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* “Model Requirements for Importing Data” on page 1-2
* “Import Data for Parameter Estimation” on page 1-5
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Model Requirements for Importing Data

1-2

Before you can analyze and preprocess the estimation data, you must assign the data to the model
ports or signals. In order to assign the data, the Simulink model must contain one of the following
elements:

* Root-level model Inport block

Note You do not need an Inport block if your model already contains a fixed input block, such as a
Step block.

* Root-level model Outport block
» Logged signal, which can be a root-level signal in the model or a signal in a model subsystem

To enable signal logging for a signal, in the Simulink Editor, select the signal, click the

Simulation Data Inspector button arrow " and click Log Selected Signals. For more
information, see “Export Signal Data Using Signal Logging”.

When you create an experiment, as described in “Create Experiment” on page 2-4, the top level
input and output ports as well as logged signals are selected by default. You can add or remove the
input and output signals using the experiment editor on page 2-5. In the experiment editor, the
rows in the Inputs panel correspond to the model's root-level Inport blocks.

w Experiments

MNewData Edit Experiment: NewData
Outputs -
Define measured output signals for this experiment.

engine idle speed/Sum:l

[ <1 Signal, 7501 points> | B & x

w Results @ Select Meaured Output Signals.

Inputs
Optionally define inputs signals for this experiment.
engine idle speed/BPAVIL

<7501%2 Signal> | B4 x

E Select Inputs.

m

Similarly, the rows in the Outputs panel correspond to either the root-level Outport blocks or logged
signals in the model.

Select Input Signals

You can add the Inport block in the experiment editor by clicking the Select Inputs button in the

Inputs panel to launch the Select Inputs dialog box. You can select the Inport block you want by
selecting the check box corresponding to it and clicking OK. There is only one Inport block for the
engine idle speed model.



Model Requirements for Importing Data

Inputs
engine _idle speed/BPAV:] (BRPAV]

[<l| 4

o 0K $X cancel () Help

Using the dialog box, you can import the input data by typing, for example, [time,iodata(:,1)] in
the Inputs panel. To learn more about importing data, see Import Data on page 1-5.

Inputs
Optionally define inputs signals for this experiment.
engine idle speed/BPAV:L [BPAV]

I8 MR

Select Output Signals

You can add the Output block in the experiment editor by clicking Select Measured Output Signals
in the Outputs panel to launch the Select Outputs dialog box. You can select the Outport block you
want by clicking the check box corresponding to it, and clicking OK. There is only one Outport block
for the engine idle speed model.

Click signals in the simulink model to add them to the output table,

b Outputs
engine idle speed/Sum:l (Engine Speed)

Q? OK 23 Cancel @ Help

Using the dialog box, you can import the output data by typing, for example, [time,iodata(:,2)]
in the Inputs panel. To learn more about importing data, see Import Data on page 1-5.

Outputs
Define measured output signals for this experiment.
engine idle speed/Sum:l (Engine Speed)

<1x1 Signal, 1 points= '| @ &I X
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See Also

Related Examples

. “Import Data for Parameter Estimation” on page 1-5
More About
. “What Is an Experiment?” on page 2-3

1-4



Import Data for Parameter Estimation

Import Data for Parameter Estimation

Create Experiment

Before you begin data import, create an experiment. Simulink Design Optimization software provides
an app for setting up the estimation session.

To create an estimation session:

1 At the MATLAB® prompt, open the nonlinear idle speed model of an automotive engine by
typing :

engine idle speed

Idle Speed Engine Model

Monlinearities  Linear Dynamics

—™ —™
5 fu) gaini -

o)~ P

denis)

Transfer Fen

gain2 _»@

Engine Spesd

BPAY denis)

Transfer Fenl

gaind

denis)

Transfer Fen2

GUI o run an estimation.

The model contains the Inport block BPAV and Outport block Engine Speed for importing input
and output data, respectively. To learn more, see “Model Requirements for Importing Data” on
page 1-2.

2 In the Simulink model window, open the Parameter Estimator by selecting Analysis >
Parameter Estimation.

1-5
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1-6

4\ Parameter Estimation - engine_idle_speed EI@
[ PARAMETER ESTIMATION VALIDATION
'?j @ @ E Ijj E‘ E E‘i Cost Function: Sum Sguared Error « |>
Open Save New Select Select  Senskiviy AddPiot PlotModel () More Options... Estimate
Session ¥ Session v  Experiment Experiments Parameters Analysis v - Response -
FILE EXPERIMENTS FARAMETERS PLOTS OFTIONS ESTIMATE
Data Browser ]

w Parameters

w Experiments

w Results

¥ Preview

Parameter Estimator

You can organize the estimation and validation tasks inside Experiments under Data Browser
panel on the left. You can assign each experiment to an estimation task or validation task.

To create an experiment, click the New Experiment button.

&

MNew
Experiment

This creates an experiment called Exp under Experiments. To change the name of the
experiment, right-click and select Rename. Call it NewData.

Note The Simulink model must remain open to perform parameter estimation tasks.

Time-Domain Data

Experiments are collections of signal data, specifically input and output signal data. After you create
an experiment, as described in “Create Experiment” on page 1-5, you can import data into your
experiment from various sources including MATLAB® variables, MAT-files, Excel® files, or comma-
separated-value files.

To import data into your experiment right-click and select Edit.... This will launch the experiment
editor. In the experiment editor, you can define the signals contained in the experiment.



Import Data for Parameter Estimation

Edit Experiment: Exp x

Qutputs
Define measured output signals for this experiment.

engine idle speed/Sum:l [Engine Speed)
<1yl Signal, 1 points> ~| B &. »

@, Select Meaured Output Signals

Inputs
Optionally define inputs signals for this experiment.
engine idle speed/EPAV:] [EPAV
<1%2 Signal> - B 4 x

m

E Select Inputs

Initial States
Optionally define initial states for this experiment.

There are currently no initial states defined for this experiment.

2 select Initial States

Parameters
Optionally define parameters for this experiment.

There are currently no parameters defined for this experiment.

i Select Parameters i

For example, the rows in the Inputs panel of the editor correspond to Inport block BPAV in the
engine idle speed model.

The rows in the Outputs panel correspond to Outport block Engine Speed. You can import signal
data from files or MATLAB workspace.

Note The Simulink model must contain an Inport or Outport block or logged signals to enable
importing data. For more information, see “Model Requirements for Importing Data” on page 1-2. To
select more output signals to specify data for, click Select Measured Output Signals in the
Outputs panel.

The idle-speed model of an automotive engine contains the measured data stored in the iodata array
in the workspace. The array contains two columns: the first for input data, and the second for output
data. The time data is in the time array in the workspace. You can import the input data by typing
[time,iodata(:,1)] in the Inputs panel.

Inputs
Optionally define inputs signals for this experiment.
enging idle speed/BPAV:1 [BPAN]

| time, iodatal: 1] ~| B & X%

@ Select Inputs

You can import the output data by typing [time, iodata(:,2)] in the Outputs panel. You can view

the data by clicking 52 The input data should look like this:
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1-8

O x
HH 750132 double 4
1 2 3 4
=
2 0.0200 0
3 00400 0
4 0.0600 0
5 0.0800 0
s r !r'\"'l [alalul [al '
Output data should look like this:
0O x
FH 750132 double 5
1 2 3 4
i e .
2 00200  713.2568 ™
3 0.0400  709.0454
4 0.0600  704.4067
5 00800  699.8901
e - !r'\"'l nitn SN CaAcn P

After importing the data for NewData experiment, the experiment editor looks like this:
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Edit Experiment: NewData x

Outputs it
Define measured output signals for this experiment.

engine idle speed/Sum:l [Engine Speed)

<1x1 Signal, 7501 points> v B A& X

@ Select Meaured Output Signals

Inputs
Optionally define inputs signals for this experiment.
enging idle speed/BEPAV:1 [BPAV]

211 Signal, 7501 points> - B A& X

m

@ Select Inputs

Initial States
Optionally define initial states for this experiment.

There are currently no initial states defined for this experiment.
£ select Intial States

Parameters
Optionally define parameters for this experiment.

There are currently no parameters defined for this experiment.

g Select Parameters

To import data from a file, click the o button.

To learn more about the Edit Experiment: dialog box, see “Edit Experiment Data” on page 2-5.

Time-Series Data

Time-series data is stored in time-series objects. For more information, see “Time Series Objects and
Collections”.

When you import input data from a time-series object, t, for parameter estimation, you must specify
the time vector and data as [t.time, t.inputdata] in the Inport signal dialog box. Similarly, to
import output data, you must specify the time vector and data as [t.time, t.outputdata] in the
Outport signal dialog box. For more information on how to import data into the experiment, see
“Time-Domain Data” on page 1-6.

Complex Data

Complex-valued data is data whose value is a complex number. For example, a signal with the value
1+2j is complex. You can use complex data to estimate parameters of electrical systems, such as the
magnitude and phase.

Note You must sample the real and imaginary parts of the data as a function of the same time vector.
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To use complex data for parameter estimation:

1 Split the data into two data sets that contain the real and imaginary parts. To split the data, use
the MATLAB functions real, and imag.

2 Create two signals, one for the real part and one for the imaginary part for the Inport or Outport
block.

3 Select both signals in the experiment editor.
Import the data to the corresponding signal as described in “Time-Domain Data” on page 1-6.

See Also

Related Examples
. “Plot and Analyze Data” on page 1-11

. “Preprocess Data” on page 1-13
More About
. “Model Requirements for Importing Data” on page 1-2
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Plot and Analyze Data

Why Plot the Data Before Parameter Estimation

After you import the estimation data as described in “Import Data for Parameter Estimation” on page
1-5, you can remove outliers, smooth, detrend, or otherwise treat the data to prepare for analysis and
estimation. To view and analyze data characteristics, plot the data on a time plot.

Plot Data

Use an experiment plot to visualize experiment data. First, create an experiment and import data as
described in “Import Data for Parameter Estimation” on page 1-5. To create an experiment plot, in
the Parameter Estimator, on the Parameter Estimation tab, click Add Plot, and select NewData
under Experiment Plots.

ITERATION PLOTS

4 Parameter Trajectory
Display the parameter values as
they change during estimation.

—
f1 2 3

4 Estimation Cost
T ) . .
(1 2 3 Display the estimation cost as
! . . . .
it changes during estimation.

EXPERIMENT PLOTS
/f— MewData

This creates plots of the input signal for the Inport block BPAV and output signal for the Outport
block Engine Speed for the engine idle speed model (see “Create Experiment” on page 1-5).
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4\ Parameter Estimation® - engine_idle_speed - Experiment plot: MewData EI@
[ PARAMETER ESTIMATION VALIDATION EXPERIMENT PLOT =
ﬁ E @ E % E‘ E Eli Cost Function: Sum Squared Error + D
Open Save New Select Select  Sensitivity Add Plot Plot Model {5} More Options... Estimate
Session = Session v E i E i F Analysis * Response hd
FILE EXPERIMENTS PARAMETERS PLOTS OFTIONS ESTIMATE
Data Browser G \ Experiment plot: NewData |
w Parameters < /| There is no simulation data for ‘NewData’, click 'Flot Medel Response’ o run the estimation to update the plot
Engine Speed
1000 =
800
w Experiments
MNewData
600
8 400 ! !
2
=
w Results = 2 BPAv
<
1t
0
W Preview
1t
Measured cutput signal({s):
- Engine Speed
-2
Measured input signal(s): 0 50 100 150
- BERV Time (seconds)

You can also plot the experiment data by right-clicking NewData and selecting Plot measured
experiment data from the list.

Using the time plot, you can examine the data characteristics such as noise, outliers and portions of
the data to use for estimating parameters. After you analyze the data, you can preprocess it as
described in “Preprocess Data” on page 1-13.

See Also

Related Examples

. “Import Data for Parameter Estimation” on page 1-5

. “Preprocess Data” on page 1-13

More About

. “Model Requirements for Importing Data” on page 1-2
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Preprocess Data

Ways to Preprocess Data

In the Parameter Estimator and Sensitivity Analyzer, you can preprocess imported data before
you use it for estimation or evaluation. After plotting the measured data, you have access to the
Experiment Plot tab where you can preprocess the data.

[~ Print
|| Preview

PRINT

Grid E Remove Offzet H Low-Pass Filter E Resample Data rﬂ
izt
[ :: Legend | w o Scale Data High-Pass Fitter Replace Data
\ Edit ~ R i Plot Model
{G} Properties . Extract Data Band-Pass Filter Response
VIEW ZOOM & PAN EDIT CATA FROCESSING PLOT

For information about how to plot the imported data in the Parameter Estimator, see “Plot and
Analyze Data” on page 1-11. For information about how to import and plot the data in the Sensitivity
Analyzer, see “Match Model Outputs to Measured Signals” on page 4-21.

You can perform the following preprocessing operations:
+ “Remove Offset” on page 1-13 — Remove mean values, a constant value, or an initial value from

the data.

* “Scale Data” on page 1-14 — Scale data by a constant value, signal maximum value, or signal
initial value.

+ “Extract Data” on page 1-14 — Select a subset of the data to use in the estimation or evaluation.
You can graphically select the data to extract, or enter start and end times in the text boxes.

* “Filter Data” on page 1-15 — Process data using a low-pass, high-pass, or band-pass filter.

» “Resample Data” on page 1-15 -- Resample data using zero-order hold or linear interpolation.

* “Replace Data” on page 1-16 -- Replace data with a constant value, region initial value, region
final value, or a line. You can use this functionality to replace outliers.

You can perform as many preprocessing operations on your data as are required for your application.
For instance, you can both filter the data and remove an offset.

Remove Offset

On the Experiment Plot tab, click Remove Offset.

EXPERIMENT PLOT REMOVE OFFSET ]

O Remove offset from all signals Offset to remove: a %
™ Remove offzet from signal: Position - 0 h Apphy Cloze
- Remove Offset
SIGNAL OFFSET AFPLY CLOSE

It is important for good estimation results to remove data offsets. In the Remove Offset tab, you can
remove offset from all signals at once or select a particular signal using the Remove offset from
signal drop down list. Specify the value to remove using the Offset to remove drop down list. The
options are:
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* A constant value. Enter the value in the box. (Default: 0)
* Mean of the data, to create zero-mean data.

* Signal initial value.

As you change the offset value, the modified data is shown in preview in the plot.

After making choices, update the existing data with the preprocessed data by clicking Q{)
Or, to save the modified data values in a new experiment (in the Parameter Estimator) or
Apply

requirement (in the Sensitivity Analyzer), click "= " and select Save As: Create a new
experiment from the modified data.

Scale Data

On the Experiment Plot tab, click Scale Data.

EXPERIMENT PLOT SCALE DATA

O Scale all signals Scale to use: s %
“ Scale signal: | Position - 1 - Apphy Close
- Scale Data
SIGMAL SCALE APPLY CLOSE

In the Scale Data tab, you can choose to scale all signals or specify a signal to scale. Select the
scaling value from the Scale to use drop-down list. The options are:

* A constant value. Enter the value in the box. (Default: 1)
* Signal maximum value.

* Signal initial value.

As you change the scaling, the modified data is shown in preview in the plot.

After making choices, update the existing data with the preprocessed data by clicking Q{)
Or, to save the modified data values in a new experiment (in the Parameter Estimator) or

Apply
requirement (in the Sensitivity Analyzer), click " = " and select Save As: Create a new

experiment from the modified data.

Extract Data

To extract a portion of your data to use in the estimation or evaluation process, on the Experiment
Plot tab, click Extract Data.
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EXPERIMENT PLOT EXTRACT DATA

Start Time: |37.5 T %
End Time: [112.5 Save As Close
Extract Data
EXTRACT DATA SAVE AS CLOSE

Select a subset of data to use in Extract Data tab. You can extract data graphically or by specifying
start time and end time. To extract data graphically, click and drag the vertical bars to select a region
of the data to use.

After you choose the data to extract, you can save it in a new experiment (in the Parameter
Estimator) or requirement (in the Sensitivity Analyzer) by clicking Save As.

Filter Data
You can filter your data using a low-pass, high-pass, or band-pass filter. A low-pass filter blocks high
frequency signals, a high-pass filter blocks low frequency signals, and a band-pass filter combines the

properties of both low- and high-pass filters. On the Experiment Plot tab click one of the Low-Pass
Filter, High-Pass Filter, or Band-Pass Filter to open a new tab. For example, the low-pass filter

tab appears as shown:
EXPERIMENT PLOT LOW-PASS FILTER
O Fitter all signals Mormalized cutoff frequency: @ W 83

0.018

™ Filter signal: | Position - Optionz Apphy Close
b Low-Pass Filter
SIGMAL LOW-FASS FILTER AFFLY CLOSE

On the Low-Pass Filter, High-Pass Filter, or Band-Pass Filter tab, you can choose to filter all
signals or specify a particular signal. For the low-pass and high-pass filtering, you can specify the
normalized cutoff frequency of the signal. Where, a normalized frequency of 1 corresponds to half the
sampling rate. For the band-pass filter, you can specify the normalized start and end frequencies.
Specify the frequencies by either entering the value in the associated field on the tab. Alternatively,
you can specify filter frequencies graphically, by dragging the vertical bars in the frequency-domain
plot of your data.

Click Options to specify the filter order, and select zero-phase shift filter.

After making choices, update the existing data with the preprocessed data by clicking Q{}

Or, to save the modified data values in a new experiment (in the Parameter Estimator) or

Apply
requirement (in the Sensitivity Analyzer), click " = " and select Save As: Create a new
experiment from the modified data.

Resample Data

On the Experiment Plot tab, click the Resample Data button.
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EXPERIMENT PLOT RESAMPLE DATA

Resample with sample period: 0,001 - 83
Resample Using: Zero-order hold - Apply Close
- Reszample Data
RESAMPFLE DATA APPLY CLOSE

In the Resample Data tab, specify the sampling period using the Resample with sample period:
field. You can resample your data using one of the following interpolation methods:

* Zero-order hold — Fill the missing data sample with the data value immediately preceding it.
* Linear interpolation — Fill the missing data using a line that connects the two data points.

By default, the resampling method is set to zero-order hold. You can select the linear
interpolation method from the Resample Using drop-down list.

The modified data is shown in preview in the plot.

After making choices, update the existing data with the preprocessed data by clicking Q'/)

Or, to save the modified data values in a new experiment (in the Parameter Estimator) or

Apply
requirement (in the Sensitivity Analyzer), click "= " and select Save As: Create a new
experiment from the modified data.

Replace Data

On the Experiment Plot tab click the Replace Data button.

EXPERIMENT PLOT REPLACE DATA

Replace selected data Clear preview Apphy Close
- - Replace Data
REPLACE DATA APPLY CLOSE

In the Replace Data tab, select data to replace by dragging across a region in the plot. Once you
select data, choose how to replace it using the Replace selected data drop-down list. You can
replace the data you select with one of these options:

* A constant value

* Region initial value

* Region final value

* Aline

The replaced preview data changes color and the replacement data appears on the plot. At any time
before updating, click Clear preview to clear the data you replaced and start over.

After making choices, update the existing data with the preprocessed data by clicking Q{)



Preprocess Data

Or, to save the modified data values in a new experiment (in the Parameter Estimator) or

Apply
requirement (in the Sensitivity Analyzer), click " = " and select Save As: Create a new
experiment from the modified data.

Replace Data can be useful, for example, to replace outliers. Outliers can be defined as data values
that deviate from the mean by more than three standard deviations. When estimating parameters
from data containing outliers, the results may not be accurate. Hence, you might choose to replace
the outliers in the data before you estimate the parameters.

See Also

More About

. “Import Data for Parameter Estimation” on page 1-5
. “Match Model Outputs to Measured Signals” on page 4-21
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“What Is an Experiment?” on page 2-3

“Specify Estimation Data” on page 2-4

“Specify Parameters for Estimation” on page 2-7

“Specify Known Initial States” on page 2-14

“Specify Estimation Options” on page 2-17

“Estimate Parameters and States” on page 2-19

“Validate Estimation Results” on page 2-25

“Speed Up Parameter Estimation Using Parallel Computing” on page 2-30

“Use Parallel Computing for Parameter Estimation” on page 2-33

“Estimating Initial Conditions for Blocks with External Initial Conditions” on page 2-38
“Save and Load Estimation Sessions” on page 2-39

“How the Software Formulates Parameter Estimation as an Optimization Problem” on page 2-41
“Specify Steady-State Operating Point for Parameter Estimation” on page 2-47

“Write a Cost Function” on page 2-49

“Gradient Computations” on page 2-57

“Estimate Model Parameter Values (Code)” on page 2-58

“Estimate Model Parameters and Initial States (Code)” on page 2-67

“Estimate Model Parameters Using Multiple Experiments (Code)” on page 2-76
“Estimate Model Parameters Per Experiment (Code)” on page 2-86

“Set Model to Steady-State When Estimating Parameters (Code)” on page 2-97

“Parameter Estimation for Power Plant Excitation System Starting at Steady-State (GUI)”
on page 2-106

“Set Model to Steady-State When Estimating Parameters (GUI)” on page 2-117
“Estimate Model Parameters with Parameter Constraints (Code)” on page 2-124
“Importing and Preprocessing Experiment Data (GUI)” on page 2-132

“Estimate Model Parameter Values (GUI)” on page 2-143

“Estimate Model Parameters Per Experiment (GUI)” on page 2-154

“Estimate Model Parameters and Initial States (GUI)” on page 2-168

“Generate MATLAB Code for Parameter Estimation Problems (GUI)” on page 2-178
“Improving Optimization Performance Using Fast Restart (GUI)” on page 2-181
“Improving Optimization Performance Using Fast Restart (Code)” on page 2-187
“Deployed Application of Parameter Estimation” on page 2-191

“Muscle Reflex Parameter Estimation” on page 2-198

“DC Servo Motor Parameter Estimation” on page 2-205

“Engine Speed Model Parameter Estimation” on page 2-212
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* “Clutch Friction Coefficient Estimation” on page 2-214
* “Inverted Pendulum Parameter Estimation” on page 2-220
* “Simplified Alternator Parameter Estimation” on page 2-229
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What Is an Experiment?

To estimate unknown parameter values of a Simulink model, first create an experiment. An
experiment specifies measured input and output data. During estimation, the experiment input data is
used to simulate the model and the model output is compared with the measured experiment output
data. For more information about creating experiments and importing data, see “Specify Estimation
Data” on page 2-4.

In an experiment, you can specify initial-state values. To do so, specify the model initial states for
each experiment. You can optionally specify an initial guess for the initial state values for any
experiment. For more information, see “Specify Known Initial States” on page 2-14.

To estimate a model parameter on a per-experiment basis, specify the model parameter for each
experiment. You can specify the initial values and limits for the parameter value for any of the
experiments. Alternatively, you can specify a parameter value as a known quantity, not to be
estimated. For more information, see “Specify Parameters for Estimation” on page 2-7. You can
choose to update experiments with estimated model initial states and parameter values, or save the
results in a new experiment. For more information, see “Specify Estimation Options” on page 2-17.

To use experiments for validating the estimated parameter values, see “Validate Estimation Results”
on page 2-25.

See Also

Related Examples
. “Specify Estimation Data” on page 2-4

. “Specify Parameters for Estimation” on page 2-7
. “Specify Known Initial States” on page 2-14

. “Estimate Parameters and States” on page 2-19
More About

. “Edit Experiment Data” on page 2-5
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Specify Estimation Data

This topic shows how to specify estimation data for parameter estimation.

Create Experiment

Before you specify estimation data, create an experiment. At the MATLAB prompt, open the nonlinear
idle speed model of an automotive engine by typing

engine idle speed

In the Simulink model window, open the Parameter Estimator by selecting Analysis > Parameter

. .
Estimation.
4\ Parameter Estimation - engine_idle_speed EI@
[ PARANETER ESTIMATION VALIDATION ZELEDS e
0 B B 2 @ &H Bl Ld 8 cetrweor simsuoestmre| 2
Open Save New Select Select  Sensitivity  AddPlot PotModel (&) More Options Estimate
Session = Session = Experiment Experiments  Parameters Analysis « - Response -
FILE EXFERIMENTS PARAMETERS FLOTS OFTIONS ESTIMATE

Data Browser )

w Parameters

w Experiments

* Results

W Preview

In the Parameter Estimator, on the Parameter Estimation tab, click New Experiment.

iz

News
Experiment

This action creates an experiment called Exp in the Experiments list in the Data Browser panel and
opens the experiment editor. To change the name of the experiment, right-click Exp and select
Rename. If you rename it NewData, the Experiments list now looks like this:
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w Experiments

MewData

Edit Experiment Data

After creating an experiment, launch the experiment editor by right-clicking on the experiment name
and selecting Edit... from the list. The experiment editor resembles the following figure.

Edit Experiment: Exp X

Outputs il
Define measured output signals for this experiment.
engine idle speed/Sum:l (Engine Speed)

<1xl Signal, 1 points= v B X

@ Select Meaured Cutput Signals

Inputs
Cptionally define inputs signals for this experiment.
engine idle speed/BPAV:L (BPAN]

<132 Signal> v B & X

m

@ Select Inputs

Initial States
Optionally define initial states for this experiment.

There are currently no initial states defined for this experiment.

{71 select Inttial States

Parameters
Optionally define parameters for this experiment.

There are currently no parameters defined for this experiment.

i Select Parameters il

The experiment editor has four panels. You select output signals on page 1-3 and import output data
on page 1-5 in the Outputs panel. You select input signals on page 1-2 and import input data on page
1-5 in the Inputs panel. You can specify model initial states on page 2-14 in the Initial States

panel. You can specify parameters to estimate on page 2-11 in the Parameters panel.

The rows in the Inputs panel of the editor correspond to Inport block BPAV in the
engine idle speed model. See “Import Data for Parameter Estimation” on page 1-5.

The rows in the Outputs panel correspond to Outport block Engine Speed. You can import signal
data from files or MATLAB workspace.
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2-6

The idle-speed model of an automotive engine contains the measured data stored in the iodata array
in the workspace. The array contains two columns: the first for input data, and the second for output
data. The time data is in the time array in the workspace. Import the input data by typing
[time,iodata(:,1)] in the dialog box in the Inputs panel.

Inputs
Cptionally define inputs signals for this experiment.
engine idle speed/BPAV:L (BPAN]

| time, iodatal:, 1] ~| B & x
@ Select Inputs

Import the output data by typing [time, iodata(:,2)] in the dialog box in the Outputs panel.

Note You can have more than one input or output signal, but you can have only one data set for a
signal. If you have multiple data sets, create multiple experiments.

See Also

Related Examples

. “Model Requirements for Importing Data” on page 1-2
. “Specify Parameters for Estimation” on page 2-7

. “Specify Known Initial States” on page 2-14

. “Estimate Parameters and States” on page 2-19
More About

. “What Is an Experiment?” on page 2-3
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Specify Parameters for Estimation

Choosing Which Parameters to Estimate First

Simulink Design Optimization software lets you estimate scalar, vector, and matrix parameters. You
can take an iterative approach to estimating model parameters. For example, if you have a large
number of parameters to estimate, start by estimating those that most influence the output. After you
estimate a subset of parameters and validate the estimated parameters, you can select the remaining
parameters for estimation.

You can also first use sensitivity analysis to identify the parameters that most influence the
estimation, and then specify these parameters for estimation. To open the Sensitivity Analyzer, in

the Parameter Estimation tab, click EISensitivity Analysis. In the Sensitivity Analyzer, you can
identify the model parameters that most influence the estimation problem and compute initial values
for the estimation parameters.

Add Model Parameters as Variables for Estimation

The software can only estimate variables that are in use by the model. Create variables for estimation
in the MATLAB or model workspace, and specify your Simulink model or block parameters using
these variables.

In this figure, the Numerator coefficients parameter of a Transfer Fcn block is specified as a
numerical value.

r

"4 Function Block Parameters: Transfer Fen @

Transfer Fen
The numerator coefficient can be a vector or matrix expression. The
denominator coefficient must be a vector. The output width equals the

number of rows in the numerator coefficient. You should specify the
coefficients in descending order of powers of s.

Parameters

Numerator coefficients:

[100]

Denominator coefficients:

ampl/freql, 1]

To estimate the Numerator coefficients parameter, specify it as variable gainl:
1 Create the variable gainl in one of the following ways:

* Add the variables to the model workspace, and specify initial values.
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-

Maodel Explorer
File Edit Wiew Tools Add Help

B 3 H -~ @ « &8
Search: by Mame * Mame: @Y S
Madel Hierarchy Iﬂ = Contents of: Model Workspace (and be

4 %2 simulink Root

Column View: |Data Objects ot
E Base Workspace [ . l

4 myModel Mame Value DataType Min
HH gaint 100

E Model Workspace

{83 Configuration (Active)

ﬁ Code for myModel

(=% Simulink Design verifier results

) advice for myModel

* Write initialization code in the PreloadFcn callback of the model. For more information, see
“Model Callbacks”.

gainl = 100
2 Specify the block parameter as variable gainl in the Transfer Fcn block dialog box.

of rows in the ni
coefficients in descending order of pow’

Parameters

Numerator coefficients:

[gainl]

Deno

You can now select gainl for estimation. See, “Specify Parameters for Estimation” on page 2-9.
Specify Independent Parameters for Estimation

You can also specify independent parameters that do not appear explicitly in the model as variables
for estimation. However, you cannot use this workflow with Simulink fast restart.

