	Specify Step Response Characteristics
	Specify Custom Requirements

	Evaluate Design Requirements
	Analyze Relation Between Parameters and Design Requirements
	Visual Analysis
	Statistical Analysis

	Use Sensitivity Analysis to Configure Estimation and Optimization
	Export Sensitivity Analysis Results

	Interact with Plots in the Sensitivity Analyzer
	Parameter Set Plots
	Requirement Plots
	Evaluated Result Scatter Plots
	Evaluated Result Contour Plots
	Statistical Analysis Tornado Plots

	Validate Sensitivity Analysis
	Inspect the Generated Parameter Set
	Check Evaluation Results
	Perform Sensitivity Analysis with Different Parameter Set

	Store Intermediate Data in the App
	Specify Steady-State Operating Point for Sensitivity Analysis
	What is a Steady-State Operating Point?
	Setting up a Steady-State Operating Point

	Use Parallel Computing for Sensitivity Analysis
	Configure Your System for Parallel Computing
	Model Dependencies
	Perform Sensitivity Analysis Using Parallel Computing (GUI)
	Perform Sensitivity Analysis Using Parallel Computing (Code)
	Troubleshooting

	Use Fast Restart Mode During Sensitivity Analysis
	Sensitivity Analyzer Workflow for Fast Restart
	Command-Line Workflow for Fast Restart
	Troubleshooting

	Design Exploration Using Parameter Sampling (GUI)
	Identify Key Parameters for Estimation (GUI)
	Explore Design Reliability Using Parameter Sampling (GUI)
	Design Exploration Using Parameter Sampling (Code)
	Identify Key Parameters for Estimation (Code)
	Generate MATLAB Code for Sensitivity Analysis Statistics to Identify Key Parameters (GUI)
	Generate MATLAB Code for Sensitivity Analysis for Design Space Exploration and Evaluation (GUI)

	Optimization-Based Control Design
	Time-Domain Design Requirements in Simulink
	Specify Piecewise-Linear Lower and Upper Bounds
	Specify Step Response Characteristics
	Track Reference Signals
	Specify Custom Requirements
	Edit Design Requirements

	Frequency-Domain Design Requirements in Simulink
	Specify Lower Bounds on Gain and Phase Margin
	Specify Piecewise-Linear Lower and Upper Bounds on Frequency Response
	Specify Bound on Closed-Loop Peak Gain
	Specify Lower Bound on Damping Ratio
	Specify Upper and Lower Bounds on Natural Frequency
	Specify Upper Bound on Approximate Settling Time
	Specify Piecewise-Linear Upper and Lower Bounds on Singular Values
	Specify Step Response Characteristics
	Specify Custom Requirements

	Time- and Frequency-Domain Requirements in Control System Designer App
	Root Locus Diagrams
	Open-Loop and Prefilter Bode Diagrams
	Open-Loop Nichols Plots
	Step/Impulse Response Plots

	Time-Domain Simulations in Control System Designer App
	Design Optimization-Based Controllers for LTI Systems
	Optimize LTI System to Meet Frequency-Domain Requirements
	Design Requirements
	Create an LTI Plant Model
	Open the Control System Designer App
	Open Optimization Based Tuning Method
	Select Tunable Compensator Elements
	Add Design Requirements
	Optimize the System Response
	Create and Display the Closed-Loop System

	Design Linear Controllers for Simulink Models
	Enforcing Time and Frequency Requirements on a Single-Loop Controller Design
	Airframe Controller Tuning
	DC Motor Controller Tuning
	Hydraulic Piston Regulator Tuning

	Lookup Tables
	What are Adaptive Lookup Tables?
	Lookup Tables
	Adaptive Lookup Tables

	How to Estimate Lookup Table Values
	Estimate Constrained Values of a Lookup Table
	Objectives
	About the Data
	Lookup Table Output
	Estimate the Monotonically Increasing Table Values Using Default Settings
	Validate the Estimation Results

	Estimate Lookup Table Values from Data
	Objectives
	About the Data
	Open a Parameter Estimation Session
	Estimate the Table Values Using Default Settings
	Validate the Estimation Results

	Building Models Using Adaptive Lookup Table Blocks
	Selecting an Adaptation Method
	Sample Mean
	Sample Mean with Forgetting

	Model Engine Using n-D Adaptive Lookup Table
	Objectives
	About the Data
	Building a Model Using Adaptive Lookup Table Blocks
	Adapting the Lookup Table Values Using Time-Varying I/O Data

	Using Adaptive Lookup Tables in Real-Time Environment
	Design Optimization Using Lookup Table Requirements for Gain Scheduling (Code)
	Design Optimization Using Lookup Table Requirements for Gain Scheduling (GUI)
	2-D Adaptive Lookup Table Generation
	Engine Volumetric Efficiency Surface Matching