Suppose that a model parameter Kint is related to independent parameters x and y such that Kint
= x+y. To estimate x and y instead of Kint:

* Create the independent variables x and y by adding them to the model workspace and specifying
initial values.

* The software only allows tuning of variables that are used by model blocks. To ensure that the
software detects x and y for tuning, add a Constant block to your model, and specify the
Constant value of the block as [x y]. Connect the block to a Display block.
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[K ':I' L I:l

Constant Dis play

* Write code in the InitFcn callback of the model that defines the relationship between Kint, x,
and y. You must first use the get param function to get the variables x and y from the model
workspace before you can use them to define Kint.

wks = get param(gcs, 'ModelWorkspace"')
x = evalin(wks, 'x")

y = evalin(wks,'y")

Kint = x+y;

You can now select x and y for estimation. Do not estimate the independent and dependent
parameters simultaneously. Doing so can lead to incorrect results. For example, do not estimate
Kint, x and y together.

Specify Parameters for Estimation

You can specify the parameters for estimation experiments using the Estimated Parameters editor.
In the Parameter Estimator, on the Parameter Estimation tab, click Select Parameters.

.

Select
Parameterz

To select parameters for all experiments, click Select Parameters in the Parameters Tuned for all
Experiments panel. This opens the Select model variables dialog. Here you can select the
parameters you want to estimate by clicking the check box next to it or specifying an expression. For
more information see “Select Parameters Using Select Model Variables Dialog Box” on page 2-11.

The editor looks like
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Edit: Estimated Parameters

Parameters Tuned for all Experiments
There are no parameters selected for estimation.

i Select parameters
Parameters and Initial States Tuned per Experiment
Experiment: |MewData =

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

There are no parameters defined for this experiment.

Edit experiment

Ea| update Model 47 OK () Help

For example, in the engine idle speed model, select freql, freq2, freq3, gainl, gain2,
gain3 and mean_ speed for estimation. You do not need to estimate the parameters all at once. You
can first select all the parameters you are interested in, and then later select a subset to estimate. By
default, all the parameters are selected for estimation. To deselect the ones you do not want to
estimate, clear the Estimate check box for a parameter. For this example, only estimate gainl,
gain2, gain3 and mean_ speed. Set their initial values 10, 100, 50, and 500, respectively, and then
click OK. The Edit: Estimated Parameters dialog box looks like
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Edit: Estirmated Pararneters
Parameters Tuned for all Experiments >

k3 - | B % [ Estimate

[ 3 |3 v| B % [T Estimate

P [z - | O » [ Estimate

m

P |10 ~| §» % 0 Estimate
B |100 v | Hp b4 Estimate
B 50 v| Op » Estimate

mean speed
b |s00 v| B X @ Estimate

[ Select parameters

Parameters and Initial States Tuned per Experiment

Experiment: |[Exp ™ -

To learn how to specify initial values and upper and lower bounds of the parameters, see “Specifying
Initial Guesses and Upper/Lower Bounds” on page 2-13.

Select Parameters to Estimate for a Specific Experiment

To select the parameters to estimate in a specific experiment, first, select the experiment for
estimation as described in “Estimate Parameters and States” on page 2-19. Then, you can use the
Edit:Estimated Parameters dialog to select parameters to estimate for that experiment. Select the
experiment name from the Experiment: combo box in the Parameters and Initial States Tuned
per Experiment panel. Then click Edit experiment to launch the experiment editor for the
experiment you select.

Alternatively, you can right click the experiment name in the Experiments list and select Edit.... In
the experiment editor, click the Select parameters button in the Parameters panel. In the Select
model variables dialog box, you can select the parameters you want to estimate in this experiment by
checking the box next to it or specifying an expression. For more information see “Select Parameters
Using Select Model Variables Dialog Box” on page 2-11.

Select Parameters Using Select Model Variables Dialog Box
Use this dialog box to specify parameters to estimate. The table lists the variables that the model

uses to set block parameter values. The variables can reside in the model workspace, the base
workspace, or a data dictionary.

2-11
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Select variables by clicking the check box next to each variable. If your model contains many
variables, filter the list by typing in the Filter by variable name field. The Used By column lists all
blocks in the model that use the variable. When a variable is used in more than one block, all blocks
are listed. To highlight blocks in the model that use the variable, click the block name.

Select model variables X
Filter by wariahle narme P
w | Variable | Currentw.. Used By
[ |freql 3 engine idle speed/Transfer Fcn o
] |freqg2 3 engine idle speed/Transfer Fenl
[ |freg3 3 engine idle speed/Transfer Fcn
] |gainl 100 engine idle speed/Transfer Fcn -
[ |gain2 0 engine idle speed/Transfer Fenl 1
] |gain3 0 engine idle speed/Transfer Fcn2 il

P Specify expression indexing if necessary (e.qg., a(3) or sa)

Q;?DK %Eancel @H&Ip

The variables that you select must have a numeric value that uses the data type double. If the value
of a variable is not a double number, use these techniques:

* To select a single element or a subset of a matrix or array variable, click Specify expression
indexing if necessary.

w Specify expression indexing if necessary (e.g,, a(3) or s.x )

Enter an expression such as myArray(2), which selects the second element of an array variable
myArray.

After you type the expression, press the Enter key to add the variable to the list of model
variables.

* To use a variable of a numeric data type other than double, convert the variable to a
Simulink.Parameter object, which separates a parameter value from its data type. Set the
Value property to a default double number, and use the DataType property to control the data

type.
* To use the value of a Simulink.Parameter object, specify the Value property. Enter the
expression myParamObj .Value.

* To use a numeric field of a structure, enter myStruct.PID.P1. If you store the structure in a
Simulink.Parameter object, enter myStruct.Value.PID.P1.

* To use one cell of a cell array, enter myCells{3}.

You cannot use mathematical expressions such as a + b. Sometimes, models have parameters that are
not explicitly defined in the model itself. For example, a gain k could be defined in the MATLAB
workspace as K = a + b, where a and b are not defined in the model but k is used. To add these
independent parameters, see “Add Model Parameters as Variables for Estimation” on page 2-7.



Specify Parameters for Estimation

Specifying Initial Guesses and Upper/Lower Bounds

After you select parameters, you can specify

Initial guess — The value the estimation uses to start the process.

Minimum — The smallest allowable parameter value. The default is -Inf.

Maximum — The largest allowable parameter value. The default is +Inf.

You can enter the initial value in the dialog box below the parameter name. You can specify the

minimum and maximum value fields by clicking the arrow . The default minimum and maximum
values are -Inf and +Inf, respectively, but you can select any range you want.

oainl

x> |10 v| o2 ¢ [ Estimate
Minimums: | -Inf | O
Maximum: | Inf | O
Scale: |10 | O

If you believe a parameter lies within a finite range, it is best not to use the default minimum and
maximum values. Often, there are computational advantages in specifying finite bounds. It can be
very important to specify lower and upper bounds. For example, if a parameter specifies the
weight of a part, be sure to specify 0 as the absolute lower bound if better information is
unavailable.

Note When you specify the minimum and maximum values for the parameters, it does not affect
your settings in the Parameters list under Data Browser pane. You make these choices for each
experiment.

Scale — The scale value to use for normalization. The parameters are scaled, or normalized, by
dividing their current value by the scale value. Scale is useful, in situations, for example, when
parameters have different orders of magnitude.

The default scale value is the next power of 2 greater than the current value of the parameter. For

example, if the current parameter value is 15, Scale is 16 ( =2%). You can edit this field to provide
an alternate scaling factor.

See Also

Related Examples

“Specify Known Initial States” on page 2-14

More About

“What Is an Experiment?” on page 2-3
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Specify Known Initial States

When to Specify Initial States Versus Estimate Initial States

Sets of measured data are often collected at various times and under different initial conditions.
When you estimate model parameters using one data set and subsequently run another estimation
with a second data set, your parameter values may not match.

You can use the Parameter Estimator to estimate the initial conditions using procedures that are
similar to those you use to estimate parameters. You can then use these initial condition estimates as
a basis for estimating parameters for your Simulink model.

Specify Model Initial States

After you select parameters for estimation, as described in “Specify Parameters for Estimation” on
page 2-7, you can specify initial conditions of states in your model. By default, the estimation uses
initial conditions specified in the Simulink model. If you want to specify initial conditions other than
the defaults, use the Initial States panel in the experiment editor dialog. For this example, right
click NewData and select Edit... from the list to open the experiment editor on page 2-5. Then, click
Select Initial States button.

Initial States
Optionally define initial states for this experiment.

There are currently no initial states defined for this experiment.

{21 select Initial States

The Select Model States dialog for the engine idle speed model looks like

Select model states ...

Filter bey state narme P
b State Current value
= engine idle speed/Transfer Fcn [0a]

[E engine idle speed;/Transfer Fcnl [00]
= engine_idle speed/Transfer Fcn? [0a]

o 0K $Z% cancel () Help

Click the check box next to the state you would like to modify. For example, if you select
engine_idle_speed/Transfer Fcn and enter the initial values -0.2 and 0, the Initial States panel
now looks like
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Initial States
Optionally define initial states for this experiment.
engine idle speed/Transfer Fcn

b [roz0] | B X
{71 select Initial States

Click Select Parameters in the Parameter Estimation tab. After you also select the parameters as
described in “Specify Parameters for Estimation” on page 2-7, the Edit: Estimated Parameters dialog
looks like the following figure.

Edit: Estimated Parameters X
Parameters Tuned for all Experiments
freql
k|3 -

¥ [ Estimate

% [ Estimate

¥ [ Estimate

Estimate

b4 Estimate

b 4 Estimate

mean speed

b | 500 - » [ Estimate

4
¥ 8§ § #§ ¥§ & @&
X

E Select parameters
Parameters and Initial States Tuned per Experiment
Experiment: |Exp *

Select experiment initial states for estimation.

engine idle speed/Transfer Fen

b [0.20] -| B [ Estimate

Select experiment parameters for estimation.

There are no parameters defined for this experiment.

Edit experiment

Bal Update Model & 0K (3) Help

See Also
Related Examples

. “Specify Estimation Data” on page 2-4
. “Specify Parameters for Estimation” on page 2-7
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More About
. “Edit Experiment Data” on page 2-5
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Specify Estimation Options

This topic shows how to specify estimation options in the Parameter Estimator.

After you have specified estimation data and parameters, specify the following estimation options:

1 Goodness of fit criteria (cost function)

Cost Function: Sum Sguared Error «

The cost function is a function that estimation methods minimize. To specify the method for
calculating the cost function, in the Parameter Estimation tab of the app, select one of the
following from the Cost Function drop-down list:

* Sum Squared Error — Uses a least-squares approach (default).

* Sum-Absolute Error — Uses the sum of absolute errors.

If the experimental data has many outliers, you can select the robust cost option. The software
uses a Huber loss function to handle the outliers in the cost function and improves the fit quality.
This option reduces the influence of outliers on the estimation without you having to manually

modify your data. To select this option, in the Parameter Estimation tab, click @More
Options to open the Estimation Options dialog box. In the Optimization Options tab of the
dialog box, select Use robust cost.

The software uses the error statistics to identify the outliers. The error, e, is calculated as the
difference between measured and simulated output. The cost function used, F(x), depends on the

method used.

Method Name

Cost Function for Nonoutliers

Cost Function for Outliers

Sum Squared
Error

Fx)= > e(t)xe(t)
t €NOL

NOL is the set of nonoutlier
samples.

F(x) = 2 w X
t € OL

e(t)‘

w is a linear weight. OL is the set
of outlier samples.

Sum-Absolute
Error

F(x) =
t € NOL

e(t)‘

NOL is the set of nonoutlier
samples.

F(x) = 2 w
t € OL

w is a constant value. OL is the set
of outlier samples.

2  Estimation progress and result options for estimation task

To specify these options, in the Parameter Estimation tab, click More Options to open the
Estimation Options dialog box. In the General Options tab, specify the estimation progress and
result options. For details about the options, click the Help button.
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Estimation Opticns x

General Options | Optimization Options | Parallel Options

Progress Options

Show estimation progress window during estimation
Create a parameter trajectory plot during estimation

Update plots during estimation

Result Options
Update model at end of estimation
Estimation results:

@ Owerwrite estimation result with new estimated values

(7 Save estimated values as new estimation result

| ok || cancel || Help |

3  Optimization options, such as optimization method and optimization termination options.

Specify these options in the Optimization Options tab of the Estimation Options dialog box. For
details about the options, click the Help button.

4 Parallel computing options
Specify these options in the Parallel Options tab of the Estimation Options dialog box. For

details about the options, see “Estimate Parameters Using Parallel Computing in the Parameter
Estimator App” on page 2-34.

See Also

Related Examples
. “Specify Estimation Data” on page 2-4

. “Specify Parameters for Estimation” on page 2-7

More About

. “How the Software Formulates Parameter Estimation as an Optimization Problem” on page 2-
41
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Estimate Parameters and States

This topic shows how to estimate parameters and states in the Parameter Estimator.

PARAMETER ESTIMATION VALIDATION
17 ﬁ ﬁ % E Eli Cost Function: Sum Squared Error =
Open Save New Select Select  Sensitvty  AddPiot PlotModel ) More Options. .
Sezsion * Session +  Experiment Experiments  Parameters Analysiz « - Response
FILE | EXPERIMENTS | PARAMETERS | FLOTS | OPTIONS
Data Browser ®

w Parameters

w Expenments

w Results

L —

To estimate parameters and states after you have specified estimation data on page 2-4, parameters
on page 2-7, and estimation options on page 2-17:

1  Specify experiments for estimation.

In the Parameter Estimator, in the Parameter Estimation tab, click Select Experiments. In
the Select Experiments dialog box, in the Estimation column, select the experiment to use.

Select experiments to include for estimation or validation

Estimation  Validation Experiment
| 0 |NewD ata

qij

« 0k (?) Help

For information about the Validation column, see “Validate Estimation Results” on page 2-25.
2  (Optional) Create progress plots to view estimation progress.
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When you start the estimation, the app automatically displays a parameter trajectory plot that
shows the change in the parameter values during estimation. You can create other plots for
viewing the progress of the estimation before you begin estimating the parameters. During
estimation, all these plots update with each iteration.

To plot the measured data, on the Parameter Estimation tab, click Add Plot. Select the
experiment to use for estimation under Experiment Plots of the drop-down list.

To add the simulated response to the measured data plot, on the Parameter Estimation tab,
click Plot Model Response.

Alternatively, right-click the experiment name in the Experiments area of the app, and select
Plot measured & simulated data from the menu.

NewData
1000 Engine Speed
| I Measured
— Simulated
snu ] || |'| | r |
”d"ﬂ'l' K M\WW e
A Il i
00T . I J”” |||'|'|'r“"' L“f’n’t‘n’;.*n'n!mwﬁ, |
Ib U lJ Il.. .'I
m ; 1
g 400
2 BPAV
£ - | |
1 - I‘ ' “ |
I|| | ‘ H
D |||||u|||H i
JIH “ |
ArF | |
_2 | |
’ =0 100 150

Time (seconds)

You can edit the labels, adjust the limits, change the units, and the font style of the plot in the
Property Editor. To open the editor, right-click the experiment plot and select Properties
from the list.

To plot the parameter values as they change, click Add Plot, and select Parameter
Trajectory. To add the scaled values or save iteration data, right-click the plot.

To add a plot for the estimation cost, click Add Plot, and select Estimation Cost. To add the
scaled values or save iteration data, right-click the plot.

Use the View tab of the app to arrange the layout of the plots, so that all the progress plots you
created are visible.
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Experiment plot: NewData 2 l Iteration plot1 32 ‘ Iteration plot 2 |
Experiment plot: NewData - 0O x
NewData
Engine Speed
1000 5 E
Measured
— Simulated
800 | | M | “ |
w/ Wl LM M‘M M\wnﬂmmmwmw “’M W
..'J
600 - ' ' | I|,|I||“|“ WA - .
. \.
2 |
3 400
= BPAV
B
8 2
1 | 1 | ' .
A | .
. |
R
2 I| IH ]
-2
1] 50 100 150
Time (seconds)
Iteration plot1 - 0 x m|
EstimatedParams (@[ There is no data for ExpCost, run the optimization to update the plot.
5004 T
—t+—freq1
—L— fraq2
400 - f::ja 0.8
—HE—gain1
——gain2
0:-,1 Ho0 —+—gain3 © 0:6
ol —&—mean_speed %
P =
200 0.4
100 0.2
0 * * - - ! 0
0 2 4 6 8 10 0 2 4 8 10
Iteration Iteration

Estimate the parameters and states.

In the Parameter Estimation tab, click &Estimate.

An Estimation Progress Report window opens at the start of estimation. The report and progress

plots update with each iteration.

View the Estimation Progress Report after the estimation completes.

By default, the report displays the iteration number (Iteration), the number of times the
objective function is calculated (F-count), and cost function value (f(x), for example,
NewData(Minimize)). You can change the display table by clicking Display Options. To learn

more about the display table, see “Iterative Display”.
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E Estimation Progress Report EI@
Iteration | F-count MNewData
(Minimize)
0 k] I67.8139 ~
1 18 20.5548 |E |
2 27 87363 —
3 36 66133
4 45 6.5183
Optimizaticn started 07-Oct-2015 12:51:24 -~
=
Estimation converged, 07-0ct-2015 13:52:00
‘annine idle sneed® Aated with i aliues o
[Save tteration...| [Display Options...| [ Estimate |

5 View the estimated results.

The estimation results are saved in a new variable, EstimatedParams, in the Results area of
the app.

To view the contents of the variable, right-click EstimatedParams and select Open... from the
menu. EstimatedParams includes the values of the parameters, the cost function value, and
information about the stopping criteria for the estimation.

Estimation result(s):
freql =3
freq2 =3
freq3 =3
gainl = 124,44
gain = 24,591
gain3 = 20,441
mean_speed = 730.37

Pararmeters estimated using experiments:
MewData, cost = 6.5183

Solver output:
Cost: 6.5183
ExitFlag: 1
FCount: 45
Date: 07-0ct-2015 13:52
Solver termination message:

Lecal minimum found.

Optimization completed because the size of the gradient is less than
the selected value of the optimality tolerance.

Stopping criteria details:

Optimization completed: The first-order optimali

OptimalityTolerance 5

asure, 1.093793e-12,

6 View the progress plots.

2-22



Estimate Parameters and States

Experiment plot: NewData - O
NewData
Engine Speed
1000 T
IMeasured
— Simulated
600 [
o ] ]
E 400
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<
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Iteration Iteration

The measured versus simulated data plot shows how closely the simulated data matches the
measured estimation data. The estimated parameters plot and cost function plots show the
changes in the estimated value of the parameters and estimated cost function for each iteration.

Typically, a lower cost function value indicates the model simulation with the estimated
parameters closely matches experimental data. If the optimization went well, you should see your
cost function converge to a minimum value. The lower the cost, the more successful the
estimation.

For information on types of problems you may encounter using optimization solvers, see “When
the Solver Fails”, “When the Solver Might Have Succeeded”, and “When the Solver Succeeds”.

See Also
Related Examples

. “Specify Estimation Data” on page 2-4
. “Specify Parameters for Estimation” on page 2-7
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. “Specify Known Initial States” on page 2-14
. “Specify Estimation Options” on page 2-17
. “Validate Estimation Results” on page 2-25

. “Save and Load Estimation Sessions” on page 2-39
More About
. “What Is an Experiment?” on page 2-3
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Validate Estimation Results

This topic shows how to validate estimation results in the Parameter Estimator. After you estimate
parameters as described in “Estimate Parameters and States” on page 2-19, validate the estimation
results using another data set.

Configure and Perform Validation

To validate a model using the Parameter Estimator:

1

Load the validation data set.

At the MATLAB prompt, load the validation data into the MATLAB workspace.

load iodataval;
Add a new experiment for validation.
In the Parameter Estimator, in the Validation tab, click New Experiment. A new experiment

with default name appears in the Experiments area of the app. To rename the experiment
ValidationData, right-click the experiment and select Rename from the drop-down menu.

PARAMETER ESTIMATICRN SALIDATICN EXPERIMEMT PLOT
ﬁ' B Iil Plot Measured & Zimulated Data |>
ey Select Select Results M Plot Residuals Yalidate

Experiment Experiments to “alidate -
EXPERIMENTS RESULTS PLOT OPTIONS WL [ DATE

Import the validation data set into the validation experiment.

Right click the experiment name, and select Edit. Specify [time,iodataval(:,1)] in Inputs,
and [time,iodataval(:,2)] in Outputs.

Specify the experiment for validation.

When you create an experiment, it is by default selected for estimation. To select another
experiment for validation, in the Validation tab, click Select Experiments.

In the Select Experiments dialog box, clear Estimation and select Validation for the validation
experiment.
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5

7

Select experiments to include for estimation or validation

Estimation  Validation  Experiment
MewD'ata

ValidaticnData

e &

o 0K (?) Hep

Specify the estimation results to use in the validation.
After you import validation data, select the estimated parameter values to validate.

The estimation results are saved in the EstimatedParams variable in the Results area of the
app. In the Validation tab, click Select Results to Validate.

To validate the estimated parameters, in the Select Results dialog box, select EstimatedParams
and clear Use current parameter values.

Select results to include in validation
Results

=
&

EstimatedParams

« 0k (?) Help

Select the plots to display at the end of validation.

Parameter Estimator can display the measured and simulated responses and the residuals plot
at the end of validation. Select the plots to display by checking the corresponding box on the
Validation Tab.

{3 Plot Measured & Simulated Data
3 Plot Rezsiduals

PLOT OFTICNS

Validate the estimation results.



Validate Estimation Results

On the Validation tab, click Validate. The Validation Progress Report shows the status of the

validation.
4] Walidation Progress Report (o= =]
Experirment Mame Status
“alidationExp Completed

Validate

Compare Measured and Simulated Responses

1 Compare measured validation data against the model output simulated with the estimated
parameters.

The app displays the experiment plot for each experiment selected for validation. Each
experiment plot shows the measured data, and data from simulation using each set of results
selected. For example, the following figure shows the experiment plot for the ValidationExp
data.
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2 Examine the Residuals Plot.

The residuals plot shows the difference between simulated response and measured data. When
there is a good fit between the simulated output and measured data, the residuals show the
following behavior:

* Lie within a small percent of the maximum output variation.
* Do not display any systematic patterns.

For example, you can see from the following figure that the residuals for ValidationExp data
satisfy both criteria.
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Residuals for Exp
Engine Speed

100 T

Residuals with EstimatedParams
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See Also

Related Examples

. “Estimate Parameters and States” on page 2-19
More About
. “What Is an Experiment?” on page 2-3
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Speed Up Parameter Estimation Using Parallel Computing

2-30

When to Use Parallel Computing for Parameter Estimation

You can use Simulink Design Optimization software with Parallel Computing Toolbox™ software to
speed up parameter estimation of Simulink models. Using parallel computing may reduce the
estimation time in the following cases:

* The model contains a large number parameters to estimate, and the estimation method is
specified as either Nonlinear least squares or Gradient descent.

* The Pattern search method is selected as the estimation method.

* The model is complex and takes a long time to simulate.

When you use parallel computing, the software distributes independent simulations to run them in

parallel on multiple MATLAB sessions, also known as workers. The time required to simulate the

model dominates the total estimation time. Therefore, distributing the simulations significantly
reduces the estimation time.

For information on how the software distributes the simulations and the expected speedup, see “How
Parallel Computing Speeds Up Estimation” on page 2-30.

For information on configuring your system and using parallel computing, see “Use Parallel
Computing for Parameter Estimation” on page 2-33.

How Parallel Computing Speeds Up Estimation

You can enable parallel computing with the Nonlinear least squares, Gradient descent and
Pattern search estimation methods.

Parallel Computing with Nonlinear least squares and Gradient descent Methods

When you select Gradient descent as the estimation method, the model is simulated during the
following computations:

* Objective value computation — One simulation per iteration

* Objective gradient computations — Two simulations for every tuned parameter per iteration

* Line search computations — Multiple simulations per iteration

The total time, Ttotal, taken per iteration to perform these simulations is given by the following
equation:

Ttotal =T+ (NpX2XT)+ (NIsXxT) =T x (1 + (2 X Np) + NIs)

where T is the time taken to simulate the model and is assumed to be equal for all simulations, Np is
the number of parameters to estimate, and Nis is the number of line searches. Nis is difficult to
estimate and you generally assume it to be equal to one, two, or three.

When you use parallel computing, the software distributes the simulations required for objective
gradient computations. The simulation time taken per iteration when the gradient computations are
performed in parallel, TtotalP, is approximately given by the following equation:

ot (il NP _ (N2
TtotalP = T + (cezl(NW) X2XT)+(NIsxT) =T x (1 +2 X cezl(Nw) +NIs)



Speed Up Parameter Estimation Using Parallel Computing

where Nw is the number of MATLAB workers.

Note The equation does not include the time overheads associated with configuring the system for
parallel computing and loading Simulink software on the remote MATLAB workers.

The expected reduction of the total estimation time is given by the following equation:

Ttotalp _ 1 +2 X ceil( y&) + Nls
Ttotal = 1+ (2 x Np) + NIs

For example, for a model with N,=3, N,=4, and Ny,=3, the expected reduction of the total estimation
1+2xceill)+3

Trex3)+3 - 06

time equals

Parallel Computing with the Pattern search Method

The Pattern search method uses search and poll sets to create and compute a set of candidate
solutions at each estimation iteration.

The total time, Ttotal, taken per iteration to perform these simulations, is given by the following
equation:

Ttotal = (T X Np X Nss) + (T X Np X Nps) = T X Np x (Nss + Nps)

where T is the time taken to simulate the model and is assumed to be equal for all simulations, Np is
the number of parameters to estimate, Nss is a factor for the search set size, and Nps is a factor for
the poll set size. Nss and Nps are typically proportional to Np.

When you use parallel computing, Simulink Design Optimization software distributes the simulations
required for the search and poll set computations, which are evaluated in separate parfor loops. The
simulation time taken per iteration when the search and poll sets are computed in parallel, TtotalP, is
given by the following equation:

TtotalP = (T X ceil(Np X %)) + (T x ceil(Np x 1]\\7/_PS))
Nss Nps
X (ceil(Np X N—) + ceil(Np x Nw =)

where Nw is the number of MATLAB workers.

Note The equation does not include the time overheads associated with configuring the system for
parallel computing and loading Simulink software on the remote MATLAB workers.

The expected speed up for the total estimation time is given by the following equation:

Ttotalp  Ceil(Np x 1) + ceil(Np x X2

Ttotal Np x (Nss + Nps)
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For example, for a model with N,=3, N,=4, N;;=15, and N,s=2, the expected speedup equals
ceil(3 x 22) + ceil(3 x )

X (152 =0.27.

Using the Pattern search method with parallel computing may not speed up the estimation time.
When you do not use parallel computing, the method stops searching for a candidate solution at each
iteration as soon as it finds a solution better than the current solution. When you use parallel
computing, the candidate solution search is more comprehensive. Although the number of iterations
may be larger, the estimation without using parallel computing may be faster.

See Also

Related Examples

. “Use Parallel Computing for Parameter Estimation” on page 2-33
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Use Parallel Computing for Parameter Estimation

Configure Your System for Parallel Computing

You can speed up parameter estimation using parallel computing on multicore processors or
multiprocessor networks. Use parallel computing with the Parameter Estimator and
sdo.optimize to estimate parameters using the fmincon, lsqonlin, and patternsearch
methods. Parallel computing is not supported for the fminsearch (Simplex search) method.

When you estimate model parameters using parallel computing, the software uses the available
parallel pool. If none is available, and you select Automatically create a parallel pool in your
Parallel Computing Toolbox preferences, the software starts a parallel pool using the settings in those
preferences. To open a parallel pool that uses a specific cluster profile, use:

parpool (MyProfile);
MyProfile is the name of a cluster profile.

For information regarding creating a cluster profile, see “Add and Modify Cluster Profiles” (Parallel
Computing Toolbox).

Model Dependencies

Model dependencies are any referenced models, data such as model variables, S-functions, and
additional files necessary to run the model. Before starting the optimization, verify that the model
dependencies are complete. Otherwise, you may get unexpected results.

Making Model Dependencies Accessible to Remote Workers

When you use parallel computing, the Simulink Design Optimization software helps you identify
model dependencies. To do so, the software uses the Dependency Analyzer. The dependency analysis
may not find all the files required by your model. To learn more, see “Dependency Analyzer Scope and
Limitations”. If your model has dependencies that are undetected or inaccessible by the parallel pool
workers, then add them to the list of model dependencies.

The dependencies are made accessible to the parallel pool workers by specifying one of the following:

* File dependencies: the model dependency files are copied to the parallel pool workers.

* Path dependencies: the paths to the model dependencies are added to the paths of the parallel
pool workers. If you are working in a multi-platform scenario, ensure that the paths are
compatible across platforms.

Using file dependencies is recommended, however, in some cases it can be better to choose path
dependencies. For example, if parallel computing is set up on a local multi-core computer, using path
dependencies is preferred as using file dependencies creates multiple copies of the dependent files on
the local computer.

For more information, see:

* “Estimate Parameters Using Parallel Computing in the Parameter Estimator App” on page 2-34
* “Estimate Parameters Using Parallel Computing (Code)” on page 2-35
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Estimate Parameters Using Parallel Computing in the Parameter
Estimator App

To estimate model parameters using parallel computing in the Parameter Estimator:

1 Ensure that the software can access parallel pool workers that use the appropriate cluster
profile.

For more information, see “Configure Your System for Parallel Computing” on page 2-33.
Open the Parameter Estimator for the Simulink model.

3 Configure the estimation data, estimation parameters and states, and, optionally, estimation
settings.

For more information, see “Specify Estimation Data” on page 2-4, “Specify Parameters for
Estimation” on page 2-7, and “Specify Estimation Options” on page 2-17.

On the Parameter Estimation tab, click @More Options to open the Estimation Options
dialog box.

5 Select the Parallel Options tab.

Estimation Options b4

| General Optionsl Optimization Options| Parallel Opti0ﬂ5|

[] Use the parallel pool during optimization

No model file dependencies specified.

Add file dependency... Sync file dependencies from model

| ok || Cancel || Help |

6 Select the Use the parallel pool during optimization check box.

This option checks for dependencies in your Simulink model. The file dependencies are displayed
in the Model file dependencies list box, and corresponding path to the files in Model path
dependencies. The files listed in Model file dependencies are copied to the remote workers.

Note The automatic dependencies check may not detect all the dependencies in your model.

For more information, see “Model Dependencies” on page 2-33. In this case, add the undetected
dependencies manually.

7 Add any file dependencies that the automatic check does not detect.
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10

Specify the files in the Model file dependencies list box separated by semicolons or on separate
lines.

| General Optionsl Optimization Options | Parallel Opti0ﬂ5|

Use the parallel pool during optimization

Meadel file dependencies | Model path dependencies|

Cihvmyprojectifilel sk Chmyproject2\file2.m
C:\estim_common_dependencies\filﬁ.mat{

[ Add file dependency... ] ’ Sync file dependencies from model

| ok || Cancel || Hep |

Alternatively, click Add file dependency to open a dialog box, and select the file to add.

Note If you do not want to copy the files to the remote workers, delete all entries in the Model
file dependencies list box. Populate the Model path dependencies list box by clicking the
Sync path dependencies from model, and add any undetected path dependencies. In addition,
in the list box, update the paths on local drives to make them accessible to remote workers. For
example, change C:\ to \\\\hostname\\C$\\.

If you modify the Simulink model, resync the dependencies to ensure that any new dependencies
are detected. Click Sync file dependencies from model in the Parallel Options tab to rerun
the automatic dependency check for your model.

This action updates the Model file dependencies list box with any new file dependency found in
the model.

Click OK.

In the Parameter Estimation tab, click Estimate to estimate the model parameters using
parallel computing.

For information on troubleshooting problems related to estimation using parallel computing, see
“Troubleshooting” on page 2-36.

Estimate Parameters Using Parallel Computing (Code)

To use parallel computing for parameter estimation at the command line:

1

Ensure that the software can access parallel pool workers that use the appropriate cluster
profile.

For more information, see “Configure Your System for Parallel Computing” on page 2-33.
Open the model.
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3 Configure an estimation experiment. For example, see “Estimate Model Parameter Values
(Code)” on page 2-58.

4 Enable parallel computing using an optimization option set, opt.

opt = sdo.OptimizeOptions;
opt.UseParallel = true;

5 Find the model dependencies.

[dirs,files] = sdo.getModelDependencies(modelname)

Note sdo.getModelDependencies may not detect all the dependencies in your model. For
more information, see “Model Dependencies” on page 2-33. In this case, add the undetected
dependencies manually.

6 Modify files to include any file dependencies that sdo.getModelDependencies does not
detect.

files = vertcat(files, 'C:\matlab\work\filename.m")

Note If you do not want to copy the files to the remote workers, use the path dependencies. Add
any undetected path dependencies to dirs and update the paths on local drives to make them
accessible to remote workers. See sdo.getModelDependencies for more details.

7  Add the file dependencies for optimization.

opt.ParallelFileDependencies = files;
8 Run the optimization.

[pOpt,opt _info] = sdo.optimize(opt fcn,param,opt);

For information on troubleshooting problems related to estimation using parallel computing, see
“Troubleshooting” on page 2-36.

Troubleshooting

Why Are the Estimation Results With and Without Parallel Computing Different?

» Different numerical precision on the client and worker machines can produce marginally different
simulation results. Thus, the optimization method can take a different solution path and produce a
different result.

*  When you use parallel computing with the Pattern search method, the search is more
comprehensive and can result in a different solution. To learn more, see “Parallel Computing with
the Pattern search Method” on page 2-31.

Why Didn’t the Estimation Speed up Using Parallel Computing?

* When you estimate a few parameters or when the model does not take long to simulate, you do not
see a speedup in the estimation time. In such cases, the overhead associated with creating and
distributing the parallel tasks outweighs the benefits of running the estimation in parallel.

+ Using the Pattern search method with parallel computing might not speed up the optimization
time. Without parallel computing, the method stops the search at each iteration as soon as it finds
a solution better than the current solution. The candidate solution search is more comprehensive
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when you use parallel computing. Although the number of iterations might be larger, the
optimization without using parallel computing might be faster.

To learn more about the expected speedup, see “Parallel Computing with the Pattern search
Method” on page 2-31.

Why Doesn’t the Estimation Using Parallel Computing Make Any Progress?
To troubleshoot the problem:

1 Run the optimization for a few iterations without parallel computing to see if the optimization
progresses.

2 Check whether the remote workers have access to all model dependencies. Model dependencies
include data variables and files required by the model to run.

To learn more, see “Model Dependencies” on page 2-33.
Why Does the Estimation Using Parallel Computing Continue When 1 Click Stop?

When you use parallel computing with the Pattern search method, the software must wait until
the current optimization iteration completes before it notifies the workers to stop. The optimization
does not terminate immediately when you click Stop, and, instead, appears to continue running.

See Also
parpool | sdo.OptimizeOptions | sdo.getModelDependencies | sdo.optimize

More About

. “Speed Up Parameter Estimation Using Parallel Computing” on page 2-30
. “Ways to Speed Up Design Optimization Tasks”
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Estimating Initial Conditions for Blocks with External Initial
Conditions

2-38

When an integrator block uses an initial-condition port, which you specify by an IC block, you cannot
estimate the initial conditions of the integrator using Simulink Design Optimization software.
Estimation is not possible because external initial conditions have priority over the initial conditions
of a specific block to maintain the integrity of the model.

To tune the initial conditions of an integrator block with external initial conditions, you must modify

the model to make the external signal into a tunable parameter. For example, you can set the IC block
that feeds into the integrator to be a tunable variable and estimate it.

See Also
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Save and Load Estimation Sessions

This topic shows how to save and load estimation sessions in the Parameter Estimator.

Structure of an Estimation Session

The Parameter Estimator stores and organizes data from a given Simulink model inside a session.
An estimation session includes the following information:

* One or more estimation or validation experiments along with their configurations

* Parameter information

» Estimation results

» Estimation settings

* Plots — Changes to plots layout and plot characteristics, such as axis limits, line colors, are not
included.

The default session name is the same as the Simulink model name. The session name is shown on the
title pane of the Parameter Estimator.

Save Parameter Estimator App Sessions

Saving a session lets you reuse your estimation settings and results later. You can save the session as
a MAT-file or workspace variable:

* To save the session as a MAT-file, in the Parameter Estimation tab, in the Save Session drop-
down list, click Save to file. A window opens where you specify the MAT-file name.

» To save the session as a model or MATLAB workspace variable, select Save to model workspace
or Save to MATLAB workspace in the Save Session drop-down list.

Load Parameter Estimator App Sessions

To load a previously saved MAT-file or workspace sessions:

1 Open a Parameter Estimator for the model.

2 Toload a MAT-ile, in the Parameter Estimation tab click the Open Session drop-down list,
and select Open from file. A window opens where you select the MAT-file to load.

To load a workspace variable, select Open from model workspace or Open from MATLAB
workspace in the Open Session drop-down list.

Load Legacy Projects

Open legacy projects that are in MAT-files by selecting Open from file from the Open Session
drop-down list. The Parameter Estimator recognizes and converts them into the new session
format.
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See Also

More About

. “What Is an Experiment?” on page 2-3

2-40



How the Software Formulates Parameter Estimation as an Optimization Problem

How the Software Formulates Parameter Estimation as an
Optimization Problem

Overview of Parameter Estimation as an Optimization Problem

When you perform parameter estimation, the software formulates an optimization problem. The
optimization problem solution is the estimated parameter values set. This optimization problem
consists of:

* x — Design variables. The model parameters and initial states to be estimated.

* F(x) — Objective function. A function that calculates a measure of the difference between the
simulated and measured responses. Also called cost function or estimation error.

* (Optional) x = x = X — Bounds. Limits on the estimated parameter values.

* (Optional) C(x) — Constraint function. A function that specifies restrictions on the design
variables.

The optimization solver tunes the values of the design variables to satisfy the specified objectives and

constraints. The exact formulation of the optimization depends on the optimization method that you
use.

Cost Function

The software tunes the model parameters to obtain a simulated response (y;,) that tracks the
measured response or reference signal (y,.s). To do so, the solver minimizes the cost function or
estimation error, a measure of the difference between the simulated and measured responses. The
cost function, F(x), is the objective function of the optimization problem.
Types
The raw estimation error, e(t), is defined as:

e(t) = yref(t) — Ysim(t)

e(t) is also referred to as the error residuals or, simply, residuals.

Simulink Design Optimization software provides you the following cost functions to process e(t):

Cost Function Formulation Option Name in GUI or
Command Line
Sum squared error (default) N 'SSE'
F(x)= > e(t) xe(t)
t=0
N is the number of samples.
Sum absolute error tN 'SAE'
F(x) = 20 e(t)
t'=

N is the number of samples.
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Cost Function Formulation Option Name in GUI or
Command Line
Raw error e(0) 'Residuals’
F(x) =

This option is available only at
the command line.

N is the number of samples.

Custom function N/A This option is available only at
the command line.

Time Base

The software evaluates the cost function for a specific time interval. This interval is dependent on the
measured signal time base and the simulated signal time base.

* The measured signal time base consists of all the time points for which the measured signal is
specified. In case of multiple measured signals, this time base is the union of the time points of all
the measured signals.

* The simulated signal time base consists of all the time points for which the model is simulated.

If the model uses a variable-step solver, then the simulated signal time base can change from one
optimization iteration to another. The simulated and measured signal time bases can be different. The
software evaluates the cost function for only the time interval that is common to both. By default, the
software uses only the time points specified by the measured signal in the common time interval.

» In the GUI, you can specify the simulation start and stop times in the Simulation time area of the
Simulation Options dialog box.

» At the command line, the software specifies the simulation stop time as the last point of the
measured signal time base. For example, the following code simulates the model until the end
time of the longest running output signal of exp, an sdo.Experiment object:

sim obj
sim obj

createSimulator(exp);
sim(sim obj);

sim obj contains the simulated response for the model associated with exp.

Bounds and Constraints

You can specify bounds for the design variables (estimated model parameters), based on your
knowledge of the system. Bounds are expressed as:

XSX=X
x and X are the lower and upper bounds for the design variables.

For example, in a battery discharging experiment, the estimated battery initial charge must be
greater than zero and less than Inf. These bounds are expressed as:

0<x<o

For an example of how to specify these types of bounds, see “Estimate Model Parameters and Initial
States (Code)” on page 2-67.
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You can also specify other constraints, C(x), on the design variables at the command line. C(x) can be
linear or nonlinear and can describe equalities or inequalities. C(x) can also specify multiparameter
constraints. For example, for a simple friction model, C(x) can specify that the static friction
coefficient must be greater than or equal to the dynamic friction coefficient. One way of expressing
this constraint is:

C(X):X1 - X7
Cx)=<0

x; and x, are the dynamic and static friction coefficients, respectively.

For an example of how to specify a constraint, see “Estimate Model Parameters with Parameter
Constraints (Code)” on page 2-124.

Optimization Methods and Problem Formulations

An optimization problem can be one of the following types:

* Minimization problem — Minimizes an objective function, F(x). You specify the measured signal
that you want the model output to track. You can optionally specify bounds for the estimated
parameters.

* Mixed minimization and feasibility problem — Minimizes an objective function, F(x), subject to
specified bounds and constraints,C(x). You specify the measured signal that you want the model to
track and bounds and constraints for the estimated parameters.

* Feasibility problem — Finds a solution that satisfies the specified constraints, C(x). You specify
only bounds and constraints for the estimated parameters. This type of problem is not common in
parameter estimation.

The optimization method that you specify determines the formulation of the estimation problem. The
software provides the following optimization methods:

Optimization Method

Description Optimization Problem Formulation

Name

e User interface:
Nonlinear Least
Squares

* Command line:
'lsgnonlin'

Minimizes the squares of
the residuals,
recommended method for
parameter estimation.

This method requires a
vector of error residuals,
computed using a fixed
time base. Do not use this
approach if you have a
scalar cost function or if
the number of error
residuals can change from
one iteration to another.

This method uses the
Optimization Toolbox™
function, Lsgnonlin.

Minimization Problem

min|FX)[3 = min(f100° + f200° + ... +£,007)
S.t. x=sx=Xx

f1(x), f2(x),....fo(x) represent residuals. n is the number
of samples.

Mixed Minimization and Feasibility Problem
Not supported.
Feasibility Problem

Not supported.
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Optimization Method
Name

Description

Optimization Problem Formulation

e User interface:
Gradient Descent

¢ Command line:
'"fmincon'

General nonlinear solver,
uses the cost function
gradient.

Use this approach if you
want to specify one or any
combination of the
following:

¢ Custom cost functions

e Parameter-based
constraints

* Signal-based
constraints

This method uses the
Optimization Toolbox
function, fmincon.

For information on how
the gradient is computed,
see “Gradient
Computations” on page 2-
57.

Minimization Problem

min F(x)
X

S.t. x=x=Xx
Mixed Minimization and Feasibility Problem

min F(x)
X

s.t. C(x
X <X

0

~—

<l IA

IA

Note When tracking a reference signal, the software
ignores the maximally feasible solution option.

Feasibility Problem

» Ifyou select the maximally feasible solution option
(i.e., the optimization continues after an initial
feasible solution is found), the software uses the
following problem formulation:

min p

[x, ]

s.t. Cx)=y
XSX<=X
y=<0

y is a slack variable that permits a feasible solution
with C(x) = y rather than C(x) < 0.

* Ifyou do not select the maximally feasible solution
option (i.e., the optimization terminates as soon as
a feasible solution is found), the software uses the
following problem formulation:
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Optimization Method
Name

Description

Optimization Problem Formulation

e User interface:
Simplex Search

¢ Command line:
'fminsearch'

Based on the Nelder-Mead
algorithm, this approach
does not use the cost
function gradient.

Use this approach if your
cost function or
constraints are not
continuous or
differentiable.

This method uses the
Optimization Toolbox
functions, fminsearch
and fminbnd. fminbnd is
used if one scalar
parameter is being
optimized. Otherwise,
fminsearch is used. You
cannot specify parameter
bounds, x = x = X, with
fminsearch.

Minimization Problem

min F(x)
X

Mixed Minimization and Feasibility Problem
The software formulates the problem in two steps:
1 Finds a feasible solution.

min max(C(x))
X
2 Minimizes the objective. The software uses the
results from step 1 as initial guesses. It maintains
feasibility by introducing a discontinuous barrier
in the optimization objective.

min I'(x)
X
where
_ [ ifmax(C(x)) >0
') = {F (x) otherwise.

Feasibility Problem

min max(C(x))
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Optimization Method Description Optimization Problem Formulation
Name
* User interface: Pattern|Direct search method, Minimization Problem
Search based on the generalized .
e Command line: pattern search algorithm, mxln F(x)
el A EER el this method does not use _
P the cost function gradient. s.t. Xs=Xs=X
Use this approach if your Mixed Minimization and Feasibility Problem
cost function or )
constraints are not The software formulates the problem in two steps:
ML 011 1 Finds a feasible solution.
differentiable.
. min max(C(x))
This method uses the X
Global Optimization s.t. XsSXsX
oallim e, 2 Minimizes the objective. The software uses the
patternsearch. L e
results from step 1 as initial guesses. It maintains
feasibility by introducing a discontinuous barrier
in the optimization objective.
minl"(x)
X
s.t.xsxsX
where
ifmax(C(x)) > 0
re =1 ( .( )
F(x) otherwise.
Feasibility Problem
min max(C(x))
X
s.t. Xsx=X
See Also

evalRequirement | fminbnd | fmincon | fminsearch | Lsgnonlin | patternsearch |
sdo.Experiment | sdo.SimulationTest | sdo.requirements.SignalTracking

Related Examples

. “Estimate Model Parameter Values (Code)” on page 2-58

. “Estimate Model Parameters with Parameter Constraints (Code)” on page 2-124
. “Estimate Parameters from Measured Data”
More About

. “Write a Cost Function” on page 2-49
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Specify Steady-State Operating Point for Parameter Estimation

What is a Steady-State Operating Point?

An operating point of a dynamic system defines the states and root-level input signals of the model at
a specific time. For example, in a car engine model, variables such as engine speed, throttle angle,
engine temperature, and surrounding atmospheric conditions typically describe the operating point.

A steady-state operating point of a model, also called an equilibrium or trim condition, includes state
variables that do not change with time.

A model can have several steady-state operating points. For example, a hanging damped pendulum
has two steady-state operating points at which the pendulum position does not change with time. A
stable steady-state operating point occurs when a pendulum hangs straight down. When the
pendulum position deviates slightly, the pendulum always returns to equilibrium. In other words,
small changes in the operating point do not cause the system to leave the region of good
approximation around the equilibrium value.

When using optimization search to compute operating points for nonlinear systems, your initial
guesses for the states and input levels must be near the desired operating point to ensure
convergence.

When linearizing a model with multiple steady-state operating points, it is important to have the right
operating point. For example, linearizing a pendulum model around the stable steady-state operating
point produces a stable linear model, whereas linearizing around the unstable steady-state operating
point produces an unstable linear model.

For more information on operating points, see “What Is an Operating Point?” (Simulink Control
Design) and “What Is a Steady-State Operating Point?” (Simulink Control Design).

Setting up a Steady-State Operating Point

This topic shows how to setup a steady-state operating point in Parameter Estimator. To improve
the fit between the model and measured data, the model must be set to steady-state when parameters
are estimated.

1 Open the Parameter Estimator and setup your experiment using the steps outlined in
“Estimate Model Parameter Values (GUI)” on page 2-143.

2 In the toolstrip, click More Options and select Operating Point Options from the drop
down menu.

3 The following Operating Point dialog box opens.
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The Estimate at steady-state option is checked by default when you open the operating point
dialog. Select the appropriate experiment to change the parameters for from the Experiment:
drop down menu. Use the States, Inputs and Outputs tabs to specify the known parameters,
bounds and deviations. For instance, there is one state in the above figure. Use the operating
point dialog to specify that this state should be treated as an unknown, and it should be set to
steady state. During parameter estimation, the operating point computation will vary this state to
set it at steady-state.

You can also sync operating point specifications from your Simulink model or another experiment
using the Sync with specification from: drop-down list. After you make your selection,

click on the . S| button to copy the parameters.

The Simulink Design Optimization software uses optimization methods to search for operating
points in a model. Use the Options tab of the dialog to specify these optimization methods. These
options specify the optimization algorithm, tolerances, and stopping conditions. For instance, the
option Gradient descent with projection is often used to find the operating point for
systems that use physical modeling. For more information, click on the ... button.
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Having specified the operating point parameters, continue with the estimation workflow as
described in “Estimate Model Parameter Values (GUI)” on page 2-143.

See Also

More About

“What Is an Operating Point?” (Simulink Control Design)

“What Is a Steady-State Operating Point?” (Simulink Control Design)

“Set Model to Steady-State When Estimating Parameters (GUI)” on page 2-117
“Set Model to Steady-State When Estimating Parameters (Code)” on page 2-97
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Write a Cost Function

A cost function is a MATLAB function that evaluates your design requirements using design variable
values. After writing and saving the cost function, you can use it for estimation, optimization, or
sensitivity analysis at the command line.

When you optimize or estimate model parameters, you provide the saved cost function as an input to
sdo.optimize. At every optimization iteration, sdo.optimize calls this function and uses the
function output to decide the optimization direction. When you perform sensitivity analysis using
sdo.evaluate, you generate sample values of the design variables and evaluate the cost function
for each sample value using sdo.evaluate.

Anatomy of a Cost Function

To understand the parts of a cost function, consider the following sample function myCostFunc. For a
design variable x, myCostFunc evaluates the objective x? and the nonlinearity constraint x>-4x+1 <=
0.

function [vals,derivs] = myCostFunc(params)

% Extract the current design variable values from the parameter object, params.
X = params.Value;

% Compute the requirements (objective and constraint violations) and
% assign them to vals, the output of the cost function.

vals.F = x."2;

vals.Cleq = Xx."2-4*x+1;

% Compute the cost and constraint derivatives.

derivs.F = 2*x;

derivs.Cleq = 2*x-4;

end

This cost function performs the following tasks:
1 Specifies the inputs of the cost function.

A cost function must have as input, params, a vector of the design variables to be estimated,
optimized, or used for sensitivity analysis. Design variables are model parameter objects
(param.Continuous objects) or model initial states (param.State objects).

Since the cost function is called repeatedly during estimation, optimization, or evaluation, you
can specify additional inputs to the cost function to help reduce code redundancy and
computation cost. For more information, see “Specify Inputs of the Cost Function” on page 2-50.

2 Computes the requirements.

Requirements can be objectives and constraints based on model parameters, model signals, or
linearized models. In this sample cost function, the requirements are based on the design
variable x, a model parameter. The cost function first extracts the current values of the design
variables and then computes the requirements.

For information about computing requirements based on model parameters, model signals, or
linearized models, see “Compute Requirements” on page 2-51.

3 Specifies the requirement values as outputs, vals and derivs, of the cost function.

A cost function must return vals, a structure with one or more fields that specify the values of
the objective and constraint violations.
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The output can optionally include derivs, a structure with one or more fields that specify the
values of the gradients of the objective and constraint violations. For more information, see
“Specify Outputs of the Cost Function” on page 2-52.

After saving the cost function as a MATLAB file myCostFunc.m, to perform the optimization, use the
cost function as an input to sdo.optimize.

[param opt,opt info] = sdo.optimize(@myCostFunc,params)

When performing sensitivity analysis, to compute the requirements in the cost function for a range of
design variable sample values paramsamples, use the cost function as an input to sdo.evaluate.

[y,info] = sdo.evaluate(@myCostFunc,paramsamples)

Specify Inputs of the Cost Function

The sample cost function myCostFunc takes one input, params.
function [vals,derivs] = myCostFunc(params)

A cost function must have as input, params, a vector of the design variables to be estimated,
optimized, or used for sensitivity analysis. Design variables are model parameter objects
(param.Continuous objects) or model initial states (param.State objects). You obtain params by
using the sdo.getParameterFromModel and sdo.getStateFromModel commands.

Specify Multiple Inputs

Because the cost function is called repeatedly during estimation, optimization, or evaluation, you can
specify additional inputs to the cost function to help reduce code redundancy and computation cost.
However, sdo.optimize and sdo.evaluate accept a cost function with only one input argument.
To use a cost function that accepts more than one input argument, you use an anonymous function.
Suppose that the myCostFunc multi inputs.m file specifies a cost function that takes params and
argl as inputs. For example, you can make the model name an input argument, argl, and configure
the cost function to be used for multiple models. Then, assuming that all input arguments are
variables in the workspace, specify an anonymous function myCostFunc2, and use it as an input to
sdo.optimize or sdo.evaluate.

myCostFunc2 = @(params) myCostFunc _multi inputs(params,argl);
[param_opt,opt info] = sdo.optimize(@myCostFunc2,params);

You can also specify additional inputs using convenience objects provided by Simulink Design
Optimization software. You create convenience objects once and pass them as an input to the cost
function to reduce code redundancy and computation cost.

For example, you can create a simulator (sdo.SimulationTest object) to simulate your model
using alternative model parameters without modifying the model, and pass the simulator to your cost
function.

simulator = sdo.SimulationTest(model)
myCostFunc2 = @(params) myCostFunc multi inputs(params,argl,arg2,simulator);
[param _opt,opt _info] = sdo.optimize(@myCostFunc2,params);

For more information about the available convenience objects, see “Convenience Objects as
Additional Inputs” on page 2-54. For an example, see “Design Optimization to Meet a Custom
Objective (Code)” on page 3-118.
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Compute Requirements

The sample cost function myCostFunc computes the requirements based on a model parameter x. In
general, requirements can be objectives or constraints based on model parameters, model signals, or
linearized models. As seen in myCostFunc, you can use MATLAB functions to compute the
requirements. You can also use the requirements objects that Simulink Design Optimization software
provides. These objects enable you to specify requirements such as step-response characteristics,
gain and phase margin bounds, and Bode magnitude bounds. You can use the evalRequirement
method of these objects to evaluate the objective and constraint violations. For a list of available
requirement objects, see “Convenience Objects as Additional Inputs” on page 2-54.

Parameter-Based Requirements

If you have requirements on model parameters, in the cost function you first extract the current
parameter values, and then compute the requirements.

1  Extract the current parameter value from params.
X = params.Value;
2 Compute the requirement, and specify it as vals, the output of the cost function.

Suppose that the objective to be computed is x* and the constraint is the nonlinearity constraint
x2-4x+1.

vals.F = x."2;
vals.Cleq = x."2-4*x+1;

In the context of optimization, x? is minimized subject to satisfying the constraints. For sensitivity
analysis, the cost and constraints are evaluated for all values of the parameter params.

For more information about the output of a cost function, see “Specify Outputs of the Cost
Function” on page 2-52.

For an example of a cost function with a parameter-based requirement, see “Design Optimization to
Meet a Custom Objective (Code)” on page 3-118. In this example, you minimize the cylinder cross-
sectional area, a design variable in a hydraulic cylinder.

Model Signal Requirements

If you have requirements on model signals, in the cost function you simulate the model using current
design variable values, extract the signal of interest, and compute the requirement on the signal.

1 Simulate the model using the current design variable values in param. There are multiple ways
to simulate your model:

+ Using sdo.SimulationTest object — If an sdo.SimulationTest object, simulator, is
a cost function input, you update the model parameter values using the Parameters property
of the simulator. Then use sim to simulate the model.

simulator.Parameters = params;
simulator = sim(simulator);

For an example, see “Design Optimization to Meet a Custom Objective (Code)” on page 3-118.

+ Using sdo.Experiment object — If you are performing parameter estimation based on
input-output data defined in an sdo.Experiment object, exp, update the design variable
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values associated with the experiment using the setEstimatedValues method. Create a
simulator using the createSimulator method, and simulate the model using the updated
model configuration.

exp = setEstimatedValues(exp,params);
simulator = createSimulator(exp,simulator);
simulator = sim(simulator);

For an example, see “Estimate Model Parameters Per Experiment (Code)” on page 2-86.

+ Using sim command — If you are not using sdo.SimulationTest or sdo.Experiment
objects, use sdo.setValueInModel to update the model parameter values, and then call
sim to simulate the model.

sdo.setValueInModel('model name',param);
LoggedData = sim('model name');
2 Extract the logged signal of interest, SignalOfInterest.

Use the SignallLoggingName model parameter to get the simulation log name.

logName = get param(simulator.ModelName, 'SignallLoggingName"');
simLog = get(simulator.LoggedData, LogName);
Sig = get(simLog, 'SignalOfInterest"')

3 Evaluate the requirement, and specify it as the output of the cost function.

For example, if you specified a step-response bound on a signal using a
sdo.requirements.StepResponseEnvelope object, StepResp, you can use the
evalRequirement method of the object to evaluate the objective and constraint violations.

vals.Cleq = evalRequirement(StepResp,SignalOfInterest.Values);

For an example, see “Design Optimization to Meet Step Response Requirements (Code)”. For
more information about the output of a cost function, see “Specify Outputs of the Cost Function”
on page 2-52.

Linearization-Based Requirements

If you are optimizing or evaluating frequency-domain requirements, in the cost function you linearize
the model, and compute the requirement values. Linearizing the model requires Simulink Control
Design™ software.

Use the SystemLoggingInfo property of sdo.SimulationTest to specify linear systems to log
when simulating the model. For an example, see “Design Optimization to Meet Frequency-Domain
Requirements (Code)” on page 3-216. Alternatively, use Linearize to linearize the model.

Note For models in Simulink fast restart mode, you cannot use the linearize command.

Specify Outputs of the Cost Function

The sample cost function myCostFunc outputs vals, a structure with fields that specify the values of
the objective and constraint violations. The second output is derivs, a structure with fields that
specify the derivatives of the objective and constraint.

function [vals,derivs] = myCostFunc(params)
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A cost function must output vals, a structure with one or more of the following fields that specify the
values of the objective and constraint violations:

* F — Value of the cost or objective evaluated at param.

* (Cleq — Value of the nonlinear inequality constraint violations evaluated at param. For
optimization, the solver ensures Cleq < 0.

* Ceq — Value of the nonlinear equality constraint violations evaluated at param. For optimization,
the solver ensures Ceq = 0.

* leqg — Value of the linear inequality constraint violations evaluated at param. For optimization,
the solver ensures leq < 0.

* eq — Value of the linear equality constraint violations evaluated at param. For optimization, the
solver ensures eq = 0.

* Log — Additional optional information from evaluation.

If you have multiple constraints of one type, concatenate the values into a vector, and specify this
vector as the corresponding field value. For instance, if you have a hydraulic cylinder, you can specify
nonlinear inequality constraints on the piston position (Cleql) and cylinder pressure (Cleq?2). In this
case, specify the Cleq field of the output structure vals as:

vals.Cleq = [Cleql; Cleq2];
For an example, see “Design Optimization to Meet a Custom Objective (Code)” on page 3-118.

By default, the sdo.optimize command computes the objective and constraint gradients using
numeric perturbation. You can also optionally return the gradients as an additional cost function
output, derivs. Where derivs must contain the derivatives of all applicable objective and constraint
violations and is specified as a structure with one or more of the following fields:

* F — Derivatives of the cost or objective.
* (Cleq — Derivatives of the nonlinear inequality constraints.
* Ceq — Derivatives of the nonlinear equality constraints.

The derivatives are not required for sensitivity analysis. For estimation or optimization, specify the
GradFcn property of sdo.OptimizeOptions as 'on'.

Multiple Objectives

Simulink Design Optimization software does not support multi-objective optimization. However, you
can return the objective value (vals.F) as a vector that represents the multiple objective values. The
software sums the elements of the vector and minimizes this sum. The exception to this behavior is in
the use of the nonlinear least squares (Lsqnonlin) optimization method. The nonlinear least squares
method, used for parameter estimation, requires that you return the error residuals as a vector. In
this case, the software minimizes the sum square of this vector. If you are tracking multiple signals
and using lsgqnonlin, then concatenate the error residuals for the different signals into one vector.
Specify this vector as the F field value.

For an example of single-objective optimization using the gradient descent method, see “Design
Optimization to Meet a Custom Objective (Code)” on page 3-118.

For an example of multiple-objective optimization using the nonlinear least squares method, see
“Estimate Model Parameters Per Experiment (Code)” on page 2-86.
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Convenience Objects as Additional Inputs

A cost function must have as input, params, a vector of the design variables to be estimated,
optimized, or used for sensitivity analysis. You can specify additional inputs to the cost function using
convenience objects provided by the Simulink Design Optimization software. You create convenience
objects once and pass them as an input to the cost function to reduce code redundancy and
computation cost. For information about specifying additional inputs to the cost function, see “Specify
Multiple Inputs” on page 2-50.

Convenience Object Class Name Description

Simulator objects sdo.SimulationTest Use the simulator object to simulate
the model using alternative inputs,
model parameters, and initial-state
values without modifying the model.
Use the SystemLoggingInfo
property of sdo.SimulationTest
to specify linear systems to log
when you have frequency-domain
requirements.

In the cost function, use the sim
method to simulate the model. Then
extract the model response from the
object, and evaluate the
requirements.

For an example, see “Design
Optimization to Meet a Custom
Objective (Code)” on page 3-118.

Note To perform estimation,
optimization, or evaluation using
Simulink fast restart, it is necessary
to create the simulator before the
cost function, and then pass the
simulator to the cost function.
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Convenience Object

Class Name

Description

Requirements objects

Available Requirements Objects
Time-domain requirements:
* sdo.requirements.SignalBo

und

* sdo.requirements.StepResp
onseEnvelope

* sdo.requirements.SignalTr
acking

* sdo.requirements.PhasePla
neEllipse

* sdo.requirements.PhasePla
neRegion

Parameter requirements:

* sdo.requirements.Function
Matching

* sdo.requirements.Monotoni
cVariable

* sdo.requirements.Relation
alConstraint

* sdo.requirements.Smoothne
ssConstraint

Frequency-domain requirements:
* sdo.requirements.GainPhas
eMargin

* sdo.requirements.BodeMagn
itude

* sdo.requirements.ClosedLo
opPeakGain

* sdo.requirements.PZDampin
gRatio

* sdo.requirements.PZNatura
1Frequency

* sdo.requirements.PZSettli
ngTime

* sdo.requirements.SignalTr
acking

* sdo.requirements.StepResp
onseEnvelope

* sdo.requirements.OpenLoop
GainPhase

Use these objects to specify time-
domain and frequency-domain costs
or constraints that depend on the
design variable values.

In the cost function, use the
evalRequirement method of the
object to evaluate how closely the
current design variables satisfy your
design requirement.

For an example, see “Design
Optimization to Meet Step Response
Requirements (Code)”.
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Convenience Object Class Name Description

Experiment objects sdo.Experiment Use an experiment object to specify
the input-output data, model
parameters, and initial-state values
for parameter estimation.

In the cost function, update the
design variable values associated
with the experiment using the
setEstimatedValues method.
Then, to simulate the model using
the updated model configuration,
create a simulator using the
createSimulator method.

For an example, see “Estimate
Model Parameters Per Experiment
(Code)” on page 2-86.

See Also

param.Continuous | sdo.Experiment | sdo.OptimizeOptions | sdo.SimulationTest |
sdo.evaluate | sdo.optimize | sdo.setValueInModel

Related Examples

. “How the Optimization Algorithm Formulates Minimization Problems” on page 3-3

. “Design Optimization to Meet a Custom Objective (Code)” on page 3-118

. “How the Software Formulates Parameter Estimation as an Optimization Problem” on page 2-41
. “Estimate Model Parameter Values (Code)” on page 2-58

. “What is Sensitivity Analysis?” on page 4-2

. “Identify Key Parameters for Estimation (Code)” on page 4-169
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Gradient Computations

For the Gradient descent (fmincon) optimization solver, the gradients are computed using
numerical perturbation:

1
dx = 3/eps X max( X ‘ , 1—0xtyp,-cal)

dL = max(x — dX, Xpin)

dR = min(x + dX, Xmax)
F; = opt _fen(dL)
Fr =opt_fcn(dR)

dF _ (FL—Fg)
dx = (dL —dR)

* xis a scalar design variable.

*  Xpin is the lower bound of x.

* X 1S the upper bound of x.

*  Xgypicar 1S the scaled value of x.

* opt fcn is the objective function.

dx is relatively large to accommodate simulation solver tolerances.

If you want to compute the gradients in any other way, you can do so in the cost function you write for
performing design optimization programmatically. See sdo.optimize and GradFcn of
sdo.OptimizeOptions for more information.

See Also
fmincon

More About

. “How the Software Formulates Parameter Estimation as an Optimization Problem” on page 2-41
. “How the Optimization Algorithm Formulates Minimization Problems” on page 3-3
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Estimate Model Parameter Values (Code)

This example shows how to use experimental data to estimate model parameter values.
Aircraft Model

The Simulink model, sdoAircraftEstimation, models the longitudinal flight control system of an
aircraft.

open_system('sdoAircraftEstimation")

Aircraft Longitudinal Flight Control

This demonstration models a flight control algorithm
of an aircraft.

Group 2
ED Signal 1
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Estimation Problem
You use measured data to estimate the aircraft model parameters and states.

Measured output data:

» Pilot G force, output of the Pilot G-force calculation block
* Angle of attack, fourth output of the Aircraft Dynamics Model block

Parameters:

* Actuator time constant, Ta, used by the Actuator Model block
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» Vertical velocity, Zd, used by the Aircraft Dynamics Model block
» Pitch rate gains, Md, used by the Aircraft Dynamics Model block

State:

+ Initial state of the first-order actuator model, sdoAircraftEstimation/Actuator Model
Define the Estimation Experiment

Get the measured data.

[time,iodata] = sdoAircraftEstimation Experiment;

The sdoAircraftEstimation Experiment function returns the measured output data, iodata,
and the corresponding time vector. The first column of iodata is the pilot G force and the second
column is the angle of attack.

To see the code for this function, type edit sdoAircraftEstimation Experiment.
Create an experiment object to store the measured input/output data.
Exp = sdo.Experiment('sdoAircraftEstimation');

Create an object to store the measured pilot G-Force output.

PilotG = Simulink.SimulationData.Signal;

PilotG.PortIndex
PilotG.Values

1;
timeseries(iodata(:,2),time);

PilotG.Name = 'PilotG"';
PilotG.BlockPath = 'sdoAircraftEstimation/Pilot G-force calculation';
PilotG.PortType = 'outport';

Create an object to store the measured angle of attack (alpha) output.

AoA = Simulink.SimulationData.Signal;
AoA.Name = 'AngleOfAttack’;
AoA.BlockPath 'sdoAircraftEstimation/Aircraft Dynamics Model';

AoA.PortType = 'outport';
AoA.PortIndex = 4;
AoA.Values = timeseries(iodata(:,1),time);

Add the measured pilot G-Force and angle of attack data to the experiment as the expected output
data.

Exp.OutputData = [...
PilotG;
AoA];

Add the initial state for the Actuator Model block to the experiment. Set its Free field to true so
that it is estimated.

Exp.InitialStates = sdo.getStateFromModel('sdoAircraftEstimation', 'Actuator Model');
Exp.InitialStates.Minimum = 0;

Exp.InitialStates.Free = true;

Compare the Measured Output and the Initial Simulated Output

Create a simulation scenario using the experiment and obtain the simulated output.

2-59



2 Parameter Estimation

Simulator
Simulator

createSimulator(Exp);
sim(Simulator);

Search for the pilot G-Force and angle of attack signals in the logged simulation data.

SimLog = find(Simulator.LoggedData,get param('sdoAircraftEstimation', 'SignallLoggingName'))
PilotGSignal = find(SimLog, 'PilotG"');
AoASignal = find(SimLog, 'AngleOfAttack');

Plot the measured and simulated data.

As expected, the model response does not match the experimental output data.

plot(time, iodata,
AoASignal.Values.Time,AoASignal.Values.Data,'--', ...
PilotGSignal.Values.Time,PilotGSignal.Values.Data, '-.");
title('Simulated and Measured Responses Before Estimation')
legend('Measured angle of attack', 'Measured pilot g force',
'Simulated angle of attack', 'Simulated pilot g force');

Simulated and Measured Responses Before Estimation
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Specify the Parameters to Estimate

Select the model parameters that describe the flight control actuation system. Specify bounds for the
estimated parameter values based on our understanding of the actuation system.

p = sdo.getParameterFromModel('sdoAircraftEstimation',{'Ta"','Md", 'Zd'});
p(1l).Minimum 0.01; %Ta
p(1).Maximum 1;
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p(2).Minimum = -10; %Md
p(2) .Maximum = 0;
p(3).Minimum = -100; %Zd
p(3).Maximum = 0;

Get the actuator initial state value that is to be estimated from the experiment.

s = getValuesToEstimate(Exp);

Group the model parameters and initial states to be estimated together.

v = [p;s]
v(l,1) =
Name: 'Ta'

Value: 0.5000
Minimum: 0.0100
Maximum: 1

Free: 1
Scale: 0.5000
Info: [1x1 struct]
v(2,1) =
Name: 'Md'

Value: -1
Minimum: -10
Maximum: 0O

Free: 1
Scale: 1
Info: [1x1 struct]
v(3,1) =
Name: 'Zd'

Value: -80
Minimum: -100
Maximum: 0

Free: 1
Scale: 128
Info: [1x1 struct]
v(4,1) =
Name: 'sdoAircraftEstimation/Actuator...

Value: 0
Minimum: ©
Maximum: Inf

Free: 1

Scale: 1

dxValue: 0
dxFree: 1
Info: [1x1 struct]
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4x1 param.Continuous

Define the Estimation Objective Function

Create an estimation objective function to evaluate how closely the simulation output, generated
using the estimated parameter values, matches the measured data.

Use an anonymous function with one input argument that calls the
sdoAircraftEstimation Objective function. We pass the anonymous function to
sdo.optimize, which evaluates the function at each optimization iteration.

estFcn = @(v) sdoAircraftEstimation Objective(v,Simulator,Exp);

The sdoAircraftEstimation Objective function:

* Has one input argument that specifies the actuator parameter values and the actuator initial state.
* Has one input argument that specifies the experiment object containing the measured data.

* Returns a vector of errors between simulated and experimental outputs.

The sdoAircraftEstimation Objective function requires two inputs, but sdo.optimize
requires a function with one input argument. To work around this, estFcn is an anonymous function
with one input argument, v, but it calls sdoAircraftEstimation Objective using two input
arguments, v and Exp.

For more information regarding anonymous functions, see “Anonymous Functions”.

The sdo.optimize command minimizes the return argument of the anonymous function estFcn,
that is, the residual errors returned by sdoAircraftEstimation Objective. For more details on
how to write an objective/constraint function to use with the sdo.optimize command, type help
sdoExampleCostFunction at the MATLAB command prompt.

To examine the estimation objective function in more detail, type edit
sdoAircraftEstimation Objective at the MATLAB command prompt.

type sdoAircraftEstimation Objective
function vals = sdoAircraftEstimation Objective(v,Simulator,Exp)
%SDOAIRCRAFTESTIMATION OBJECTIVE

The sdoAircraftEstimation Objective function is used to compare model
outputs against experimental data.

vals = sdoAircraftEstimation Objective(v,Exp)

The |v| input argument is a vector of estimated model parameter values
and initial states.

The |Simulator| input argument is a simulation object used
simulate the model with the estimated parameter values.

0° 0% 0° 0° A° o° A° A° O° O° o° o° o°

The |Exp| input argument contains the estimation experiment data.
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The |vals| return argument contains information about how well the
model simulation results match the experimental data and is used by
the |sdo.optimize| function to estimate the model parameters.

See also sdo.optimize, sdoExampleCostFunction,
sdoAircraftEstimation cmddemo

0° 0° o° 0% P O° o° o°

% Copyright 2012-2015 The MathWorks, Inc.

o°

Define a signal tracking requirement to compute how well the model output
matches the experiment data. Configure the tracking requirement so that
it returns the tracking error residuals (rather than the
sum-squared-error) and does not normalize the errors.

= sdo.requirements.SignalTracking;

SO 5 0% 0° 0 0° o° o

.Type = '==";
.Method = 'Residuals’;
.Normalize = 'off';

o°

Update the experiments with the estimated parameter values.

o° o of

m
X
©

= setEstimatedValues(Exp,v);

o°

Simulate the model and compare model outputs with measured experiment
data.

0° o° o° of

Simulator = createSimulator(Exp,Simulator);

Simulator = sim(Simulator);

SimLog = find(Simulator.LoggedData,get param('sdoAircraftEstimation', 'SignallLoggingName'))
PilotGSignal = find(SimLog, 'PilotG"');

AoASignal = find(SimLog, 'AngleOfAttack');

PilotGError = evalRequirement(r,PilotGSignal.Values, Exp.OutputData(l).Values);

AoOAError = evalRequirement(r,AoASignal.Values, Exp.OQutputData(2).Values);

)
)

Return the residual errors to the optimization solver.

o° o of

vals.F = [PilotGError(:); AoAError(:)];
end

Estimate the Parameters
Use the sdo.optimize function to estimate the actuator parameter values and initial state.
Specify the optimization options. The estimation function sdoAircraftEstimation Objective

returns the error residuals between simulated and experimental data and does not include any
constraints, making this problem ideal for the 'Isqnonlin' solver.

opt = sdo.OptimizeOptions;
opt.Method = 'lsgnonlin';
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Estimate the parameters.

vOpt = sdo.optimize(estFcn,v,opt)

Optimization started 25-Aug-2020 20:42:05

First-order

Iter F-count f(x) Step-size optimality
0 8 27955.2 1
1 17 10121.6 0.4744 5.68e+04
2 26 3127.27 0.3854 1.24e+04
3 35 872.666 0.4288 2.81e+03
4 44 238.616 0.5154 617
5 53 71.693 0.4938 148
6 62 17.1565 0.4236 43.9
7 71 1.73233 0.3027 11
8 80 0.0392376 0.135 1.33
9 89 0.000957796 0.02489 0.266
10 98 0.000202147 0.007931 0.0114

Local minimum possible.

lsgnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

vopt(1,1) =

Name: 'Ta'

Value: 0.0500
Minimum: 0.0100
Maximum: 1

Free: 1
Scale: 0.5000
Info: [1x1 struct]

vopt(2,1) =

Name: 'Md'
Value: -6.8849
Minimum: -10
Maximum: 0
Free: 1
Scale: 1
[

Info: [1x1 struct]

vopt(3,1) =

Name: 'Zd'

Value: -63.9989
Minimum: -100
Maximum: 0

Free: 1
Scale: 128
Info: [1x1 struct]
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vOpt(4,1) =

Name: 'sdoAircraftEstimation/Actuator...
Value: 1.1976e-04
Minimum: ©
Maximum: Inf

Free: 1
Scale: 1
dxValue: 0
dxFree: 1

Info: [1x1 struct]

4x1 param.Continuous

Compare the Measured Output and the Final Simulated Output
Update the experiments with the estimated parameter values.
Exp = setEstimatedValues(Exp,vOpt);

Simulate the model using the updated experiment and compare the simulated output with the
experimental data.

The model response using the estimated parameter values closely matches the experiment output
data.

Simulator = createSimulator(Exp,Simulator);

Simulator = sim(Simulator);

SimLog = find(Simulator.LoggedData,get param('sdoAircraftEstimation', 'SignallLoggingName'))
PilotGSignal = find(SimLog, 'PilotG');

AoASignal = find(SimLog, 'AngleOfAttack');

plot(time, iodata,
AoASignal.Values.Time,AoASignal.Values.Data,'-."', ...
PilotGSignal.Values.Time,PilotGSignal.Values.Data,'--")

title('Simulated and Measured Responses After Estimation')

legend('Measured angle of attack', 'Measured pilot g force',
'Simulated angle of attack', 'Simulated pilot g force');
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Simulated and Measured Responses After Estimation
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Update the Model Parameter Values

Update the model with the estimated actuator parameter values. Do not update the model actuator
initial state (fourth element of vOpt) as it is dependent on the experiment.

sdo.setValueInModel('sdoAircraftEstimation',vOpt(1:3));
Related Examples

To learn how to estimate model parameters using the Parameter Estimator app, see “Estimate
Model Parameter Values (GUI)” on page 2-143.

Close the model.

bdclose('sdoAircraftEstimation')
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Estimate Model Parameters and Initial States (Code)

This example shows how to estimate the initial state and parameters of a model.

This example requires Simscape®.

RC Circuit Model

The Simulink model, sdoRCCircuit, models a simple resistor-capacitor (RC) circuit.

open_system('sdoRCCircuit');

flx)=10 ‘ LDI-——F C]
oltage

Copyright 2011 The MathWarks, Inc.

Estimation Problem

You use the measured data to estimate the RC model parameter and state values.
Measured output data:

» Capacitor voltage, output of the PS-Simulink Converter block

Parameter:

» Capacitance, C1, used by the C1 block

State:

 [Initial voltage of the capacitor, C1

Define the Estimation Experiment

Get the measured data.

load sdoRCCircuit ExperimentData

The variables time and data are loaded into the workspace, where data is the measured capacitor
voltage for times time.

Create an experiment object to store the experimental voltage data.
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Exp = sdo.Experiment('sdoRCCircuit');

Create an object to store the measured capacitor voltage output.

Voltage = Simulink.SimulationData.Signal;

Voltage.Name = 'Voltage';

Voltage.BlockPath = 'sdoRCCircuit/PS-Simulink Converter';
Voltage.PortType = 'outport';

Voltage.PortIndex = 1;

Voltage.Values timeseries(data,time);

Add the measured capacitor data to the experiment as the expected output data.
Exp.OutputData = Voltage;

Compare the Measured Output and the Initial Simulated Output

Create a simulation scenario using the experiment and obtain the simulated output.

Simulator
Simulator

createSimulator(Exp);
sim(Simulator);

Search for the voltage signal in the logged simulation data.

SimLog
Voltage

(Simulator.LoggedData,get param('sdoRCCircuit', 'SignallLoggingName'));

ind
ind(SimLog, 'Voltage');

LIl
— —h

Plot the measured and simulated data.

The model response does not match the experimental output data.
plot(time,data, 'ro',Voltage.Values.Time,Voltage.Values.Data, 'b")

title('Simulated and Measured Responses Before Estimation')
legend('Measured Voltage', 'Simulated Voltage')
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Simulated and Measured Responses Before Estimation
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Specify the Parameters to Estimate

Select the capacitance parameter from the model. Specify an initial guess for the capacitance value
(460 uF) and a minimum bound (0 F).

p = sdo.getParameterFromModel('sdoRCCircuit"','Cl");
p.Value 460e-6;
p.Minimum 0;

Define the Estimation Objective Function

Create an estimation objective function to evaluate how closely the simulation output, generated
using the estimated parameter value, matches the measured data.

Use an anonymous function with one input argument that calls the sdoRCCircuit Objective
function. We pass the anonymous function to sdo.optimize, which evaluates the function at each
optimization iteration.

estFcn = @(v) sdoRCCircuit Objective(v,Simulator,Exp);

The sdoRCCircuit Objective function:

* Has one input argument that specifies the estimated circuit capacitance value.

* Has one input argument that specifies the experiment object containing the measured data.

* Returns a vector of errors between simulated and experimental outputs.
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The sdoRCCircuit Objective function requires two inputs, but sdo.optimize requires a
function with one input argument. To work around this, estFcn is an anonymous function with one
input argument, v, but it calls sdoRCCircuit Objective using two input arguments, v and Exp.

For more information regarding anonymous functions, see “Anonymous Functions”.

The optimization solver minimizes the residual errors. For more details on how to write an objective/
constraint function to use with the sdo.optimize command, type help
sdoExampleCostFunction at the MATLAB command prompt.

To examine the estimation object function in more detail, type edit sdoRCCircuit Objective at
the MATLAB command prompt.

type sdoRCCircuit Objective

function vals = sdoRCCircuit Objective(v,Simulator,Exp)
%SDORCCIRCUIT OBJECTIVE

The sdoRCCircuit Objective function is used to compare model
outputs against experimental data.

vals = sdoRCCircuit Objective(v,Exp)

The |v| input argument is a vector of estimated model parameter values
and initial states.

The |Simulator| input argument is a simulation object used
simulate the model with the estimated parameter values.

The |Exp| input argument contains the estimation experiment data.
The |vals| return argument contains information about how well the
model simulation results match the experimental data and is used by

the |sdo.optimize| function to estimate the model parameters.

See also sdo.optimize, sdoExampleCostFunction, sdoRCCircuit cmddemo

0° 0% 0% 3% 0% 0° ° O° A° A° A° A% A% O° O° O° O° O° o° o°

o°
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o°

Define a signal tracking requirement to compute how well the model output
matches the experiment data. Configure the tracking requirement so that
it returns the tracking error residuals (rather than the
sum-squared-error) and does not normalize the errors.

= sdo.requirements.SignalTracking;

SO 5 0% 0° 0 0° o° o

.Type = '==";
.Method = 'Residuals’;
.Normalize = 'off"';

o°

Update the experiments with the estimated parameter values.

o° o of

= setEstimatedValues(Exp,v);

m
o° x
©

o°
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Simulate the model and compare model outputs with measured experiment
data.

o° o o°

Simulator
Simulator

= createSimulator(Exp,Simulator);
= sim(Simulator);

SimLog
Voltage

find(Simulator.LoggedData,get param('sdoRCCircuit', 'SignallLoggingName'));
find(SimLog, 'Voltage');

VoltageError = evalRequirement(r,Voltage.Values,Exp.OutputData(l).Values);

%

Return the residual errors to the optimization solver.

o° o of

vals.F = VoltageError(:);
end

Estimate the Parameters
Use the sdo.optimize function to estimate the capacitance value.

Specify the optimization options. The estimation function sdoRCCircuit Objective returns the
error residuals between simulated and experimental data and does not include any constraints,
making this problem ideal for the 'Isqnonlin' solver.

opt = sdo.OptimizeOptions;
opt.Method = 'lsgnonlin';

Estimate the parameters.

pOpt = sdo.optimize(estFcn,p,opt)

Optimization started 25-Aug-2020 20:45:31

First-order

Iter F-count f(x) Step-size optimality
0 3 55.0041 1
1 6 21.0161 0.2124 17.2
2 9 11.5085 0.1272 6.08
3 12 9.56468 0.06553 1.99
4 15 9.27666 0.02744 0.442
5 18 9.27666 0.00717 0.442
6 21 9.27131 0.001793 0.356

Local minimum possible.

lsgnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

pOpt =

Name: 'C1'
Value: 1.1600e-04
Minimum: ©
Maximum: Inf
Free: 1
Scale: 0.0020
Info: [1x1 struct]
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1x1 param.Continuous

Compare the Measured Output and the Simulated Output

Update the experiment with the estimated capacitance value.

Exp = setEstimatedValues(Exp,pOpt);

Create a simulation scenario using the experiment and obtain the simulated output.

Simulator
Simulator

createSimulator(Exp,Simulator);
sim(Simulator);

Search for the voltage signal in the logged simulation data.

SimLog
Voltage

find(Simulator.LoggedData,get param('sdoRCCircuit', 'SignalLoggingName"'));
find(SimLog, 'Voltage');

Plot the measured and simulated data.

The simulated and measured signals match well, except for near time zero. This mismatch is because
the capacitor initial voltage defined in the model does not match the initial voltage from the
experiment.

plot(time,data, 'ro',Voltage.Values.Time,Voltage.Values.Data,'b")
title('Simulated and Measured Responses After Estimation')
legend('Measured Voltage', 'Simulated Voltage')
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Simulated and Measured Responses After Estimation
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Estimate the Initial State

Add the capacitor initial voltage for the C1 block to the experiment. Set its initial guess value to 1 V.

Exp.InitialStates = sdo.getStateFromModel('sdoRCCircuit','Cl');
Exp.InitialStates.Value = 1;

Recreate the estimation function to use the experiment with initial state estimation

estFcn = @(v) sdoRCCircuit Objective(v,Simulator,Exp);

Get the initial state and capacitance value that is to be estimated from the experiment.

v = getValuesToEstimate(Exp);

Estimate the parameters.

vOpt = sdo.optimize(estFcn,v,opt)

Optimization started 25-Aug-2020 20:45:45

First-order

Iter F-count f(x) Step-size optimality
0 5 4.66337 1
1 10 2.01883 1.533 21
2 15 1.34889 0.1257 0.0803
3 20 1.34365 0.0525 0.12
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4 25 1.34363 0.001294 0.000711
Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

vOpt(1,1) =

Name: 'sdoRCCircuit/Cl:sdoRCCircuit.Cl.vc'
Value: 2.3596
Minimum: -Inf
Maximum: Inf

Free: 1
Scale: 1
dxValue: 0
dxFree: 1

Info: [1x1 struct]

vOpt(2,1) =

Name: 'C1'
Value: 2.2638e-04
Minimum: ©
Maximum: Inf
Free: 1
Scale: 0.0020
Info: [1x1 struct]

2x1 param.Continuous

Compare the Measured Output and the Final Simulated Output
Update the experiment with the estimated capacitance and capacitor initial voltage values.
Exp = setEstimatedValues(Exp,vOpt);

Simulate the model with the estimated initial-state and parameter values and compare the simulated
output with the experiment data.

Simulator = createSimulator(Exp,Simulator);

Simulator = sim(Simulator);

SimLog = find(Simulator.LoggedData,get param('sdoRCCircuit', 'SignallLoggingName'));
Voltage = find(SimLog, 'Voltage');

plot(time,data, 'ro',Voltage.Values.Time,Voltage.Values.Data, 'b")
title('Simulated and Measured Responses After Initial State and Model Parameter Estimation')
legend('Measured Voltage', 'Simulated Voltage')
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mulated and Measured Responses After Initial State and Model Parameter Estim:
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Update the Model Parameter Values

Update the model with the estimated capacitance value. Do not update the model capacitor initial
voltage (first element of vOpt) as it is dependent on the experiment.

sdo.setValueInModel('sdoRCCircuit',vOpt(2));

Related Examples

To learn how to estimate model parameters using the sdo.optimize command, see “Estimate Model
Parameters and Initial States (GUI)” on page 2-168.

Close the model

bdclose('sdoRCCircuit')
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Estimate Model Parameters Using Multiple Experiments (Code)

This example shows how to estimate model parameters from multiple sets of experimental data. You
estimate the parameters of a mass-spring-damper system.

Open the Model and Get Experimental Data

This example uses the sdoMassSpringDamper model. The model includes two integrators to model
the velocity and position of a mass in a mass-spring-damper system.

open_system('sdoMassSpringDamper');

Walocity Paosition
F B+ [ |
Lal g _.' L Ll
Force g B e t_jpes C]
Mass =
(<0 =-0.1) FPositions
[texp1 yexp1]
@ Exparimental
Position Data 1
Damper
K [texp2 yexp2]
. Exparmental
Spring Positicn Data 2
[m b K] >
Model Copyright 2002-2012 The MathWorks, Inc.
Parameaters

Mass'Spring/Damper

(from model workspace ) Values

Load the experiment data.
load sdoMassSpringDamper ExperimentData

The variables texpl, yexpl, texp2, and yexp2 are loaded into the workspace. yexpl and yexp2
describe the mass position for times texpl and texp2 respectively.

Define the Estimation Experiments
Create a 2-element array of experiment objects to store the measured data for the two experiments.

Create an experiment object for the first experiment.

Exp = sdo.Experiment('sdoMassSpringDamper');

Create an object to store the measured mass position output.
MeasuredPos
MeasuredPos.Values

MeasuredPos.BlockPath
MeasuredPos.PortType

Simulink.SimulationData.Signal;
timeseries(yexpl, texpl);
'sdoMassSpringDamper/Position';
‘outport’;

2-76



Estimate Model Parameters Using Multiple Experiments (Code)

MeasuredPos.PortIndex
MeasuredPos.Name

1;
'"Position';

Add the measured mass position data to the experiment as the expected output data.

Exp.OutputData = MeasuredPos;

Create an object to specify the initial state for the Velocity block. The initial velocity of the mass is
0 m/s.

sVel = sdo.getStateFromModel('sdoMassSpringDamper', 'Velocity');
sVel.Value = 0;
sVel.Free = false;

sVel.Free is set to false because the initial velocity is known and does not need to be estimated.

Create an object to specify the initial state for the Position block. Specify a guess for the initial
mass position. Set the Free field of the initial position ohject to true so that it is estimated.

sPos = sdo.getStateFromModel('sdoMassSpringDamper', 'Position');
sPos.Free = true;
sPos.Value = -0.1;

Add the initial states to the experiment.

Exp.InitialStates = [sVel;sPos];

Create a 2-element array of experiments. As the two experiments are identical except for the
expected output data, copy the first experiment twice.

Exp = [Exp; Expl;

Modify the expected output data of the second experiment object in Exp.
Exp(2).0utputData.Values = timeseries(yexp2,texp2);

Compare the Measured Output and the Initial Simulated Output

Create a simulation scenario using the first experiment and obtain the simulated output.

Simulator
Simulator

createSimulator(Exp(1));
sim(Simulator);

Search for the position signal in the logged simulation data.

SimLog
Position

find(Simulator.LoggedData,get param('sdoMassSpringDamper', 'SignalLoggingName'));
find(SimLog, 'Position');

Obtain the simulated position signal for the second experiment.

Simulator = createSimulator(Exp(2),Simulator);
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData,get param('sdoMassSpringDamper', 'SignalLoggingName'));

Position(2) find(SimLog, 'Position');
Plot the measured and simulated data.

The model response does not match the experimental output data.
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subplot(211)
plot(...

Position(1l).Values.Time,Position(1l).Values.Data,
Exp(1l).OutputData.Values.Time, Exp(1l).OutputData.Values.Data,'--")
title('Experiment 1: Simulated and Measured Responses Before Estimation')

ylabel('Position')

legend('Simulated Position', 'Measured Position', 'Location', 'SouthEast"')
subplot(212)

plot(...

Position(2).Values.Time,Position(2).Values.Data,
Exp(2).0utputData.Values.Time, Exp(2).OutputData.Values.Data,'--")
title('Experiment 2: Simulated and Measured Responses Before Estimation')

xlabel('Time (seconds)')

ylabel('Position')
legend('Simulated Position', 'Measured Position', 'Location', 'SouthEast"')
a3 Experiment 1: Simulated and Measured Responses Before Estimation
. \‘*_,-'—-\—J-'-'-u-—-w-\—r—--——uw—-\q__-_-_—u*—'-—m—m-ﬁ-h
02r 7
=
2
wm01F |
[}
o
o Simulated Position | 1
— — — Measured Position
'I:|1 1 1 1 1 1 1 1
0 1 2 3 4 5 & 7 &
03 Experiment 2: Simulated and Measured Responses Before Estimation
0.2 7
=
2
wm 0.1 |
[
o
a Simulated Position | |
— — — Measured Position
01 . . . . . .

0 1 2 3 4 3] 3] 7
Time (seconds)
Specify Parameters to Estimate

Select the mass m, spring constant k, and damping coefficient b parameters from the model. Specify
that the estimated values for these parameters must be positive.

p = sdo.getParameterFromModel('sdoMassSpringDamper', {'b"', 'k', 'm'});

p(l).Minimum = 0;
p(2).Minimum = 0;
p(3).Minimum = 0;

Get the position initial state values to be estimated from the experiment.
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s = getValuesToEstimate(Exp);

s contains two initial state objects, both for the Position block. Each object corresponds to an
experiment in Exp.

Group the model parameters and initial states to be estimated together.

v = [p;s]
v(l,1) =
Name: 'b'
Value: 100

Minimum: ©
Maximum: Inf
Free: 1
Scale: 128
Info: [1x1 struct]

v(2,1) =

Name: 'k'
Value: 500
Minimum: ©
Maximum: Inf
Free: 1
Scale: 512
Info: [1x1 struct]

v(3,1) =

Name: 'm'

Value: 8

Minimum: ©
Maximum: Inf

Free: 1

Scale: 8

[

Info: [1x1 struct]

v(4,1) =
Name: 'sdoMassSpringDamper/Position'
Value: -0.1000
Minimum: -Inf
Maximum: Inf

Free: 1
Scale: 0.1250
dxValue: 0
dxFree: 1
Info: [1x1 struct]

v(5,1) =
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Name: 'sdoMassSpringDamper/Position
Value: -0.1000
Minimum: -Inf
Maximum: Inf

Free: 1
Scale: 0.1250

dxValue: 0

dxFree: 1

Info: [1x1 struct]
5x1 param.Continuous

Define the Estimation Objective

Create an estimation objective function to evaluate how closely the simulation output, generated
using the estimated parameter values, matches the measured data.

Use an anonymous function with one input argument that calls the
sdoMassSpringDamper Objective function. We pass the anonymous function to sdo.optimize,
which evaluates the function at each optimization iteration.

estFcn = @(v) sdoMassSpringDamper Objective(v,Simulator,Exp);
The sdoMassSpringDamper Objective function:

* Has one input argument that specifies the mass, spring constant and damper values as well as the
initial mass position.

* Has one input argument that specifies the experiment object containing the measured data.
* Returns a vector of errors between simulated and experimental outputs.

The sdoMassSpringDamper Objective function requires two inputs, but sdo.optimize requires
a function with one input argument. To work around this, estFcn is an anonymous function with one
input argument, v, but it calls sdoMassSpringDamper Objective using two input arguments, v
and Exp.

For more information regarding anonymous functions, see “Anonymous Functions”.

The sdo.optimize command minimizes the return argument of the anonymous function estFcn,
that is, the residual errors returned by sdoMassSpringDamper Objective. For more details on
how to write an objective/constraint function to use with the sdo.optimize command, type help
sdoExampleCostFunction at the MATLAB command prompt.

To examine the estimation objective function in more detail, type edit
sdoMassSpringDamper Objective at the MATLAB command prompt.

type sdoMassSpringDamper Objective
function vals = sdoMassSpringDamper Objective(v,Simulator, Exp)
%SDOMASSSPRINGDAMPER OBJECTIVE

The sdoMassSpringDamper Objective function is used to compare model
outputs against experimental data.

o® o° of
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vals = sdoMassSpringDamper Objective(v,Exp)

The |v| input argument is a vector of estimated model parameter values
and initial states.

The |Simulator| input argument is a simulation object used
simulate the model with the estimated parameter values.

The |Exp| input argument contains the estimation experiment data.
The |vals| return argument contains information about how well the
model simulation results match the experimental data and is used by
the |sdo.optimize| function to estimate the model parameters.

see also sdo.optimize, sdoExampleCostFunction

d° 0% 0% 3% 0° 0° A° O° A° O° O° A% O° O° O° O° o°

o°

Copyright 2012-2015 The MathWorks, Inc.

o°

Define a signal tracking requirement to compute how well the model output
matches the experiment data. Configure the tracking requirement so that
it returns the tracking error residuals (rather than the
sum-squared-error) and does not normalize the errors.

= sdo.requirements.SignalTracking;

SO S 0% 0° 0 0° o° o

.Type = '==';
.Method = 'Residuals’;
.Normalize = 'off';

o°

Update the experiments with the estimated parameter values.

o° o of

m
X
©

= setEstimatedValues (Exp,vV);

imulate the model and compare model outputs with measured experiment

Error = [];
for ct=1:numel(Exp)

Simulator
Simulator

createSimulator(Exp(ct),Simulator);
sim(Simulator);

SimLog = find(Simulator.LoggedData,get param('sdoMassSpringDamper', 'SignalLoggingName'));
Position = find(SimLog, 'Position');

PositionError = evalRequirement(r,Position.Values,Exp(ct).OutputData.Values);
Error = [Error; PositionError(:)];

()
"o

Return the residual errors to the optimization solver.

o° o of
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vals.F = Error(:);
end

Estimate the Parameters
Use the sdo.optimize function to estimate the actuator parameter values and initial state.

Specify the optimization options. The estimation function sdoMassSpringDamper Objective
returns the error residuals between simulated and experimental data and does not include any
constraints, making this problem ideal for the 'Isqnonlin' solver.

opt = sdo.OptimizeOptions;
opt.Method = 'lsgnonlin';

Estimate the parameters. Notice that the initial mass position is estimated twice, once for each

experiment.

vOpt = sdo.optimize(estFcn,v,opt)

Optimization started 25-Aug-2020 20:43:45

First-order

Iter F-count f(x) Step-size optimality
0 11 0.777696 1
1 22 0.00413099 3.696 0.00648
2 33 0.00118327 0.3194 0.00243
3 44 0.0011106 0.06718 5.09e-05

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

vOpt(1,1) =
Name: 'b'
Value: 58.1959
Minimum: ©
Maximum: Inf
Free: 1
Scale: 128
Info: [1x1 struct]
vOpt(2,1) =
Name: 'k'
Value: 399.9452
Minimum: ©
Maximum: Inf
Free: 1
Scale: 512
Info: [1x1 struct]
vOpt(3,1) =
Name: 'm'
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Value:
Minimum:
Maximum:

Free:

Scale:

Info:

vOpt(4,1) =

Name:
Value:
Minimum:
Maximum:
Free:
Scale:
dxValue:
dxFree:
Info:

vOpt(5,1) =

Name:
Value:
Minimum:
Maximum:
Free:
Scale:
dxValue:
dxFree:
Info:

9.7225

0

Inf

1

8

[1x1 struct]

'sdoMassSpringDamper/Position
0.2995

-Inf

Inf

1

0.1250

0

1

[1x1 struct]

'sdoMassSpringDamper/Position
0.0994

-Inf

Inf

1

0.1250

0

1

[1x1 struct]

5x1 param.Continuous

Compare the Measured Output and the Final Simulated Output

Update the experiments with the estimated parameter values.

Exp = setEstimatedValues(Exp,vOpt);

Obtain the simulated output for the first experiment.

Simulator
Simulator
SimLog
Position(1)

createSimulator(Exp(1l),Simulator);
sim(Simulator);

find(Simulator.LoggedData,get param('sdoMassSpringDamper', 'SignallLoggingName'));

find(SimLog, 'Position');

Obtain the simulated output for the second experiment.

Simulator
Simulator
SimLog
Position(2)

createSimulator(Exp(2),Simulator);
sim(Simulator);

find(Simulator.LoggedData,get param('sdoMassSpringDamper','SignallLoggingName'));

find(SimLog, 'Position');

Plot the measured and simulated data.
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The model response using the estimated parameter values nicely matches the output data for the
experiments.

subplot(211)
plot(...
Position(1).Values.Time,Position(1).Values.Data,
Exp(1l).OutputData.Values.Time, Exp(1l).OutputData.Values.Data,'--")
title('Experiment 1: Simulated and Measured Responses After Estimation')
ylabel('Position')
legend('Simulated Position', 'Measured Position', 'Location', 'NorthEast')
subplot(212)
plot(...
Position(2).Values.Time,Position(2).Values.Data,
Exp(2).0utputData.Values.Time, Exp(2).OutputData.Values.Data,'--")
title('Experiment 2: Simulated and Measured Responses After Estimation')
xlabel('Time (seconds)')
ylabel('Position')
legend('Simulated Position', 'Measured Position', 'Location', 'SouthEast')
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Update the Model Parameter Values

Update the model m, k, and b parameter values. Do not update the model initial position value as this
is dependent on the experiment.

sdo.setValueInModel('sdoMassSpringDamper',vOpt(1:3));

Close the model
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bdclose('sdoMassSpringDamper')
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Estimate Model Parameters Per Experiment (Code)

I
Currant : Jlr Voltage C]

This example shows how to use multiple experiments to estimate a mix of model parameter values;
some that are estimated using all the experiments and others that are estimated using individual
experiments. The example also shows how to configure estimation experiments with experiment
dependent parameter values.

You estimate the parameters of a rechargeable battery based on data collected in experiments that
discharge and charge the battery.

Open the Model and Get Experimental Data

This example estimates parameters of a simple, rechargeable battery model, sdoBattery. The model
input is the battery current and the model output, the battery terminal voltage, is computed from the
battery state-of-charge.

open_system('sdoBattery');

Simple Battery Model

-

A= ah 2 (Ah) O-=500C
Current

‘Valtage (V)

S00C -> Voltage

Copyright 2012-2020 The MathWaorks, Inc.
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The model is based on the equation

E =(1-Loss)V — KQmax%
In the equation:

E is the battery terminal voltage in Volts.

V is the battery constant voltage in Volts.

K is the battery polarization resistance in Ohms.

Qmax is the maximum battery capacity in Ampere-hours.

s is the battery charge state, with 1 being fully charged and 0 discharged. The battery state-of-charge
is computed from the integral of the battery current with a positive current indicating discharge and
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a negative current indicating charging. The battery initial state-of-charge is specified by Qg in
Ampere-hours.

Loss is the voltage drop when charging, expressed as a fraction of the battery constant voltage. When
the battery is discharging this value is zero.

V, K, Qmax, Q0, and Loss are variables defined in the model workspace.

Load the experiment data. A 1.2V (6500mAh) battery was subjected to a discharge experiment and a
charging experiment.

load sdoBattery ExperimentData

The variables Charge Data and DCharge Data are loaded into the workspace. The first column of
Charge Data contains time data. The second and third columns of Charge Data describe the
current and voltage during a battery charging experiment. DCharge Data is similarly structured and
contains data for a battery discharging experiment.

Plot the Experiment Data

subplot(221),

plot(DCharge Data(:,1)/3600,DCharge Data(:,2))

title('Experiment: Discharge')

xlabel('Time (hours)"')

ylabel('Current (A)")

subplot(223)

plot(DCharge Data(:,

xLlabel('Time (hours)

ylabel('Voltage (V)'

subplot(222),

plot(Charge Data(:,1)/3600,Charge Data(:,2))

title('Experiment: Charge')

xlabel('Time (hours)"')

ylabel('Current (A)")

subplot(224)

plot(Charge Data(:,1
)

1)/3600,DCharge Data(:,3))
")
)

)/3600,Charge Data(:,3))
xlabel('Time (hours ")
ylabel('Voltage (V)')
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Define the Estimation Experiments
Create a 2-element array of experiment objects to specify the measured data for the two experiments.

Create an experiment object for the battery discharge experiment. The measured current data is
specified as a timeseries in the experiment object.

DCharge Exp = sdo.Experiment('sdoBattery');

Specify the input data (current) as a timeseries object.

DCharge Exp.InputData = timeseries(DCharge Data(:,2),DCharge Data(:,1));
Create an object to specify the measured voltage output data.

VoltageSig = Simulink.SimulationData.Signal;

VoltageSig.Name = 'Voltage';
VoltageSig.BlockPath = 'sdoBattery/S0C -> Voltage';
VoltageSig.PortType = ‘'outport’;
VoltageSig.PortIndex = 1;

VoltageSig.Values timeseries(DCharge Data(:,3),DCharge Data(:,1));
Add the voltage signal to the discharge experiment as the expected output data.
DCharge Exp.OutputData = VoltageSig;

Specify the battery initial charge state for the experiment. The battery charge state is modeled by the
Q (Ah) block and it's initial value is specified by the variable Q0. Create a parameter for the Q0

2-88



Estimate Model Parameters Per Experiment (Code)

variable and add the parameter to the experiment. QO is experiment dependent and assumes different
values in the discharging and charging experiments.

Q0 = sdo.getParameterFromModel('sdoBattery','Q0");
Q0.Value = 6.5;
Q0.Free = false;

Q0.Free is set to false because the initial battery charge is known and does not need to be
estimated.

Add the QO parameter to the experiment.

DCharge Exp.Parameters = QO0;

Create an experiment object to store the charging experiment data. Add the measured current input
and measured voltage output data to the object.

Charge Exp = sdo.Experiment('sdoBattery');

Charge Exp.InputData timeseries(Charge Data(:,2),Charge Data(:,1));
VoltageSig.Values timeseries(Charge Data(:,3),Charge Data(:,1));
Charge Exp.OutputData = VoltageSig;

Add the battery initial charge and charging loss fraction parameters to the experiment. For this
experiment, the initial charge (Q0) is known (0 Ah), but the value of the charging loss fraction (Loss)
is not known.

Q0.Value = 0;

Loss = sdo.getParameterFromModel('sdoBattery', 'Loss');

Loss.Free = true;
Loss.Minimum = 0;
Loss.Maximum = 0.5;

Charge Exp.Parameters = [QO;Loss];

Loss. Free is set to true so that the value of Loss is estimated.
Collect both experiments into one vector.

Exp = [DCharge Exp; Charge Expl;

Compare the Measured Output and the Initial Simulated Output

Create a simulation scenario using the first (discharging) experiment and obtain the simulated
output.

Simulator
Simulator

createSimulator(Exp(1));
sim(Simulator);

Search for the voltage signal in the logged simulation data.

SimLog
Voltage(1l)

find(Simulator.LoggedData,get param('sdoBattery', 'SignallLoggingName'));
find(SimLog, 'Voltage');

Obtain the simulated voltage signal for the second (charging) experiment.

Simulator
Simulator

createSimulator(Exp(2),Simulator);
sim(Simulator);
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SimLog
Voltage(2)

find(Simulator.LoggedData,get param('sdoBattery', 'SignallLoggingName'));
find(SimLog, 'Voltage');

Plot the measured and simulated data. The model response does not match the experimental output
data.

subplot(211)
plot(...
Voltage(1l).Values.Time/3600,Voltage(1l).Values.Data,
Exp(1l).OutputData.Values.Time/3600, Exp(1l).OutputData.Values.Data,'-.")
title('Discharging Experiment: Simulated and Measured Responses Before Estimation')
ylabel('Voltage (V)")
legend('Simulated Voltage', 'Measured Voltage', 'Location', 'SouthWest')

Dir? harging Experiment: Simulated and Measured Responses Before Estimation
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subplot(212)
plot(...
Voltage(2).Values.Time/3600,Voltage(2).Values.Data, ...
Exp(2).0utputData.Values.Time/3600, Exp(2).OutputData.Values.Data,'-.")

title('Charging Experiment: Simulated and Measured Responses Before Estimation')

xlabel('Time (hours)"')

ylabel('Voltage (V)")
legend('Simulated Voltage', 'Measured Voltage', 'Location', 'SouthEast')

Specify Parameters to Estimate

Estimate the values of the battery voltage V, the battery polarization resistance K, and the charging
loss fraction Loss. The V and K parameters are estimated using all the experiment data while the

Loss parameter is estimated using only the charging data.



Estimate Model Parameters Per Experiment (Code)

Select the battery voltage V and the battery polarization resistance K parameters from the model.
Specify minimum and maximum bounds for these parameters.

p = sdo.getParameterFromModel('sdoBattery',{'V','K'});

p(l).Minimum = 0;
p(1l).Maximum = 2;
p(2).Minimum = le-6;
p(2).Maximum = le-1;

Get the experiment-specific Loss parameter from the experiment.

s = getValuesToEstimate(Exp);

Group all the parameters to be estimated.

v = [p;s]
v(l,1) =
Name: 'V'

Value: 1.2000
Minimum: O
Maximum: 2

Free: 1
Scale: 2
Info: [1x1 struct]
v(2,1) =
Name: 'K'

Value: 1.0000e-03
Minimum: 1.0000e-06
Maximum: 0.1000

Free: 1
Scale: 0.0020
Info: [1x1 struct]
v(3,1) =
Name: 'Loss'

Value: 0.0100
Minimum: O
Maximum: 0.5000

Free: 1
Scale: 0.0156
Info: [1x1 struct]

3x1 param.Continuous
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Define the Estimation Objective

Create an estimation objective function to evaluate how closely the simulation output, generated
using the estimated parameter values, matches the measured data.

Use an anonymous function with one input argument that calls the sdoBattery Objective
function. We pass the anonymous function to sdo.optimize, which evaluates the function at each
optimization iteration.

estFcn = @(v) sdoBattery Objective(v,Simulator,Exp);
The sdoBattery Objective function:

* Has one input argument that specifies the estimated battery parameter values.
* Has one input argument that specifies the experiment object containing the measured data.
* Returns a vector of errors between simulated and experimental outputs.

The sdoBattery Objective function requires two inputs, but sdo.optimize requires a function
with one input argument. To work around this, estFcn is an anonymous function with one input
argument, v, but it calls sdoBattery Objective using two input arguments, v and Exp.

For more information regarding anonymous functions, see “Anonymous Functions”.

The sdo.optimize command minimizes the return argument of the anonymous function estFcn,
that is, the residual errors returned by sdoBattery Objective. For more details on how to write
an objective/constraint function to use with the sdo.optimize command, type help
sdoExampleCostFunction at the MATLAB® command prompt.

To examine the estimation objective function in more detail, type edit sdoBattery Objective at
the MATLAB command prompt.

type sdoBattery Objective

function vals = sdoBattery Objective(v,Simulator,Exp)
%SDOBATTERY OBJECTIVE

The sdoBattery Objective function is used to compare model
outputs against experimental data.

vals = sdoBattery Objective(v,Exp)

The |v| input argument is a vector of estimated model parameter values
and initial states.

The |Simulator| input argument is a simulation object used
simulate the model with the estimated parameter values.

The |Exp| input argument contains the estimation experiment data.
The |vals| return argument contains information about how well the
model simulation results match the experimental data and is used by

the |sdo.optimize| function to estimate the model parameters.

See also sdo.optimize, sdoExampleCostFunction, sdoBattery cmddemo

0° 0% 0° 0° A° A° A A° O° A% O° A° A° O° A° O° O° oO° o o°
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% Copyright 2012-2015 The MathWorks, Inc.

o°

Define a signal tracking requirement to compute how well the model output
matches the experiment data. Configure the tracking requirement so that
it returns the tracking error residuals (rather than the
sum-squared-error) and does not normalize the errors.

= sdo.requirements.SignalTracking;

SO 5 0% 0° 0 0° o° o

.Type = '==";
.Method = 'Residuals’;
.Normalize = 'off"';

o®

Update the experiments with the estimated parameter values.

o° o of

m
X
©

= setEstimatedValues(Exp,v);
% Simulate the model and compare model outputs with measured experiment
% d

Error = [];
for ct=1:numel(Exp)

Simulator
Simulator

= createSimulator(Exp(ct),Simulator);
= sim(Simulator);

SimLog
Voltage

= find(Simulator.LoggedData,get param('sdoBattery', 'SignalLoggingName'));
= find(SimLog, 'Voltage');

VoltageError = evalRequirement(r,Voltage.Values, Exp(ct).OutputData(l).Values);

Error = [Error; VoltageError(:)];
end

%

Return the residual errors to the optimization solver.

o° o of

vals.F = Error(:);
end

Estimate the Parameters
Use the sdo.optimize function to estimate the battery parameter values.

Specify the optimization options. The estimation function sdoBattery Objective returns the error
residuals between simulated and experimental data and does not include any constraints, making this
problem ideal for the 'Isqnonlin' solver.

opt = sdo.OptimizeOptions;
opt.Method = 'lsgnonlin';

Estimate the parameters.
vOpt = sdo.optimize(estFcn,v,opt)

Optimization started 25-Aug-2020 21:25:24
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Iter F-coun
7
14
21
28
35
42
Local minimu

U WNREO

lsgnonlin stopped because the final change in the sum of squares relative to
value is less than the value of the function tolerance.

its initial
vOpt(1,1) =

Name:
Value:
Minimum:
Maximum:
Free:
Scale:
Info:

vOpt(2,1) =

Name:
Value:
Minimum:
Maximum:
Free:
Scale:
Info:

vOpt(3,1) =

Name:
Value:
Minimum:
Maximum:
Free:
Scale:
Info:

t f(x)
3272.22
619.356
411.131
405.529
403.727
403.379

m possible.

IVI
1.3083
0

2
1
2
[

1x1 struct]

K
0.0010
1.0000e-06
0.1000

1

0.0020

[1x1 struct]

'Loss’
5.1801e-05
0

0.5000

1

0.0156

[1x1 struct]

3x1 param.Continuous

Compare the Measured Output and the Final Simulated Output

Step-size
1
0.1634
0.2175
0.3838
0.2767
0.1645

First-order
optimality

3.15e+05
28.7
2.16e+03
15.2
1.14e+03

Update the experiments with the estimated parameter values.

Exp = setEstimatedValues(Exp,vOpt);

Obtain the simulated output for the first (discharging) experiment.

Simulator
Simulator
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SimLog
Voltage(1)

find(Simulator.LoggedData,get param('sdoBattery', 'SignallLoggingName'));
find(SimLog, 'Voltage');

Obtain the simulated output for the second (charging) experiment.

Simulator = createSimulator(Exp(2),Simulator);

Simulator = sim(Simulator);

SimLog = find(Simulator.LoggedData,get param('sdoBattery', 'SignallLoggingName'));
Voltage(2) = find(SimLog, 'Voltage');

Plot the measured and simulated data. The simulation results match the experimental data well
except in the regions when the battery is fully charged. This is not unexpected as the simple battery
model does not model the exponential voltage drop when the battery is fully charged.

subplot(211)
plot(...
Voltage(1l).Values.Time/3600,Voltage(l).Values.Data,
Exp(1l).OutputData.Values.Time/3600, Exp(1l).OutputData.Values.Data,'-.")
title('Discharging Experiment: Simulated and Measured Responses After Estimation')
ylabel('Voltage (V)"')
legend('Simulated Voltage', 'Measured Voltage', 'Location', 'SouthWest')
subplot(212)
plot(...

Voltage(2).Values.Time/3600,Voltage(2).Values.Data,
Exp(2).0utputData.Values.Time/3600, Exp(2).OutputData.Values.Data,'-.")
title('Charging Experiment: Simulated and Measured Responses After Estimation')

xlabel('Time (hours)')
ylabel('Voltage (V)"')
legend('Simulated Voltage', 'Measured Voltage', 'Location', 'SouthEast')
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d Responses After Estimation
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Update the Model Parameter Values
Update the model V, K, and Loss parameter values.

sdo.setValueInModel('sdoBattery',vOpt);

Related Examples

To learn how to estimate the battery parameters using the Parameter Estimator, see “Estimate

Model Parameters Per Experiment (GUI)” on page 2-154.

Close the model

bdclose('sdoBattery')
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Set Model to Steady-State When Estimating Parameters (Code)

This example shows how to set a model to steady-state in the process of parameter estimation.
Setting a model to steady-state is important in many applications such as power systems and aircraft
dynamics. This example uses a population dynamics model.

Model Description

The Simulink model sdoPopulationInflux models a simple ecology where an organism population
growth is limited by the carrying capacity of the environment:

W _ pa - Ly +10)
T l h._l.“f f J
* [iis the inherent growth rate of the organism population.

« I{ is the carrying capacity of the environment.

There is also an influx of other members of the organism from a neighboring environment. The model
uses normalized units.

Open the model.

modelName = 'sdoPopulationInflux';
open_system(modelName)

h

Inflow 1 Papulation
%ﬁ e 1 )
+
L

F

Copyright 2018 The MathWorks, Inc.
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The file sdoPopulationInflux Data.mat contains data of the population in the environment as
well as the influx of additional organisms from the neighboring environment.

load sdoPopulationInflux Data.mat; % Timer series: Population_ ts Inflow ts
hFig = figure;

subplot(2,1,1);

plot(Population_ts)

subplot(2,1,2);

plot(Inflow ts)

18 Time Series Plot: Population

Population

3 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 G T 8 ] 10
Time (seconds)
1 Time Series Plot: Inflow
8osl -
=
El 1 1 1 1 1 1 1 1
0 1 2 3 4 5 L3 T 8 g 10

Time (seconds)

The population starts in a steady state. After some time, there is an influx of organisms from the
neighboring environment. Based on the measured data, we want to estimate values for the model
parameters.

The parameter R represents the inherent growth rate of the organism. Use 1 as the initial guess for
this parameter. It is non-negative.

R = sdo.getParameterFromModel(modelName, 'R');
R.Value = 1;
R.Minimum = 0;

The parameter K represents the carrying capacity of the environment. Use 2 as the initial guess for
this parameter. It is known to be at least 0.1.

K = sdo.getParameterFromModel (modelName, 'K');
K.Value = 2;
K.Minimum = 0.1;
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Collect these parameters into a vector.

v = [R K];

Compare Measured Data to Initial Simulated Output
Create an Experiment object.

Exp = sdo.Experiment(modelName);

Associate Population ts with model output.

Population = Simulink.SimulationData.Signal;
Population.Name = 'Population’;
Population.BlockPath = [modelName '/Integrator'];
Population.PortType = 'outport';
Population.PortIndex = 1;

Population.Values = Population ts;

Add Population to the experiment.
Exp.OutputData = Population;

Associate Inflow_ts with model input.
Inflow = Simulink.SimulationData.Signal;
Inflow.Name = 'Population’;
Inflow.BlockPath = [modelName '/Inl'];
Inflow.PortType = 'outport';

Inflow.PortIndex = 1;
Inflow.Values = Inflow ts;

Add Inflow to the experiment.

Exp.InputData = Inflow;

Create a simulation scenario using the experiment, and obtain the simulated output.
Exp = setEstimatedValues(Exp, Vv); % use vector of parameters/states

Simulator createSimulator(Exp);
Simulator sim(Simulator);

Search for the model output signal in the logged simulation data.

SimLog = find(Simulator.LoggedData,
get param(modelName, 'SignallLoggingName') );
PopulationSim = find(SimLog, 'Population');

The model output does not match the data very well, indicating that we need to compute better
estimates of the model parameters.

clf;

plot(PopulationSim.Values, 'r');

hold on;

plot(Population ts, 'b');

legend('Model Simulation', 'Measured Data', 'Location', 'best');
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Estimate Parameters

To estimate parameters, define an objective function to compute the sum squared error between
model simulation and measured data.

estFcn = @(v) sdoPopulationInflux Objective(v, Simulator, Exp);
type sdoPopulationInflux Objective.m

function vals = sdoPopulationInflux Objective(v, Simulator, Exp, OpPointSetup)
Compare model output with data

Inputs:
v - vector of parameters and/or states
Simulator - used to simulate the model
Exp - Experiment object

OpPointSetup - Object to set up computation of steady-state
operating point

d° 0° o° 0° 0P o° o° o°

o°

Copyright 2018 The MathWorks, Inc.

%Parse inputs

if nargin < 4
OpPointSetup = [];

end

% Requirement setup
req = sdo.requirements.SignalTracking;
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req.Type = '==';
req.Method = 'Residuals’;

% Simulate the model

Exp = setEstimatedValues(Exp, Vv); % use vector of parameters/states
Simulator = createSimulator(Exp,Simulator);

strOT = mat2str(Exp.OutputData(l).Values.Time);

if isempty(OpPointSetup)

Simulator = sim(Simulator, 'OutputOption', 'AdditionalOutputTimes', 'OutputTimes', str0T);

else

Simulator = sim(Simulator, 'OutputOption', 'AdditionalOutputTimes', 'OutputTimes', strOT,

'OperatingPointSetup', OpPointSetup);
end

% Compare model output with data
SimLog = find(Simulator.LoggedData,
get param(Exp.ModelName, 'SignallLoggingName') );
OQutputModel = find(SimLog, 'Population');
Model Error = evalRequirement(req, OutputModel.Values, Exp.OutputData.Values);
vals.F = Model Error;

%Define options for the optimization.

[
“©

opts = sdo.OptimizeOptions;
opts.Method = 'lsgnonlin';

Estimate the parameters.
vOpt = sdo.optimize(estFcn, v, opts);
disp(vOpt)

Optimization started 25-Aug-2020 20:44:33

First-order

Iter F-count f(x) Step-size optimality
0 5 12.485 1
1 10 1.09824 1.184 0.244
2 15 0.9873 1.088 0.0259
3 20 0.952948 1.217 0.00624
4 25 0.946892 0.9151 0.00197
5 30 0.946484 0.3541 0.00153

Local minimum possible.

lsgnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

(1,1) =

Name: 'R’
Value: 5.5942
Minimum: ©
Maximum: Inf
Free: 1
Scale: 1
Info: [1x1 struct]

2-101



2 Parameter Estimation

(1,2) =

Name: 'K'

Value: 3.2061
Minimum: 0.1000
Maximum: Inf

Free: 1
Scale: 2
Info: [1x1 struct]

1x2 param.Continuous

Use the estimated parameter values in the model, and obtain the model response. Search for the
model output signal in the logged simulation data.

Exp = setEstimatedValues(Exp, vOpt);
Simulator = createSimulator(Exp,Simulator);
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData,

get param(modelName, 'SignallLoggingName') );
PopulationSim = find(SimLog, 'Population');

Comparing the measured population data with the optimized model response shows that they still do
not match well. There is a transient at the beginning of the model response, where it is markedly
different from the measured data.

clf;
plot(PopulationSim.Values,
hold on;
plot(Population ts, 'b');
legend('Model Simulation', 'Measured Data', 'Location', 'best');

r);
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Time Series Plot:Population
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Put Model in Steady-State During Estimation

To improve the fit between the model and measured data, the model needs to be set to steady-state
when parameters are estimated. Define an operating point specification. The input is known from
experimental data. Therefore, (1) it should not be treated as a free variable when computing the
steady-state operating point, and (2) after the operating point is found, its input should not be used
when simulating the model. On the other hand, all the states found when computing the operating
point should be used when simulating the model. Create an sdo.OperatingPointSetup to collect the
operating point specification, inputs to use, and states to use, so this information can be passed to the
objective function and used when simulating the model. You can also provide a fourth argument to
sdo.OperatingPointSetup, specifying options for computing the operating point. For example, the
option 'graddescent-proj' is often used to find the operating point for systems that use physical
modeling.

opSpec = operspec(modelName) ;

opSpec.Inputs(l).Known = true;

inputsToUse = [];

statesToUse = 1l:numel(opSpec.States);

OpPointSetup = sdo.OperatingPointSetup(opSpec, inputsToUse, statesToUse);

Estimate the parameters, setting the model to steady-state in the process.
estFcn = @(v) sdoPopulationInflux Objective(v, Simulator, Exp, OpPointSetup);

vOpt = sdo.optimize(estFcn, v, opts);
disp(vOpt)
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Optimization started 25-Aug-2020 20:44:45

First-order

Iter F-count f(x) Step-size optimality
0 5 11.1517 1
1 10 0.025674 0.5732 0.045
2 15 0.00239293 0.3451 0.357
3 20 0.000692478 0.0148 0.00301
4 25 0.00069236 6.539e-05 1.16e-07

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

(1,1) =
Name: 'R’

Value: 0.5953
Minimum: ©
Maximum: Inf

Free: 1
Scale: 1
Info: [1x1 struct]
(1,2) =
Name: 'K'

Value: 3.0988
Minimum: 0.1000
Maximum: Inf

Free: 1
Scale: 2
Info: [1x1 struct]

1x2 param.Continuous

Use the estimated parameter values in the model, and obtain the model response
model output signal in the logged simulation data.

Exp = setEstimatedValues(Exp, vOpt);
Simulator = createSimulator(Exp,Simulator);
Simulator = sim(Simulator, 'OperatingPointSetup', OpPointSetup);
SimLog = find(Simulator.LoggedData,
get param(modelName, 'SignallLoggingName') );
PopulationSim = find(SimLog, 'Population');

There is no more transient at the beginning of the model response, and there is a

. Search for the

much better match

between the model response and measured data, which is also reflected by the lower objective/cost

function value in the second optimization. All these indicate that we have found a
parameter values.

clf;
plot(PopulationSim.Values,
hold on;

‘r');

good set of
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plot(Population ts, 'b');
legend('Model Simulation', 'Measured Data', 'Location', 'best');

Time Series Plot:Population
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Related Examples

To learn how to put models in a steady state using the Parameter Estimator app, see “Set Model to
Steady-State When Estimating Parameters (GUI)” on page 2-117.

Close the model and figure.

bdclose(modelName)
close(hFig)
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Parameter Estimation for Power Plant Excitation System
Starting at Steady-State (GUI)
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This example shows how to perform parameter estimation while starting the system in steady state
using the example of an excitation system model for a power plant electric generator.

Need for Parameter Estimation in Power Systems

Parameter estimation is a powerful tool for power system operations where the accuracy of models is
critical and may be required by regulation. There are several reasons why one might need to perform
parameter estimation in power systems, including:

* The system parameters may have been unknown from the start. For instance, if some or all of the
parameters were not provided by the supplier.

* Even if the system parameters were known in the past, these parameters may drift with time due
to wear on components in the system.

* Some settings may be changed for the system causing unknown effects on the system parameters.
Parameter estimation can be used to account for these settings changes.

* The system may need to be fit to some standardized model. For instance, in this example we are
fitting the IEEE DC1A standard model for excitation systems to our system.

Excitation System Model Description

Generators create power by rotating a magnetic field and coiled wires relative to one another to
induce an electric current. For generators that use electromagnets, an excitation system supplies
current to the generator's field coils to create the magnetic field. By controlling the strength of the
magnetic field inside the generator, the exciter system can control the generator's output voltage.

The Simulink® model spe_exciter models an excitation system in an offline step test. In this test,
the generator is taken offline, then a step voltage input is applied to the exciter, and the output
voltage is measured for system characterization purposes. This model includes the subsystem labeled
"DC1A Excitation System" which follows the model structure for an excitation system outlined in the
IEEE DC1A standard. The block contains several parameters, such as gains and time constants, that
define the system's behavior and need to be fit to our system. The voltage inputs and outputs are in
p.-u. (per unit).

You can open the model with the following command:

open_system('spe exciter');
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Exciter Offline Step Test Model

[time Efd_measured] >
b measured voltage
URKRGWR Test Data
Setting simulated voltage ®
it
X pf Vref
Vstep DC1A
vVt  Excitation Efd 4'—5.
System Efd_sim
Vstab

Excitation System

Open Parameter Estimator App

Double-click the orange block labeled Parameter Estimation with preloaded datain the
lower left corner of the model. This will launch a Parameter Estimation session pre-loaded with data
for this project, including the experimental data from the offline step test.

The Parameter Estimation session is loaded with the system parameters which were determined to
need tuning due to any of the reasons noted previously. These parameters include the gains Ka, Ke,
and Kf; and time constants Ta, Tb, Tc, Te, Tf, and Tr. These parameters are bound to use only
positive values during estimation.

To plot the model's response against the experimental data, click the Plot Model Response button
in the toolbar. Notice that the initial conditions for the states in our model are currently incorrect,
which causes the initial dynamic in the simulated response and the offset between the simulated and
measured response. In the next step we will update the options in the Parameter Estimator app to
solve for the correct initial conditions in our model.
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Compute Steady-State Operating Point During Parameter Estimation

In the experimental step test that produced the measured response, the excitation system was in
steady state and outputting around 1.1 p.u. before the test measurements began. To match these
conditions in our parameter estimation, we will specify that the model should start at a steady-state
operating point during parameter estimation. Click More Options and select Operating Point
Options.
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This shows a dialog where you can specify how steady-state operating points should be computed
during parameter estimation. Open the dialog and select the check box Estimate at steady-
state so that the Parameter Estimator will put the model into steady-state each time it varies
parameters and runs the model. There are seven states in this model, by default they will be set to
unknown and marked as states to be set to steady-state. This matches our system, so we will keep
these options unchanged.
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Cperating Point x

Ectimate at steady-stats

Experiment: |DHIineStep ~ | Sync with specification from: |Simulink Model ~ | | @ |

Specifications  Options

States |nputs Qutputs

State Specifications
State Value
[1 Known Steady State Minirmum Maximurm | dx Minimum | dx Maximum
spe_exciter/Excitation System/(Tc.s+1)//(Th.s+1)/Integrator
State - 1 | 0 | O | | nf | Wf | anf |
spe_exciter/Excitation System/Integrator
State - 1 | 0 | O | | oanf | wmf [ e |
spe_exciter/Excitation System/lk.s//(tau.s+1)/Integrator
State - 1 | 0 | 0 | Loanf | wmf [ aee [
spe_exciter/Excitation System/k//(tau.s+1)/1//(taus+1)/Integrator
State - 1 | 0 | 0 | L oanf | wmf [ e [
spe_exciter/Excitation System/k//(tau.s+1)2/1//(taus+ 1)/Integrator
State - 1 | 0 | O | | 09 | 1 | -inf | Inf
spe_exciter/Unknown Setting/Init_Val
State - 1 | 1 | O | | oanf | wf [ e [

The inputs to the model (terminal voltage and reference voltage) are known from the offline step test.
Switching to the Inputs tab under Specifications, we can specify these conditions. We can see that
the inputs are marked as known by default with a value of one. These come from the starting value in
the measured data, and we will leave these values unchanged.
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Cperating Point x

Ectimate at steady-stats

Experiment: |DHIineStep ~ | Sync with specification from: |Simulink Model ~ | | @ |

Specifications  Options

States Inputs  Qutputs

Input Specifications

Input Value - :
Known Minimurm Maximum
spe_exciter/Vstep
Channel - 1 | 1 | | -Inf | Inf
spe_exciter/Vact
Channel - 1 | 1 | | -Inf | Inf

Switching to the Outputs tab under Specifications, we mark the output (field voltage) of our system

as known by checking the “Known” checkbox, and set its “Value” to 1.1028, which is the first value of
our measured field voltage test data.
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Cperating Point x

Estimate at steady-state

Experiment: |DHIineStep ~ | Sync with specification from: |Simulink Model ~ | | @ |

Specifications  Options

States Inputs Outputs

Cutput Specifications

Output Value — :
Known Minimum Maximum
spe_exciter/Efd_sim
Channel - 1 1.1028 | -Inf Inf

With the options we have now set up, before running each model simulation, Parameter Estimation
will solve for a set of initial conditions that will place all the specified states in steady-state at the
specified input and output levels. To see the result of these changes, click Plot Model Response
again and see that the simulated response is now in steady state at the expected initial output.
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Set up Parameter Estimation View

Before estimating parameters, we can use the toolbar to customize the view of Parameter Estimation
to display the information we are interested in. Use the Add Plot button on the toolbar to add a
Parameter Trajectory plot and an Estimation Cost plot. You can use the View tab to adjust the
layout and make all plots visible.
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Perform Parameter Estimation
Now we are ready to perform parameter estimation. In the Parameter Estimation tab, click

Estimate.. Due to the large number of parameters being estimated in this example, this process may

take several minutes.

Once the estimation process has converged, the new model response is shown in the Experiment
Plot. We see a better match between the model and the measured data, and the error in the ExpCost
plot decreased significantly. These indicate that a good set of parameters was found. The
EstimatedParams plot shows how each parameter changed at each iteration. To more clearly see
how much each parameter changed relative to its initial value, right click the EstimatedParams plot

and select Show scaled values.
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Speed Up Estimation Using Parallel Pool Options

Because of the large number of parameters being estimated, the parameter estimation can take a
long time. As the number of parameters increases, the number of times the model must run at each
iteration also increases. This leads to an increase in the total computation time required for the
parameter estimation to converge.

To speed up our parameter estimation we can set up our options to use a parallel pool. Then our
parallel workers can run simulations simultaneously to speed up the parameter estimation process.

To do this you will need MATLAB Parallel Computing Toolbox. Before performing parameter
estimation, go to More Options>Parallel Options in the Parameter Estimation toolbar. Then select
Use parallel pool during estimation. Click OK, then click Estimate in the toolbar.

For a parallel pool with 8 workers, the estimation process for this example was 3.5 times faster to
complete. For access to options related to parallel computing like number of workers and cluster
setup, see "Specify Your Parallel Preferences".

Related Topics

* Specify Steady-State Operating Point for Parameter Estimation
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2 Parameter Estimation

* What Is an Operating Point? (Simulink Control Design)

* What Is a Steady-State Operating Point? (Simulink Control Design)
* Set Model to Steady-State When Estimating Parameters (GUI)

* Set Model to Steady-State When Estimating Parameters (Code)
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Set Model to Steady-State When Estimating Parameters (GUI)

Set Model to Steady-State When Estimating Parameters (GUI)

This example shows how to set a model to steady-state in the process of parameter estimation.
Setting a model to steady-state is important in many applications such as power systems and aircraft
dynamics. This example uses a population dynamics model.

Model Description

The Simulink model sdoPopulationInflux models a simple ecology where an organism population
growth is limited by the carrying capacity of the environment:

W _ g1 - Ly +10)
T l h..l!f | J
* I is the inherent growth rate of the organism population.

+ I is the carrying capacity of the environment.

There is also an influx of other members of the organism from a neighboring environment. The model
uses normalized units.

Open the model.

open_system('sdoPopulationInflux"')

h

Inifl 1 Population
riflcw '*C L opulatics ,':-(D
. ;
e

F

Copyright 2018 The MathWorks, Inc.
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Open Parameter Estimator App

In the Apps tab, click Parameter Estimator under Control Systems to launch the Parameter
Estimator app. In Parameter Estimator app, click Open Session and select Open from model
workspace, and then select sdoPopulationInflux spesession to load a session with population
experiment data already loaded. In the toolstrip, click Plot Model Response to plot the model
response with the model's initial parameter values for R and K. The plot shows that with the model's
initial parameter values, the model output is not close to the measured data, indicating that we need
to compute better estimates of the parameters.
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Estimate Parameters

The preconfigured parameter estimation session also specifies that R and K are to be estimated, and
that their lower bounds are 0 since the inherent growth rate and environment carrying capacity are
not negative. In the toolstrip, click Add Plot and add a plot to show the parameter trajectories during
estimation, and another plot to show the estimation cost. Use the View tab to lay out the plots in a
convenient format. Click Estimate to estimate parameters R and K. The optimization goes through
several iterations, changing the values of the parameters to improve the fit between model response
and data.
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Comparing the measured population data with the optimized model response shows that they still do
not match well. There is a transient at the beginning of the model response, where it is markedly
different from the measured data.

Compute Steady-State Operating Point During Parameter Estimation

To improve the fit between the model and measured data, the model needs to be set to steady-state
when parameters are estimated. In the toolstrip click More Options and select Operating Point
Options.
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This shows a dialog where you can specify how steady-state operating points are to be computed
during parameter estimation. There is one state in this model, namely the initial condition of the
integrator. Use the operating point dialog to specify that this state should be treated as an unknown,
and it should be set to steady state. During parameter estimation, the operating point computation
will vary this state to set it at steady-state.
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Cperating Point x

Estimate at steady-state

Experiment: |Pcrpula‘ticrn ~ ‘ Sync with specification from: |5imulink Maodel ~ ‘ | @ ‘

Specifications  Qptions

States |nputs Outputs

State Specifications

State Value
[] Known Steady State Minimum Maximum dx Minimum | dx Maximum
sdoPopulationlnflux/Integrator
State - 1 | 0 | O | | -Inf Inf -Inf Inf

o

The input to the model is known from the experimental data for the population influx. Use the
operating point dialog to specify that this input is known. This input will not be varied by the
operating point computation during parameter estimation.
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Estimate at steady-state

Experiment: | Population ~ Sync with specification from: | Simulink Model ~ @‘
Specifications  Qptions

States Inputs Qutputs

Input Specifications
Input Value . -
Known Minimum Maximum
sdoPopulationinflu/In1
Channel - 1 0 | -Inf Inf
Help Close

You can also specify options for computing the operating point, by using the options tab in the dialog.
For example, the option Gradient descent with projection is often used to find the operating
point for systems that use physical modeling.

Having specified that the operating point is to be computed, click Estimate and perform parameter
estimation again. There is no more transient at the beginning of the model response, and there is a
much better match between the model response and measured data, which is also reflected by the
lower objective/cost function value in the second optimization. All these indicate that we have found a
good set of parameter values.
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Related Examples

To learn how to put models in a steady state using the sdo.optimize command, see “Set Model to
Steady-State When Estimating Parameters (Code)” on page 2-97.

Close the model.

bdclose('sdoPopulationInflux')
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Estimate Model Parameters with Parameter Constraints (Code)

This example shows how to estimate model parameters while imposing constraints on the parameter
values.

You estimate dynamic and static friction coefficients of a simple friction system.

Open the Model and Get Experimental Data

This example estimates parameters for a simple friction system, sdoFriction. The model input is
the force applied to a mass and the model outputs are the mass position and velocity.

open_system('sdoFriction');

Friction Model

F — == . —
Copyright 2012-2018 The MathWaorks, Inc. 1:4901e-08 |‘
ue]
L ‘
= 1 1
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.KX Stafic Friction Dynamic Friction K
- 3
m*g

Mormal Force
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The model is based on a mass sliding on a surface. The mass is subject to a static friction that must
be overcome before the mass moves and a dynamic friction once the mass moves. The static friction,
u static, is a fraction of the mass normal force; similarly the dynamic friction, u dynamic, is a
fraction of the mass normal force.

Load the experiment data. The mass was subjected to an applied force and its position recorded.

load sdoFriction ExperimentData

The variables AppliedForce, Position, and Velocity are loaded into the workspace. The first

column of each of these variables represents time and the second column represents the measured
data. Because velocity is the first derivative of position, we only use the position measurements for
this example.

Plot the Experiment Data

subplot(211),
plot(AppliedForce(:,1),AppliedForce(:,2))



Estimate Model Parameters with Parameter Constraints (Code)

title('Measured Applied Force Input for Simple Friction System');
ylabel('Applied Force (N)")

subplot(212)

plot(Position(:,1),Position(:,2))

title('Measured Mass Position for Simple Friction System');
xlabel('Time (seconds)"')

ylabel('Position (m)"')

Measured Applied Force Input for Simple Friction System
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Define the Estimation Experiment

Create an experiment object to specify the experiment data.

Exp = sdo.Experiment('sdoFriction');

Specify the input data (applied force) as a timeseries object.
Exp.InputData = timeseries(AppliedForce(:,2),AppliedForce(:,1));
Create an object to specify the measured mass position output.

PositionSig = Simulink.SimulationData.Signal;

PositionSig.Name '"Position';
PositionSig.BlockPath 'sdoFriction/x';
PositionSig.PortType '

utport';
1;
timeseries(Position(:,2),Position(:,1));

PositionSig.PortIndex
PositionSig.Values

Add the measured mass position data to the experiment as the expected output data.
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Exp.OutputData = PositionSig;
Compare the Measured Output and the Initial Simulated Output
Create a simulation scenario using the experiment and obtain the simulated output.

createSimulator(Exp);
sim(Simulator);

Simulator
Simulator

Search for the position signal in the logged simulation data.

find(Simulator.LoggedData,get param('sdoFriction', 'SignallLoggingName'));
find(SimLog, 'Position');

SimLog
Position

Plot the measured and simulated data.

As expected, the model response does not match the experimental output data.

figure

plot(...
Position.Values.Time,Position.Values.Data,
Exp.OutputData.Values.Time, Exp.OutputData.Values.Data,'-.")

title('Simulated and Measured Responses Before Estimation')
ylabel('Position (m)"')

xlabel('Time (seconds)")

legend('Simulated Position', 'Measured Position', 'Location', 'NorthWest')

Simulated and Measured Responses Before Estimation
300 . ;

Simulated Fosition
————— Measured FPosition

2801

200 r

150

Position {m)
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Specify Parameters to Estimate

Estimate the u_static and u_dynamic friction coefficients using the experiment data. These
coefficients are used as gains in the Static Friction and Dynamic Friction blocks,
respectively. Physics indicates that friction coefficients should be constrained so that u static =
u_dynamic; this parameter constraint is implemented in the estimation objective function.

Select the u static and u dynamic model parameters. Specify bounds for the estimated parameter
values. Both coefficients are limited to the range [0 1].

p = sdo.getParameterFromModel('sdoFriction',{'u static','u dynamic'});

p(l).Minimum = 0;
p(1l).Maximum = 1;
p(2).Minimum = 0;
p(2).Maximum = 1;

Define the Estimation Objective

Create an estimation objective function to evaluate how closely the simulation output, generated
using the estimated parameter values, matches the measured data.

Use an anonymous function with one input argument that calls the sdoFriction Objective
function. We pass the anonymous function to sdo.optimize, which evaluates the function at each
optimization iteration.

estFcn = @(v) sdoFriction Objective(v,Simulator,Exp);

The sdoFriction Objective function:

* Has one input argument that specifies the estimated friction coefficients.

* Has one input argument that specifies the experiment object containing the measured data.

* Returns the sum-squared-error errors between simulated and experimental outputs, and returns
the parameter constraint.

The sdoFriction Objective function requires two inputs, but sdo.optimize requires a function
with one input argument. To work around this, estFcn is an anonymous function with one input
argument, v, but it calls sdoFriction Objective using two input arguments, v and Exp.

For more information regarding anonymous functions, see “Anonymous Functions”.

The sdo.optimize command minimizes the return argument of the anonymous function estFcn,
that is, the residual errors returned by sdoFriction Objective. For more details on how to write
an objective/constraint function to use with the sdo.optimize command, type help
sdoExampleCostFunction at the MATLAB command prompt.

To examine the estimation objective function in more detail, type edit sdoFriction Objective
at the MATLAB command prompt.

type sdoFriction Objective

function vals = sdoFriction Objective(p,Simulator,Exp)
%SDOFRICTION OBJECTIVE
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The sdoFriction Objective function is used to compare model

outputs against experimental data and measure how well constraints are
satisfied.

vals = sdoFriction Objective(p,Exp)

The |p| input argument is a vector of estimated model parameter values.

The |Simulator| input argument is a simulation object used
simulate the model with the estimated parameter values.

The |Exp| input argument contains the estimation experiment data.
The |vals| return argument contains information about how well the
model simulation results match the experimental data and how well
constraints are satisfied. The |vals| argument is used by the

| sdo.optimize| function to estimate the model parameters.

See also sdo.optimize, sdoExampleCostFunction, sdoFriction_ cmddemo

0° 0% 0% 3% 0% 0° ° A° I° A° O° A% A% O O° O° O° I° O° o° o°

o°

Copyright 2012-2015 The MathWorks, Inc.

Define a signal tracking requirement to compute how well the model output
matches the experiment data. Configure the tracking requirement so that
it returns the sum-squared-error.

= sdo.requirements.SignalTracking;
.Type = '==';
.Method 'SSE';

S50 0% 0% 0° o° o

()
"o

Update the experiments with the estimated parameter values.

o° o of

Exp = setEstimatedValues(Exp,p);

()
"o

% Simulate the model and compare model outputs with measured experiment
% data.

Simulator = createSimulator(Exp,Simulator);

Simulator = sim(Simulator);

SimLog = find(Simulator.LoggedData,get param('sdoFriction', 'SignallLoggingName'));
Position = find(SimLog, 'Position');

PositionError = evalRequirement(r,Position.Values,Exp.OutputData(l).Values);

Measure how well the parameters satisfy the friction coefficient constraint,
|u static| >= |u_dynamic|. Note that constraints are returned to the
optimizer in a c¢ <=0 format. The friction coefficient constraint is
rewritten accordingly.

PConstr = p(2).Value - p(1l).Value; % u _dynamic - u_static <= 0

0° 0° o° o° o

o°

()
"o
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% Return the sum-squared-error and constraint violation to the optimization
% solver.
0/0

vals.F = PositionError(:);
vals.Cleq = PConstr;
end

The friction coefficient constraint, u_static = u_dynamic, is implemented in the

sdoFriction Objective function as u dynamic - u_static = 0. This is because the optimizer
requires constraint values in a ¢ = {) format. For more information, type help sdo.optimize at the
MATLAB command prompt.

Estimate the Parameters

Use the sdo.optimize function to estimate the friction model parameter values.

Specify the optimization options. The estimation function sdoFriction Objective returns the
sum-squared-error between simulated and experimental data and includes a parameter constraint.

The default 'fmincon' solver is ideal for this type of problem.

Estimate the parameters.

pOpt = sdo.optimize(estFcn,p)

Optimization started 25-Aug-2020 20:43:15

max First-order
Iter F-count f(x) constraint Step-size optimality
0 5 27.7267 0
1 11 22.5643 0 2.21 72.9
2 15 17.4771 0 0.51 16
3 22 0.76336 0 1.33 10.7
4 29 0.408381 0 0.263 3.15
5 34 0.0255292 0 0.0897 1.22
6 39 0.00527178 0 0.0295 0.271
7 44  0.00405706 0 0.02 0.177
8 49  0.00140806 0 0.109 0.181
9 60 0.00137222 0 0.022 0.185
10 72 0.00133069 0 0.0311 0.186
11 89 0.00133069 0 0.00165 0.186

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

pOpt(1,1) =

Name: 'u static'
Value: 0.7977
Minimum:
Maximum:
Free:
Scale: 0.5000
Info: [1x1 struct]

[N
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popt(2,1) =
Name: 'u dynamic'
Value: 0.4022
Minimum: ©
Maximum: 1
Free: 1

Scale: 0.2500
Info: [1x1 struct]

2x1 param.Continuous

Compare the Measured Output and the Final Simulated Output

Update the experiments with the estimated parameter values.
Exp = setEstimatedValues(Exp,pOpt);

Obtain the simulated output for the experiment.

Simulator = createSimulator(Exp,Simulator);

Simulator = sim(Simulator);

SimLog = find(Simulator.LoggedData,get param('sdoFriction', 'SignallLoggingName'));
Position = find(SimLog, 'Position');

Plot the measured and simulated data.

It can be seen that the model response using the estimated parameter values nicely matches the
experiment output data.

plot(...
Position.Values.Time,Position.Values.Data,
Exp.OutputData.Values.Time, Exp.OutputData.Values.Data,'-.")

title('Simulated and Measured Responses After Model Parameter Estimation')
ylabel('Position (m)"')

xlabel('Time (seconds)")

legend('Simulated Position', 'Measured Position', 'Location', 'NorthWest')
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Simulated and Measured Responses After Model Parameter Estimation

120 T R ]
Simulated Paosition
————— Measured Paosition
100 T
80 T

Position {m)
Z

0 5 10
Time (seconds)

Update the Model Parameter Values

Update the model u_static and u_dynamic parameter values.

sdo.setValueInModel('sdoFriction',pOpt);

Close the model

bdclose('sdoFriction")

15
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Importing and Preprocessing Experiment Data (GUI)

This example shows how to create an estimation experiment from measured data stored in a file and
how to preprocess the measured data. You use the imported data to estimate the parameters of a
simple RC circuit.

This example requires Simscape®.

RC Circuit Model

The Simulink model, sdoRCCircuit, models a simple resistor-capacitor (RC) circuit.

open_system('sdoRCCircuit');

R1

C) T c

EI[0!
flx) =0 -[ ‘ Lc,,..__..:]

Voltagpe

Copyright 2011 The MathWarks, Inc.

You use measured data to estimate the RC model parameter and state values.
Measured output data:

» Capacitor voltage, output of the PS-Simulink Converter block
Parameter:

* Capacitance, C1, used by the C1 block

State:

* Initial voltage of the capacitor, C1

Define the Estimation Experiment

In this example we load the measured data from a saved MATLAB file, the data is also stored in a
comma separated variable (csv) text file and we will import from there as well.

First load the measured data from the MATLAB file, the file defines two variables, time and data
that specify the measured capacitor voltage.

load sdoRCCircuit ExperimentData
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In the Apps tab, click Parameter Estimator under Control Systems to launch the Parameter

Estimator app.

[ PARAMETE

CET ow e (o -

ﬁ E E‘ E % E‘ Eﬂ' E‘i Cost Function: Sum Sguared Error |>

Open Save New Select Select  Sensitiviy  AddPlot PlotModel (5} Wore Options... Estimate
Sezzion * Session v Ew' E>» v i 1 Par A "J iz - - m -
FILE EXPERIMENTS PARAMETERS PLOTS OPTIONS ESTIMATE

Data Browser

w Parameters

®

w Experiments

w Results

w Preview

Click New Experiment to create an estimation experiment that contains the measured data. A Exp

variable is created in the Parameter Estimator and a dialog to edit the experiment is opened.
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PARAMETER ESTIMATION VALIDATION VEW
- % @ E lj_:‘ E EI.-' E“i Cost Funct

Open Save New Select Select Sensitivity  Add Plot  Plot Model @ More
Session + Session =  Experiment Experimentz  Parameters  Analysis - Responze
FILE Edit Experiment: Exp *
Data Browser Qutputs

Specify measured output =ignalz for this experiment.
-PS-5Simulink Converter:1 Mvoltage)

|{11:1 Signal, 1 pointss> '| E’ il X

@ Select Measured Output Signals

w Parameters

Initial States
Optionalty define initial =tates for this experiment.

There are currently no initial states defined for this experiment.

{71 select Inttial States

w Experiments

Exp
Parameters
Optionalty define parameters for thiz experiment.
There are currently no parameters defined for this experiment.
E Select Parameters
w Results
A — [l Piot& Simulate [ Piot 7 OK  (3) Help

The experiment editor contains sections to specify measured output data and sections to optionally
specify experiment initial states and parameters.

The experiment editor automatically adds measured output signals for model root level ports and
logged model signals. Click Select Measured Output Signals to add additional measured outputs if
needed. For this example the capacitor voltage signal is logged in the model and already added to the
experiment.

Specify the measured capacitor voltage by typing [time, data] in the edit field. This uses the
MATLAB variables time and data loaded from file earlier to specify the measured capacitor voltage.
Measured data is specified as a matrix where the 1st column is time and subsequent columns signal
data.
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Edit Experiment b
Outputs
Specify measured output signals for this experiment,

LSPS-Simulink Converter:l [Woltage)
[time data] - B & X
@ Select Measured Output Signals

Initial States
Optionally define initial states for this experiment.

There are currently no initial states defined for this experiment.

2 select Initial States

Parameters
Optionally define parameters for this experiment.

There are currently no parameters defined for this experiment.

E Select Parameters

[l Piot & Simulate [ Plot &7 OK (2 Help

Alternatively to specifying the measured capacity voltage using MATLAB variables you can load the
measured data directly from text or excel files. Click the import button to open a file chooser and
navigate to $matlabroot$\toolbox\sldo\sldodemos\estim and open the

sdoRCCircuit ExperimentData.xlsx file.

Outputs
Specify measured output signals for this experiment.
LSPS-Simulink Convertern:l Woltage)

| time data] ~| B @ )

@ Select Measured Output Signals

A tool for importing column data from a file opens. The 1st column selected for import is used to
specify the signal time, subsequent columns selected for import are used to specify the signal data.
Select the time and data columns and click Import
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IMPORT b
Range: |22:642 - [ Replace ~ unimportable cells with = NaM + | Q
Variable Mames Row: 1 = Import
- Selection
SELECTION IMPORTED DATA | UNIMPORTABLE CELLS IMFORT _
sdoRCCircuit_ExperimentDataxlsx 2 |
A B

sdoRCCircuit/PS-Simulink Converter:1 (Voltage)
1 [time data | o
2 0 2.4398|
3 0.5000 29028
4 1 3.385]
5 1.5000 3.3380)
6 2 3.7081
7 2.5000 4.0439)
8 3 43315 =
9 3.5000 45756}
10 4 4.5037
11 4.5000 49031
12 5 48169
13 5.5000 5.0132
14 6 4.8488]
15 6.5000 4.7280)
16 7 4.5916}
17 7.5000 4.9418]
18 8 5.0926}
19 8.5000 4.8848]
20 o 4.8467
2 9.5000 49023
22 10 47520
23 10,5000 48786}
24 1 49457 -

Sheetl

In the experiment editor click Plot & Simulate to plot the measured experiment data and the
simulated model response.
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[ PARAMETER ESTIMATION

FILE

WALIDATION

EXPERIMENT PLOT

Data Browser

w Parameters

w Experiments

w Results

w Preview

Measured cutput signal(s):
- Voltage

Amplitude

Measured
— Simulated

1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Time (seconds)

The experiment plot shows that the simulated data does not match the measured data. The plot also
shows that the model initial state is not correct and needs to be estimated (the measured and
simulated voltages at time 0 are significantly different). From the experiment editor click Select
Initial States to open a dialog to select model initial states; select the sdoRCCircuit.Cl.vc state
and click Ok to add the state to the experiment.

Filter by state narme Pl
- State Current value
i

ﬁ’DK Sgﬂancel @Help
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2-138

Edit Experiment: B6p
Outputs
Specify measured output signals for this experiment,

LSPS-Simulink Converter:l [Woltage)
| <1xl Signal, 41 points> ~| B & %

@ Select Measured Output Signals

Initial States
Optionally define initial states for this experiment.
sdoRCCircuit/Cl:sdoRCCircuit. &1 .ve

b |0 ~| B X

Select Initial States

Parameters
Optionally define parameters for this experiment.

There are currently no parameters defined for this experiment.

E Select Parameters

Lol Piot & Simulate [ Plot &7 OK (2 Help

Preprocess the Experiment Data

The measured data contains high frequency noise that we remove using a low-pass filter. Click the
Experiment Plot tab and select Low Pass Filter.

PARAMETER ESTIMATION WALIDATION EXPERIMENT PLOT .
E Remove Offset E Low-Pass Fitter Reszample Data r
&
Scale Data | High-Pass Fitter Replace Data
~ Lol ot Hodel
L ExtractData || Band-Pass Fitter Response
DATA PROCESSING FLOT
Data Browser @ | Experiment plot: Exp |
w Parameters
| I

This opens the Low-Pass Filter tool. The upper axis shows the signal FFT, the lower axis shows the
signals. The original signal is shown in blue and the filtered signal in red. Adjust the filter bandwidth
by either typing a value in the Normalized cutoff frequency edit field or clicking and dragging the
yellow patch edge. Drag the filter cutoff to 0.4. Click Options and select Zero-phase shift filter to
avoid introducing the filter phase shift into the measured data.
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PARAMETER ESTIMATION VALIDATION EXPERIMENT PLOT LOW-PASS FILTER “ HrE L hllsSs a:ﬂ

Q Filter all signals Mormalized cutoff frequency: @ W %
~ Fiter signal:| Voltage <] [os optons Appy Close
- Low-Pass Fitter
SIGNAL LOW-PASS FILTER APPLY CLOSE
Data Browser ® | Experiment plot: Exp |

w Parameters

W Experiments

Exp -10 "\/\/\f

10°
Frequency (rad/s)

Magnitude (dB)

w Results Exp
. Voltage
o T T T T T T
1 - Measured
/._h_/"“_’"““'““ﬂ—-_/"_- " Preprocessing Preview
LR 7 .
8
=
w Preview E 2 4
- I I | I I I I I I
] 2 4 6 8 10 12 14 16 18 20

Time (seconds)

Click Apply and Close Low-Pass Filter to complete low-pass filtering of the data. The experiment is
updated with the filtered signal. You can use other preprocessing tools such as, remove offset, scale,
resample, etc., to further process the measured data. For this example low-pass filtering is sufficient.

Estimate Model Parameter Values

With the experiment data configured and preprocessed we are ready to run an estimation. First we
select parameters to estimate. Click the Parameter Estimation tab and select Select Parameters.
A dialog to specify model parameters for estimation opens. Click Select Parameters and select, C1,
the circuit capacitor value. Set the capacitor minimum value to 0 and the initial guess to 460e-6.
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Parameters Tuned for all Experiments

1

v |0.00046 ~| Hp % U Estimate
Minimum:|ﬂ v| 5
Maximum:|1nf "| @:»

Scale: |0.001953125 ~| B
E Select parameters

Parameters and Initial States Tuned per Experiment
Experiment: |Exp ™

Select experiment initial states for estimation.

sdoRCCircuit/Cl:sdoRCCircuit. C1.ve
b |0 ~| B Estimate

Select experiment parameters for estimation.

There are no parameters defined for this experiment.

Click Estimate to start the estimation. You can modify estimation options by setting the Cost
Function combobox and clicking More Options....

While the estimation is running the plots update and a dialog showing estimation progress appears.
The progress dialog shows the estimation iterations, the number of times the model has been
evaluated (F-count), and the estimation cost at each iteration.
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[ PARAMETER ESTIMATION S TION KPERIMENT PLOT

E E E‘ E Cost Function: Sum Sguared Error

Data Browser @ Experiment plot: Exp % | EstimatedParams 0

w Parameters Exp
1l

5.5 T T T T

Measured
— Simulated

w Experiments

Exp

¥ Results

Amplitude

EstimatedParams

w Preview

2 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Time (seconds)
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Iteration | F-count Exp
(Minimize)
0 3 1.9855
1 10 0.1005
2 13 0.0320
3 20 0.0261
4 25 0.0235

Optimization started 24-Apr-2014 09:02:58

[ »

Estimation converged, 24-Apr-2014 09:03:12

Estimated experiment values written to the workspace e

[ Save teration...| |Display Options...| |  Estimate |

After a number of iterations the estimation converges and terminates. The model is updated with the
estimated parameters and the estimation results are saved in the data browser.

Related Examples

To learn how to estimate model parameters using the sdo.optimize command, see “Estimate Model
Parameters and Initial States (Code)” on page 2-67.

Close the model

bdclose('sdoRCCircuit')
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Estimate Model Parameter Values (GUI)

This example shows how to use experiment data to estimate model parameters. You estimate the
parameters of an engine throttle system.

Simulink® Model of the Engine Throttle System

The Simulink® model for the engine throttle system, spe_engine throttle, is shown below.

Engine Throttle Model

Co>—p T

Mitor

v

Thrattle

Paosition

Click Estimate in the LI Throttle ’
o run an estimation. Paosition

Copyright {c) 2002-2014 The MathWorks, Ino.

Throttle Model Description

The throttle controls the air mass flow into the intake manifold of an engine. The throttle body
contains a butterfly valve that opens when the driver presses down on the accelerator pedal. This lets
more air enter the cylinders and causes the engine to produce more torque.

A DC motor controls the opening angle of the butterfly valve. There is also a spring attached to the
valve to return it to its closed position when the DC motor is de-energized. The amount of rotation of
the valve is limited to approximately 90 degrees. Therefore, if a large command input is applied to the
motor, the valve hits the hard stops preventing it from rotating further.

The motor is modeled as a torque gain and a time-delay input with parameters Kt and input delay.
The butterfly valve is modeled as a mass-spring-damper system with parameters ], ¢ and k. This
system is augmented with hard stops to limit the valve opening to 90 degrees. We know the model
components, however, the parameter values of the system are not known accurately.

Estimation Experiment Data

Double-click the Parameter Estimation GUI with preloaded data block in the model to open
a pre-configured estimation GUI session.

The saved estimation project defines three experiments; the EstimationData experiment will be

used for parameter estimation, while ValidationDatal, ValidationData2 are used for validating
the estimated parameters. The EstimateData experiment is plotted.
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The signal data for the experiments can be imported from various sources including MATLAB®
variables, MAT files, Excel® files, or comma-separated-value files.See “Importing and Preprocessing
Experiment Data (GUI)” on page 2-132 for more information.

[ PARAMETER ESTIMATION WALIDATION EXPERIMENT PLOT
@ ﬁ ﬁ' E % E E‘ Eli Cost Function: Sum Sguared Error D
Open Save New Select Select  Sensiiviy  AddPlot PlotModel (6} hore Options. . Estimate
Session v Session =+ Experiment Experiments  Parameters Analysis w - Response -
FILE | EXFERIMENTS | PARAMETERS | PLOTS | OFTIONS | ESTIMATE |
Data Browser @ | Experiment plot: EstimationData ¢ |
¥ Parameters EstimationData
/ spe_engine_throttle/Throttle:1
c 100 T T T T T T T
input_delay e[ Veasured]
k BO I 7
60 I 7
w Experiments
EstimationData 20y 1
ValidationDatal
ValidationData2 Coll m— 1
2 0 I I 1 I I 1 I I 1
=
a spe_engine_throttle/input:1
w Results E 1 T T T P = gine. T .p T T T
<
0.8 7
0.6 7
04T 7
w Preview
Measured output signal(s): - 0.2 )
spe_engine_throttle/Throttle:l = 0 : : 3 ' ; . ; : .
4 0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5

Measured input signal(s): Time (SQCOHdS}

The experiment plot is also used to see how well the measured data matches the current model. Click
Plot Model Response to display simulated signal data on the experiment plots.
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[ PARAMETER ESTIMATION WALIDATION EXPERIMENT PLOT
@ % a % E E Cost Function: Sum Squared Error D
Open Save New Select Select  Sensitivity  AddPlot PlotModel @} More Options... Estimate
Session + Session ~  Experiment Experiments  Parameters  Analysis « - -
FILE EXFERIMENTS PARAMETERS PLOTS OPTIONS ESTIMATE
Data Browser ® | Experiment plot: EstimationData |
¥ Parameters EstimationData
/ spe_engine_throttle/Throttle:1
c 100 T T T T T T
input_delay ————T—T glﬁﬁslureg -
K 80 I — — Simulated | |
60 [ e 7
w Experiments - -
EstimationData Sy ]
ValidationDatal
ValidationData2 20 |m ]
2 0 | | I | | I | | I
2
=2 spe_engine_throttle/lnput:1
w Results E 1 T T T P = gine_ T .p T T T
<
08 7
06 7
04 7
w Preview
Measured output signal(s): - 0.2 )
spe_engine throttle/Throttle:l = 0 ; ; : ; ; . ; ; .
4 0 0.05 01 0.15 02 0.25 0.3 0.35 0.4 0.45 0.5
Measured input signal(s): i Time {seconds}

The simulation results show that the model does not match the measured data and that model
parameters need to be estimated.

Estimated Parameters

The next step is to define the parameter to estimate. Click Select Parameters to open a dialog to

select model parameters

to estimate. In this example we have preselected the four unknown

parameters; the butterfly valve inertia, J; the damping coefficient, c; the return spring constant, k;
and the time lag in motor response, input _delay.
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Edit: Estimated Parareters
Parameters Tuned for all Experiments
J

_F |U-.[}5| v| E; » Estimate
€

b |40 »| B} % [ Estimate
input delay

b |0.02 ~| B ¢ @ Estimate
k

3 |1 v| 5 » Estimate

E Select parameters

Parameters and Initial States Tuned per Experiment

Experiment: | EstimationData ~ |

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

There are no parameters defined for this experiment.

Edit experiment

Ea| Update Model &7 OK () Help

Since we know from physical insight that all of these parameters have positive values, we set their
lower limits to zero. We also put an upper bound of 0.1 sec on the input delay parameter. We can
also select an initial value for the parameters. These may come from some quick calculations of some

formulas that determine the parameters.

Click the right arrow toggle button to modify the parameter minimum and maximum bounds.
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Parameters Tuned for all Experiments
J

¥ |005 ~| B3 % U Estimate
rinimum: |ﬂ v| @»
P aximum: |Ir11= v| @
Scale: |0.05 ~| B
c
3 |4D v| @ b4 Estimate
input delay
b |0.02 ~| 7 X 0@ Estimate
k
b |1 ~| §p ¢ [ Estimate

E Select parameters

Parameters and Initial States Tuned per Experiment

Experiment: | EstimationData ~ |

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

There are no parameters defined for this experiment.

The Estimation Task

With the parameters for estimation selected we select experiments to use for estimation. Click Select
Experiments and select EstimationData for estimation.

Select experiments to include for estimation or validation

Estimation  Validation Experiment
[ EstimationData
[ = ValidationDatal ¢
[l [l WValidationData2

o oK (@) Help

We are now almost ready to start our estimation but first create plots to monitor the estimation
progress. Click Add Plot and select Parameter Trajectory. This creates a plot that shows how the
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estimated parameter values change during estimation. Click the View tab to layout the plots so that
the Experiment plot:EstimationData and EstimatedParams are both visible.

[ PARAMETER ESTIMATION VALIDATION EXPERIMENT PLOT PRE LBl i;]E
ﬁ E E‘ E % E‘ Eﬂl E‘i Cost Function: Sum Sguared Error |>
Open Save New Select Select  Sensiiviy AddPiot PlotModel (5} More Options.. Estimate
Session v Session = Experiment Experiment Par Analysis - Response -
FILE EXFERIMENTS FARAMETERS FLOTS OFTIONS ESTIMATE
Data Browser ® _J’ Experiment plot: EstimationData | EstimatedParams |
S (et e EstimationData )
) EstimatedParams
_— spe_engine_throttle/Throttle:1 404
C
input_delay e e e R _|_» J
k 80 : L ~c
35 —S—input_delay
&0 — Measured —B—k
- — Simulated
w Experiments 30 1
EstimationData ~
ValidationDatal
ValidationData2 20 257
%)
=I) o
= "2}
=3 spe_engine_throttle/Input:1 =
w Results E 1
T
15
0.8
0.6 10 }
0.4
w Preview 5F
Measured output signal{s): ES 021
- [
) ] - 0 0 . . . . |
throttle/Throttle:l
spe_engine_throttle/Throttle:l |7 0 0.1 02 03 0.4 05 0 2 4 6 8 10
Measured input signal(s): 1 Time (seconds) Iteration

Click the Estimate button to start the estimation. You can modify estimation options by setting the
Cost Function combobox and clicking More Options....

While the estimation is running the plots update and a dialog showing estimation progress appears.
The progress dialog shows the estimation iterations, the number of times the model has been
evaluated (F-count), and the estimation cost at each iteration.
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[ PARAMETER ESTIMATION

Data Browser

w Parameters |

J
4

input_delay
k

w Experiments

ValidationDatal
ValidationData2

w Results

EstimatedParams

w Preview |

Measured cutput signal(s): -
spe_engine throttle/Throttle:l E

Measured input signal(s):

=

Amplitude

WALIDATION

40

20

0.8

0.6

0.4

0.2

TERATION PLOT

WIEW

EstimationData

spe_engine_throttle/Throttle:1

Measured
— Simulated

spe_engine_throttle/Input: 1

01

02 0.3 04
Time (seconds)

0.5

404

35

F EstimatedParams %

EstimatedParams

——J
A
—S—input_delay
_E_k

5 10 15 20
Iteration
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Iteration | F-count EstimationData
(Minimize)
0 9 32.04 »
1 18 12.30) |
2 27 3.65=
3 36 113
4 45 0.66
5 54 0.32
6 63 0.11
¥ T2 0.02
& a1 0.00
] 80 0.00
10 99 0.00
11 108 0.00 -
4| 1 | ¢
Optimization started 21-Apr-2014 18:50:09 -
=
Estimation converged, 21-Apr-2014 18:52:25
Estimated experiment values written to the workspace e
[Save tteration...| |Display Options..| |  Estimate |

After a number of iterations the estimation converges and terminates. The model is updated with the
estimated parameters and the estimation results are saved in the data browser. Right click
EstimatedParams and select Open... to see details of the estimation result.
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Estimation result(s):
1= 022774
c = 8.9489
input_delay = 0.0097738
k=17.661

Parameters estimated using experiments:
- EstimationData, cost = 0.0065549

Solver output:
Cost: 0.0065549
ExitFlag: 3
FCount: 307
Date: 21-Apr-2014 17:03
Solver termination message:

Lacal minimum possible,

lsgnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the selected value of the function tolerance.

m

-

E Use as initial guess E Update Model

o’ OK

Validation

It is important to validate the estimation results against other experiments. A successful estimation
will not only match the experimental data that was used for estimation but also other independent

measured data that were collected in experiments.

Click the Validation tab and click Select Experiments to select experiments for validation. Select

both ValidationDatal and ValidationData?2 for validation.

Select experiments to include for estimation or validation

RN

Estimation  Walidation  Experiment
EstimationData
ValidaticnDatal
ValidationData2
o 0K @ Help
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Click Select Results to select the estimation result(s) to use for validation. Select

EstimatedParams and deselect Use current parameter values.

Select results to include in validation

Results

Use current parameter values

EstimatedParams

Click Validate to validate the estimation result against the validation experiments. Validation
simulates the model using the estimated parameters and selected experiments and creates plots

showing the measured and simulation data. Use the View tab to layout the plots so that the

Experiment plot:ValidationDatal and Experiment plot:ValidationData2 are both
visible.

PARAMETER ESTIMATION

VALIDATION

EXPERIMENT PLOT

Data Browser

w Parameters

i
4

input_delay
k

w Experiments

EstimaticnData
ValidationDatal
ValidationData2

¥ Results

Amplitude

EstimatedParams

w Preview
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B0
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20/
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0.6

0.4

0.2

® +'1 | Experiment plot: ValidationDatal K]

ValidationData1
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— Simulated with EstimatedParams

spe_engine_throttle/Input:1
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Experiment plot: ValidationData2
ValidationData2
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The validation plots confirm that our estimation was successful, showing that the estimated
parameters are robust enough to handle a variety of inputs.

Related Examples

To learn how to estimate model parameters using the sdo.optimize command, see “Estimate Model
Parameter Values (Code)” on page 2-58.

Close the model.
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Estimate Model Parameters Per Experiment (GUI)

I
Currant : Jlr Voltage C]

This example shows how to use multiple experiments to estimate a mix of model parameter values;
some that are estimated using all the experiments and others that are estimated using individual
experiments. The example also shows how to configure estimation experiments with experiment
dependent parameter values.

You estimate the parameters of a rechargeable battery based on data collected in experiments that
discharge and charge the battery.

Open the Model and Get Experimental Data

This example estimates parameters of a simple, rechargeable battery model, sdoBattery. The model
input is the battery current and the model output, the battery terminal voltage, is computed from the
battery state-of-charge.

open_system('sdoBattery')

Simple Battery Model

-

A= ah 2 (Ah) O-=500C
Current

‘Valtage (V)

S00C -> Voltage

Copyright 2012-2020 The MathWaorks, Inc.
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The model is based on the equation

E =(1-Loss)V — KQmax%
In the equation:

E is the battery terminal voltage in Volts.

V is the battery constant voltage in Volts.

K is the battery polarization resistance in Ohms.

Qmax is the maximum battery capacity in Ampere-hours.

s is the battery charge state, with 1 being fully charged and 0 discharged. The battery state-of-charge
is computed from the integral of the battery current with a positive current indicating discharge and



Estimate Model Parameters Per Experiment (GUI)

a negative current indicating charging. The battery initial state-of-charge is specified by Qg in
Ampere-hours.

Loss is the voltage drop when charging, expressed as a fraction of the battery constant voltage. When
the battery is discharging this value is zero.

V, K, Qmax, Q0, and Loss are variables defined in the model workspace.

Estimation Experiment Data

A 1.2V (6500mAh) battery was subjected to a discharge and a charging experiment. This experiment
data has been loaded into a preconfigured estimation session.

Use the following commands to load the pre-configured estimation session.

load sdoBattery spesession
spetool (SD0SessionData)

The measured charge and discharge experiment data are loaded and plotted. Click the View tab to
layout the plots so that the Experiment plot:Charge Exp and Experiment plot:DCharge Exp
are both visible. Click Plot Model Response to see how well the model simulation matches the
measured experiment data.

[ PARAMETER ESTIMATION VALDATION EXPERIMENT PLOT PRELBELSeE0
ﬁ E @ E % E‘ E‘ E‘i Cost Function: Sum Sguared Error « D
Open Save New Select Select  Sensitivity  AddPlot Plot Model @} More Options. . Estimate
Session + Session = Experiment Experiments  Paramesters  Analysis + - Response -
FILE EXPERIMENTS PARAMETERS PLOTS OPTIONS ESTIMATE
Data Browser ® _[ Experiment plot: Charge_Exp 1 - | Experiment plot: DCharge_Exp |
S e e Charge_Exp DCharge_Exp
sdoBattery/SOC -> Voltage:1 sdoBattery/SOC -> Voltage:1
1.5 1.5
ans Measured
T _ — T — Simulated
<)
)
1 / Measured 1 \
— Simulated
w Experiments | mree |
Charge_Exp 0.5 0.5 |
DCharge_Exp |
s L g k
s {2 ¢
—_ E— . Current E’L - Current
v
esults i =L
- —
0 — 1 \
|
|
w Preview T 0z |
|
1 0 !
0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 25 3
Time (seconds) 10% Time (seconds) 10%
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The plots show that the battery initial charge QO is not set correctly for the Charge Exp experiment
and that the model V, K, and Loss parameters need to be estimated.

Setting Experiment Parameter Values

The previous plot indicates that the Charge Exp battery initial charge, Q0, is not set correctly. Add
the initial charge to both experiments. Right click Charge Exp and select Edit. A dialog to edit the
experiment opens.

Edit Experirnent: Charge Ep
Outputs
Define measured output signals for this experiment.
sdoBattery/SOC -= Voltage:l [sdoBattery/S0OC -> Voltage:1]

<1xl Signal, 1351 points> - B & X

@ Select Meaured Output Signalz

Inputs
Optionally define inputs signals for this experiment.
sdoBattery/Current:1 (Current]

| <1x Signal, 1351 pointss| ~| B & X

@ Select Inputs

Initial States
Optionally define initial states for this experiment.

There are currently no initial states defined for this experiment,
{21 select Intial States

Parameters
Optionally define parameters for this experiment.

There are currently no parameters defined for this experiment.

E Select Parameters

[l Piot& Simulate [ Pt &7 OK  (2) Help

Click Select Parameters to open a dialog to add model parameters to the experiment. Select Loss
and QO to add to the experiment. Select Loss as we need to estimate this parameter using only the
Charge Exp experiment. Click Ok to add the QO and Loss parameters to the experiment.
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Filter by wariahle narme F ol
w | Variable | Currentv.. Used By
K 0001  |sdoBattery/SOC -> Voltage -
Loss 001  |sdoBattery/SOC -=> Voltage
Q0 6.5

m

zdoBatte Ah
Qmax 6.5 sdoBatteny/ Q- 500C
sdoBattery/S0C -> Voltage/ QOmax™(1-s1//=

&

b Specify expression indexing if necessary (e.q., a(3) or s.x)

o 0k (X cancel (?) Hep

Set the battery initial charge Q0 in the Charge Exp to 0, i.e. there is no initial charge.
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Edit Experiment: Charge B0
Outputs
Define measured output signals for this experiment.
sdoBattery/50C -> Voltage:l (sdoBattery/S0C -> Voltage:1]

| <1xd Signal, 1351 points> M=

@ Select Meaured Cutput Signals

Inputs
Cptionally define inputs signals for this experiment.
sdoBatterny/Current:l [Current]

| <1x1 Signal, 1351 points> - | B A& X

@ Select Inputs

Initial States
Optionally define initial states for this experiment.

There are currently no initial states defined for this experiment.
Select Initial States
Parameters

Optionally define parameters for this experiment.
Loss

b 001 ~| B X
Qo
> o ~| B X

E Select Parameters

[ ol Piot & Simulate [ Plot &7 OK  (2) Help

Similarly add the battery initial charge QO to the DCharge Exp experiment and set the initial charge
to 6.5., i.e. for this experiment there is an initial charge.
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Edit Experiment: DCharge Bxp
Outputs
Define measured output signals for this experiment.

sdoBattery/50C -> Voltage:l (sdoBattery/S0C -> Voltage:1]
| <1xd Signal, 1351 points> M=

@ Select Meaured Cutput Signals

Inputs
Optionally define inputs signals for this experiment.
sdoBatterny/Current:l [Current]

| <1xt Signal, 1351 points>] ~| B A& X

@__, Select Inputs

Initial States
Optionally define initial states for this experiment.

There are currently no initial states defined for this experiment.

Select Initial States

Parameters
Optionally define parameters for this experiment.
Qo
b |65 ~| B X

E Select Parameters

[+l Piot & Simulate [ Plot &7 OK  (2) Help

Now that the experiments are updated with the correct initial battery charge click Plot Model
Response to simulate the model and compare measured and simulated data.
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[ PARAMETER ESTIMATION WALIDATION EXPERIMENT PLOT
@ ﬁ E % E E Cost Function: Sum Squared Error E
Open Save New Select Select  Senstiviy  AddPlot PlotHodel (&) hiore Options.. Estimate
Session * Session ~  Experiment Experiments Parameters Analysis - - Response -
FILE | EXPERIMENTS | PARAMETERS | PLOTS | OPTIONS | ESTIMATE |
Data Browser ® _J’ Experiment plot: Charge_Exp 1 _| Experiment plot: DCharge_Exp |
S e e Charge_Exp DCharge_Exp
sdoBattery/SOC -> Voltage:1 sdoBattery/SOC -> Voltage:1
1.5 1.5
Vans Measured
1 1 | - _ T — Simulated
el ™
101f Measured 1
i — Simulated \
w Experiments
Charge_Exp 0.5 0.5 |
DCharge_Exp ||
s £ k
= ! . 2 !
—_— E— . Current E—1 . Current
* Results . .
EL <<
- —
0 — 1 |
I|
w Preview 0.5 | 0.5 |
Measured output signal{s): |
- sdoBattery/50C -» Voltage:l - 0 l\
) ] 0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
Measured input signal(s): Time (seconds) 10 Time (seconds) 104
- Current

The experiment plots show that the experiment initial conditions match but the battery response does
not. The next step is to estimate the K and V model parameters.

Select Estimation Parameters

The previous plot showed that the model response does not match the measured data and we need to
estimate the model V and K parameters.

Click Select Parameters to open a dialog to select model parameters.
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Edit: Estimated Parameters
Parameters Tuned for all Experiments
There are no parameters selected for estimation.

E Select parameters

Parameters and Initial States Tuned per Experiment

Experiment: |Charge_Exp =

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

Loss

b 001 ~| B Estimate
Qo

P 0 -| B Estimate
Edit experiment

k5] update Model &7 OK () Help

The upper portion of the select parameters dialog has a section for parameters that are tuned using
all experiments. Click Select Parameters and add the V and K model parameters to the estimated
parameters. Set the V minimum to 0 and the maximum to 2, similarly set the K minimum to 1e-6 and

maximum to 0.1.
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Parameters Tuned for all Experiments

K
~ |0.001 ~| Bp % U@ Estimate
Minimum: | 12-06 ~| B
Maximum: |ﬂ.1 v| @,
Scale: |0.001953125 ~| B
v
v |12 ~| B % @ Estimate
Minimum: |U v| E,
Maximum: |2 v| B7s

Scale: |2 "’| E}

E Select parameters

Parameters and Initial States Tuned per Experiment
Experiment: |Charge Exp =~

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

—

(4]

L

5

001 ~| B Estimate

v [2 v|

0 ~| B Estimate

Edit experiment

k] update Model &7 OK () Help

The lower section of the dialog has a section for initial states and parameters that are tuned using
individual experiments.

For the Charge Exp we tune the Loss parameter and set its minimum to 0 maximum to 0.5. The
battery initial charge QO is fixed to 0 and should not be estimated; uncheck Estimate.
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Parameters Tuned for all Experiments
K

b |0001 ~| Hp ¢ [ Estimate

v
b |1.2 1r| @ x Estimate

E Select parameters

Parameters and Initial States Tuned per Experiment
Experiment: |Charge_Exp ™

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

Loss
¥ 001 ~| B Estimate
Minimum: |ﬂ '| E)
Maximum: |U.5 "'| E’
Scale: | 0.015625 ~| B
Qo
b |of ~| B M Estimate

Edit experiment

k5| update Model &7 OK (3 Help

Select DCharge Exp from the Experiment combobox to view the parameter settings for the
DCharge Exp experiment. The battery initial charge QO is fixed to 6.5 and should not be estimated;
uncheck Estimate.
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dit: Estimated Parameters A

Parameters Tuned for all Experiments
K
b |0001 ~| B % U Estimate
v
b |1,2 - | @ » Estimate
E. Select parameters
Parameters and Initial States Tuned per Bxperiment
Experiment: | DCharge_Exp ~
Select experiment initial states for estimation.
There are no initial states defined for this experiment.
Select experiment parameters for estimation.
Qo
b |65 ~| Hp T Estmate
Edit experiment
k] update Model &7 OK () Help

Estimate Parameter Values

The experiments and estimated parameters are configured and we a ready to run the estimation.
First create a plot to monitor the estimation progress. Click Add Plot and select Parameter
Trajectory. This creates a plot that shows how the estimated parameter values change during
estimation. Click the View tab to layout the plots so that the experiment and parameter trajectory

plots are all visible.
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[ PARAMETER ESTIMATION

WALIDATION

EXPERIMENT PLOT

@ ﬁ E % E‘ EIE Cost Function: Sum Squared Error ~ D
Open Save New Select Select  Senshiviy  Add Plot PlotModel (5} hore Options. . Estimate
Session ¥ GSession ~  Experiment Experiments  Parameters Analysis + - Response -
FILE | EXPERIMENTS | PARAMETERS | PLOTS | OFTIONS | ESTIMATE |
Data Browser ® | Experiment plot: Charge_Exp | _J Experiment plot: DCharge_Bxp 1
¥ Parameters Charge_Exp DCharge_Exp
K 15 sdoBattery/SOC -> Voltage:1 15 sdoBattery/SOC -> Voltage:1
v — —_— Measured
T 1 ) |—— simulated
1 f Measured 1 \
l' — Simulated |
- 0.5 0.5 [
w Experiments
Charge_Exp o & I\
= 0 = 0
DCharge_Exp = 12
=3 Current 2 Current
E o5 E s
o < —
0 — 1 \\I
¥ Results I|
|
0.5 0.5 |
|
|
-1 0 -
0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
Time (seconds) <104 Time (seconds) <104
w DPreview | EstimatedParams ¢ |
EstimatedParams
0.6
©
E ——K
= &V
- 0.55
@«
™
[+]
W
0‘5 1 i i i i 1 i i i ]
0 1 2 3 4 5 6 7 8 9 10
lteration

Click the Estimate button to start the estimation. You can modify estimation options by setting the
Cost Function combobox and clicking More Options.

While the estimation is running the plots update and a dialog showing estimation progress appears.

The progress dialog shows the estimation iterations, the number of times the model has been
evaluated (F-count), and the estimation cost at each iteration.
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[ PARAMETER ESTIMATION WALIDATION EXPERIMENT PLOT VIEW

Data Browser ® | Experiment plot: Charge_Exp Experiment plot: DCharge_Bxp 0
w Parameters | Charge_Exp DCharge_Exp
K 15 sdoBattery/SOC -= Voltage:1 16 sdoBattery/SOC -= Voltage:1
\ ' ' Measured
1 r— 1 N —— Simulated
— Simulated
- 0.5 0.5
w Experiments
Charge_Exp g 0 _g 0
DCharge_Exp = =
=3 Current = Current
E os E 15
L <L
0 1
¥ Results
EstimatedParams || 05
-1 0
0 0.5 1 15 2 25 3 ] 0.5 1 15 2 25 3
Time (seconds) 104 Time (seconds) o
w Preview | [ EstimatedParams 0 1
Estimation result(s): EstimatedParams
K = 0.0010458 -
v = 1.3083 = - T
> ‘ &y
E —&— Loss(Charge_Exp)
8
W
3 1 i i i ]
5 6 7 8 9 10
lteration
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Iteration | F-count Charge_Exp DCharge_Exp
(Minimize) (Minirmize)
0 7 12.8204 41010
1 14 22113 1.3692
2 21 1.9613 02718
3 28 1.9663 0.2372
4 35 1.9765 0.2169
5 42 1.9756 0.2164

Optimization started 23-Apr-2014 15:10:19

[ »

Estimaticn converged, 23-Apr-2014 15:11:15

Estimated experiment values written to the workspace

| Save teration...| | Display Options...| |  Estimate |

After a number of iterations the estimation converges and terminates. The experiment plots show the
measured and simulation data matching well. The EstimatedParams plot shows the V, K, and Loss
parameters changing during the estimation; the scale of V, K, and Loss are different, right click on
the plot and select Show scaled values to see how all the parameters changed from their original
values.

Related Examples

To learn how to estimate parameters per experiment using the sdo.optimize command, see
“Estimate Model Parameters Per Experiment (Code)” on page 2-86.

Close the model

bdclose('sdoBattery")
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Estimate Model Parameters and Initial States (GUI)
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This example shows how to estimate the physical parameters - mass (m), spring constant (k) and
damping (b) of a simple mass-spring-damper model. This example illustrates the significance of initial

state estimation.
Simulink® Model of the Mass Spring Damper System
The Simulink model for the mass-spring-damper system, msd _system, is shown below.

The model's output is the displacement response (position) of the mass in a mass-spring-damper
system, subject to a constant force (F), and an initial displacement (x0). x0 is the initial condition of
the Position integrator block. Run the simulation once to observe the response of the model to a
nominal set of parameter values.

Mass-Spring-Damper System

Walocity Pogition
F d
> t ! {'} > ! {l} -
4 5 wval 5 peoE — C]
Force —
Mass -
[0 =-0.1) Positions
[texp1 yexpl]
-..‘H‘EIH‘J-. Experimental
Paosition Diata 1
Damper
"_,,.--H”L_- [texp2 yexp2]
H Experimantal
Spring Position Diata 2
[mbk -
Model
Parameters

Mass/Spring/Damper
Values

Click Estmate in the Ul
to run an estimation.

(from model workspace)

Copyright 2002-2014 The MathWerks, Inc.

Experimental Data Sets

For estimation of the model parameters (m, b and k), two sets of experimental data are used. These

data sets were obtained using two different initial positions (0.1 and 0.3), and contain additive noise.
A plot of these data sets is shown below (orange and cyan curves), along with the simulated response
(yellow curve) of the Simulink model for x0=-0.1 and a nominal set of parameter values (m=8, k=500,

b=100).
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Estimation of Model Parameters

The model has three parameters (k, b, m) that appear in the Gain blocks of the Simulink model
msd system. We estimate these parameters using Parameter Estimation.

Double-click the Parameter Estimation GUI with preloaded data block in the model to open
a pre-configured estimation GUI session. The experimental data sets are already loaded in the project
(data_expl and data_ exp2). Click the View tab to layout the plots so that the Experiment
plot:data expl and Experiment plot:data exp2 are both visible. Click Plot Model
Response to simulate the model for the two experiments. The plots show that the model simulation
does not match the experiment data.
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[ PARAMETER ESTIMATION

VALIDATION

2 i B L L

EXPERIMENT PLOT

Cost Function: Sum Squared Error

>

Open Save New Select Select  Sensitivity  AddPlot PlotModel (5} Mors Options... Estimate
Session * Session w i i Analysis « - Response -
FILE EXPERIMENTS PARAMETERS PLOTS OPTIONS ESTIMATE
Data Browser @ | Experiment plot: data_expl | _J Experiment plot: data_exp2 1
=7 PR EE data_exp1 data_exp2
b msd_system/Position:1 msd_system/Position:1
ke 03 g 0.3
m \ Measured - Measured
— Simulated AN — Simulated
0.25 MWW_MM-VV__ 0.25 / L_vw\qwmmmjw—wu
|
w Experiments 0.2 ~ 0.9 || .‘/_-.-'_
data_expl I || /
data_exp2 I‘ Il
0.15 [ | DA5 [ |
|
@ [ © [ |
=] | =]
2 o1} B ool
5o B
¥ Results
< | = ||
0.05 | 0.05 |
|
0 | 0|
| |
w Preview -0.05 -0.05 JI
| |
041 0.1
0 2 4 6 8 0 1 2 3 4 5 6 7
Time (seconds) Time (seconds)
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Parameter Estimation with No State Estimation

The app has been configured to estimate the model parameters using both data expl and
data exp2 experiments, click Select Parameters to see the selected parameters and Select
Experiments to see the experiments selected for estimation.

Click Estimate to start the estimation. You can modify estimation options by setting the Cost
Function combobox and clicking More Options....

While the estimation is running the plots update and a dialog showing estimation progress appears.
The progress dialog shows the estimation iterations, the number of times the model has been

evaluated (F-count), and the estimation cost at each iteration.
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Data Browser

w Parameters

b
k
m

w Experiments

data_expl
data_expd

¥ Results

EstimatedParams

w Preview

0.3
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0.2

0.05

-0.05

EXPERIMENT PLOT
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FPARAMETERS

Experiment plot: data_expl  *0 H
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Measured
— Simulated
L A e Arap
0 2 4 ]

Time (seconds)

0.3

0.25

0.2

0.05

-0.05
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Iteration | F-count data_expl data_exp2
(Minimize) (Minimize)
0 7 48737 248 -
1 14 48737 2.45
2 21 3733 1.18
3 28 3.2630 0.87
4 35 3.2630 0.87|5
5 42 3.0230 0.74
6 4% 2.8380 0.70
x 56 273856 0.66 =
] 63 2.3514 0.54
9 7o 23129 0.56
10 7T 20777 0.58
11 B4 19252 067 -~
1 | ] 3
Optimization started 22-Apr-2014 13:19:47 -~
| |
Estimation converged, 22-Apr-2014 13:21:29
Estimated experiment values written to the workspace e
[ Save rteratinn...] [ Display Options. .. ] [ Estimate ]

After a number of iterations the estimation converges and terminates. The model is updated with the
estimated parameters and the estimation results are saved in the data browser.

The data expl and data exp2 experiment plots show that the model parameters have been tuned
to match the measured experiment data as closely as possible. The simulated measured signals match
well from the 2 second mark onward but don't match well before 2 seconds. The simulation results
for both experiments start at -0.1. This is the initial condition of the model which was not estimated;
these plots show that the initial condition should also be estimated.

Parameter Estimation with Initial State Estimation

The data expl and data_exp2 experiments specify the measured output data but as seen above
must also specify the model initial state. We now add the initial states to the experiments and
estimate them.

Right click data exp1l and select Edit... to open a dialog to configure the experiment.
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Outputs
Define measured output signals for this experiment.

msd system/Position:1 (msd system/Position:1]

| <1xd Signal, 76 points=| - | EB &I b4
[&] select Meaured Output Signals

Initial States
Optionally define initial states for this experiment.

There are currently no initial states defined for this experiment.

Select Initial States

Parameters
Optionally define parameters for this experiment.

There are currently no parameters defined for this experiment.

EE Select Parameters

[l Piot& Simulate [ Pt &7 OK  (2) Help

Click Select Initial States and select the position state. Click OK to close the state selector and add

the selected state to the experiment.

pv

Filter bey state narme

Current value

- State

i
Im sd systemy/Welocity

o 0K $X cancel () Hep
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Edit Experiment: data exspl
Outputs
Define measured output signals for this experiment.

msd system/Position:1 (msd system/Position:1]
v B X

| <1x1 Signal, 76 points=
@ Select Meaured Cutput Signals

Initial States
Optionally define initial states for this experiment.
msd system/Position

> o1 °| B x

Select Initial States

Parameters
Optionally define parameters for this experiment.

There are currently no parameters defined for this experiment.

E Select Parameters

[l Piot&simulate [Pt " OK (2) Help

Right click data exp2 and select Edit.. and add the position state to the experiment.
The experiments are now configured to include initial states that can be estimated. Click Select

Parameters.
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Edit: Estimated Pararnete,es
Parameters Tuned for all Experiments

b

b |100] ~| B % U Estimate
k

B |500 v B % [ Estimate
m

b |B | Oz % [ Estimate

[ Select parameters
Parameters and Initial States Tuned per Experiment
Experiment: |data_expl =

Select experiment initial states for estimation.

msd system/Position
P (01 v | bz [ Estimate

Select experiment parameters for estimation.

There are no parameters defined for this experiment.

Edit experiment

gl update Model &7 OK () Help

The upper portion of the select parameters dialog has a section for parameters that are tuned using
all experiments selected for estimation. The lower section of the dialog has a combo-box to select an
experiment and widgets to specify initial states and parameters that are tuned using only the selected
experiment. For this problem the data expl and data exp2 experiments estimate the model initial
state for each experiment.

Now we are ready to start our estimation but first create plots to monitor the estimation progress.
Click Add Plot and select Parameter Trajectory, right click the plot and select Show scaled
values. This creates a plot that shows how the estimated parameter values change during estimation.
Click the View tab to layout the plots so that the Experiment plot:data expl, Experiment
plot:data exp2, and Iteration plot 1 are both visible.

Click the Estimate button to start the estimation.

2-175



2 Parameter Estimation

[ PARAMETER ESTIMATION VALIDATION TERATION PLOT
ﬁ E @ E % E‘ E E‘i Cost Function: Sum Squared Error « |>
Open Select Select  Senstvity  AddFiot FlotModel (5 Hore Opfions... Estimate
Session * Session v i E i - *  Response -
FILE EXPERIMENTS PARAMETERS PLOTS OPTIONS ESTIMATE
Data Browser ® | Experiment plot: data_expl | | Experiment plot: data_exp2 |
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Iteration

After a number of iterations the estimation converges and terminates. The data expl and

data exp2 experiment plots show how estimating the initial value improves the estimation fit. The
EstimatedParams plot shows the estimated initial state for the two experiments, the plot also shows
that the estimated k value did not change while b and m changed slightly. You can confirm this by
clicking EstimatedParams and examining the preview pane and then clicking EstimatedParamsl
and examining the preview pane. Alternatively right click EstimatedParams and select Open... to
open a dialog to view the results.
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w Results w Results
EstimatedParams EstimatedParams
EstimatedParamsl EstimatedParamsl
w Preview * Preview

Estimaticn result(s):

b = 17.55%9
k = 400.07
m= 1.0678

Estimation result(s):

b = 28.5583
k= 359.739
m= 0.972648

This example shows that it is important to independently estimate initial states for each experiment
in order to obtain the correct estimates of the model parameters.

Related Examples

To learn how to estimate model parameters and initial states using the sdo.optimize command, see

“Estimate Model Parameters and Initial States (Code)” on page 2-67.

Close the model
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Generate MATLAB Code for Parameter Estimation Problems
(GUI)

This example shows how to automatically generate a MATLAB® function to solve a Parameter
Estimation problem. You use the Parameter Estimator to define an estimation problem for a mass-
spring-damper and generate MATLAB code to solve this estimation problem.

Mass-Spring-Damper Estimation Problem

The “Estimate Model Parameters and Initial States (GUI)” on page 2-168 example shows how to use
the Parameter Estimator to estimate parameters of a mass-spring-damper model. In this example
we load a pre-configured Parameter Estimator session based on that example.

Use the following commands to load the pre-configured estimation session

load sdoMassSpringDamper_ sdosession
spetool (SDOSessionData)

PARAMETER ESTIMATION VALIDATION EXPERIMENT PLOT Hdedsalae @E
ﬁ % @l E % E‘ E E‘ﬁ Cost Function: Sum Sguared Error |>
Open Save New Select Select  Sensiivity AddPlot PlotModel (8} More Options... Estimate
Session * Session +  Experiment Experiments  Parameters Analysis - - Response -
FILE EXFERIMENTS FARAMETERS PLOTS OPTIONS ESTIMATE
Data Browser @ | Experiment plot: data_expl | Experiment plot: data_exp2 |
w Parameters data_exp2
b med_system/Position:1
k 0.28 ' T T T T T
Y — Measured
m [\
|I \\I
0.26 \ ]
\ ~ - e
"“n.-\v.--"\._/ \__M\ s \_/_\\/\/\/V\ it
¥ Experiments 0.24 |7 ]
data_expl
data_exp2 0.22 | ]
|
o | |
o 02 4
2 |
= |
w Results = 018 [ | 4
< |
|
0.16 | .
|
|
0.14 | 4
|
» Preview ||
012 1
I 1 I I

&

=
n

0 1 2 3 4

Time (seconds)

Generate MATLAB Code

From the Estimate list, select Generate MATLAB Code.
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[ PARAMETER ESTIMATION VALIDATION EXPERIMENT PLOT @ E‘J i % E ﬁ "'-':Lfi @) =
@ % E % E E‘ Eli Cost Function: Sum Sguared Error I}
Open Save New Select Select Sensitivity  Add Plot  Plot Model @ More Options... Estimate
Session * Session «  Experiment Experiments  Parameters  Analysis - Response -
FILE EXFERIMENTS FARAMETERS FLOTS OFTIONS
- - - — Open Estimation Report
Data Browser G] | Experiment plot: data_expl | Experiment plot: data_exp2 | Open a dialog to view estimation
w Parameters data -E)(pz iteration and status information.
b msd_system/Position:1 Generate MATLAB Code
k 0.28 ) T T T T ‘ Generate a MATLAB function to
m III \'\ solve the defined estimation problem.
f !
) \
) !
0.26 | | ‘|

The generated code is added to the MATLAB editor as an unsaved MATLAB function.

Ei Editor - Untitled3*

1 function [pOpt, Info] = spe msd system(p)

2 $S5PE_MSD SYSTEM b
2 % L
4 % Solve a parameter estimation problem for the m2d system model. 1
5 % —
[ % The function returns estimated parameter wvalues, pOpt,

T % and estimation termination information, Info.

g z
9 % The, p, input argument defines the model parameters to estimate,

10 % if omitted the parameters specified in the function body are estimated.

11 %

12 % Modify the function to include or exclude new experiments or

12 % change the estimation options.

14 %

15 % Anto-generated by SPETOOL on 22-0ct-2014 07:39:23.

16 %

17

18 %% Open the model.

18 open_ system('msd system')

20

21 %% Specify Model Parameters to Estimate

22 %

23 if nargin < 1 || isempty(p)

24 p = =sdo.getParameterFromModel ("m=sd_ system', {'b',"'k','m"});

25 p(l) . Minimum = 0;

28 p({l) .5cale = 100;

27 p(2) Minimum = 0;

28 p(2) .5cale = 500;

| 29 p(3) Minimum = 0; &2

| Untitled3* = | + |

Examine the generated code. Significant code portions are:

* Specify Model Parameters to Estimate - Definition of the model parameters being
estimated.

+ Define the Estimation Experiments - Definition of the measured and expected signal data
to use for estimation.

* Create Estimation Objective Function - Creation of an anonymous function that calls the
subfunction msd_system optFcn, which evaluates the model using each experiment and
compares simulation and measured experiment outputs. This anonymous function is called by
sdo.optimize at each iteration of the optimization problem to solve the estimation problem.
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Command Window

Mew to MATLAB? See resources for Getting Started.

>»> [pE=st,eztInfo] = spe _msd system;

Cptimization started 22-0ct-2014 07:42:36

Iter F-count =) optimality
11 9.18411 1
22 0.0502487 3.697 0.0807 E
33 0.0140152 0.3313 0.0262
44 0.0132182 0.06352 0.00053

Local minimum found.

Optimization completed because the size of the gradient is less than
the selected value of the function tolerance.

fxov> |

+ Estimate the Parameters - Solve the estimation problem using the sdo.optimize command.
Select Save from the MATLAB editor to save the generated function.
Run Generated Code

Run the generated function.

Step-size First-order

1
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The first output argument, pOpt, contains the optimized parameter values and the second output
argument, optInfo, contains optimization information.

Modify the Generated Code

You can:

* Modify the generated spe_msd system function to include or exclude new experiments or
change estimation options.

* Call the generated spe_msd system function with a different set of parameters to estimate.

For details on how to write an objective/constraint function to use with the sdo.optimize command,
type help sdoExampleCostFunction at the MATLAB command prompt.

Close the model
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Improving Optimization Performance Using Fast Restart (GUI)

This example shows how to use the Fast Restart feature of Simulink® to speed up optimization of a
model. You use Fast Restart to estimate the parameters of an engine throttle model.

How Fast Restart Speeds up the Optimization

Simulation of Simulink models requires that the model be compiled before it is simulated. In this
context compilation of a model means analyzing and formatting the model so that it can be simulated.
The idea of Fast Restart is to perform the model compilation once and reuse the compiled information
for subsequent simulations, see "How Fast Restart Improves Iterative Simulations" in the Simulink
documentation for a description of Fast Restart.

During optimization the model is repeatedly simulated (often tens or hundreds of times) Fast Restart
means that the model is only compiled once for these simulation in comparison to non-fast restart
where the model is recompiled each time.

Models where compilation is a significant portion of overall simulation time benefit the most from
Fast Restart. Further once a model is compiled not all model parameters can be changed, specifically
only tunable parameters can be changed, see "Factors Affecting Fast Restart" in the Simulink
documentation for more information.

Open Model and Parameter Estimator

Load the model and click the "Parameter Estimation with preloaded data" block to load a
preconfigured parameter estimation problem. The goal is to tune the parameters of an engine throttle
model to match measured data. For details on the problem setup see the “Estimate Model Parameter
Values (GUI)” on page 2-143 example.

open_system('spe engine throttle')

Engine Throttle Model

Te
=
—

Motor

N[

Throttle

Paosition

Click Estimate in the LIl Throttle ’ @
to run an estimation. Paosition

Copyright {c) Z002-2014 The MathWorks, ino.
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[ PARAMETER ESTIMATION VALIDATION EXPERIMENT PLOT
@ ﬁ E % E‘ EIE Cost Function: Sum Squared Error + D
Open Save New Select Select  Sensiiviy AddPiot PlotModel (5} More Options... Estimate
Session + Session = Experiment Experiments  Paramesters  Analysis + - Response -
FILE | EXPERIMENTS | PARAMETERS | PLOTS | OPTIONS | ESTIMATE |
Data Browser ® | Experiment plot: EstimationData 0 |
¥ Parameters EstimationData
/ spe_engine_throttle/Throttle:1
c 100 T T T T T T T
input_delay — T T "-"Iﬂl‘-—
k B0 il
60 [ 7
w Experiments
EstimaticnData 40 )
ValidationDatal
ValidationData2 0 il
o) 1 1 1 1 1 1 1 1 1
h=) 0
=
2 spe_engine_throttle/lnput:1
w Results E 1 T T T B = L T .p T T T
<
0.8 | .
0.6 [ .
0.4 [ 7
w Preview
0.2 7
0 I I 1 I I 1 I I 1
0 0.05 0.1 0.15 02 0.25 0.3 0.35 0.4 0.45 0.5
Time (seconds)

Estimate Without Using Fast Restart

To compare the estimation with and without fast restart, change the estimation options in the app to
not update the model with estimated values.

Click More Options in the Parameter Estimator and click General Options. Clear Update model
at end of estimation, and select Save estimated values as new estimation result.
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Improving Optimization Performance Using Fast Restart (GUI)

General Options | Optimization Options | Parallel Options |

Progress Options
Show estimation progress window during estirnation
Create a parameter trajectory plot during estiration

Update plots during estirmation

Result Opticns
Update model at end of estimation
Estimation results:

) Owerwrite estimation result with new estimated values

@ Save estimated values as new estimation resulf

| oK || Cancel || Help |

Click Estimate to estimate the model parameter values. The estimation progress report shows the
estimation start and end time.

2-183



2 Parameter Estimation

2-184

-
zl Estimation Progress R;;r;‘_l E@g
EE— e e
Iteration | F-count EstimationData
(Minimize)
] 9 3204 »
1 18 1230
| 2 27 365 =
3 36 1.12
4 45 0.6€
5 54 0.3z
G 63 011
T T2 0.0z
a a1 0.0c
9 90 0.0c
10 99 0.0c i
1| - - Tl] | ) : 1
Optimization start -Apr-2015 13:58:33 -
=
Estimation convelged, 17-Apr-2015 13:57:43
Estimated parameter values written to "EstimatedParams’ i
| Save heration...| |Display Options...| |  Estimate |

Estimate Using Fast Restart

To configure the model to use Fast Restart during simulation, click Enable Fast Restart in the
Simulink model.

Code Tools Help

®» » A

File Edit View Display Diagram Simulation
- i - =
i} ao O

spe_engine_throtte |

— |h.._l

Click Estimate in the Parameter Estimator. The estimation progress report shows the estimation
start and end time. Note the reduction in total estimation time compared to the estimation without
using fast restart, in this case around 28 seconds or 45% of the original estimation time.
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- + b
4| Estimation Progress Report ’ @M
Iteration | F-count EstimationData
(Minimize)
0 G 3204 »
1 13 12.3C
i ped 27 3.65=
3 35 113
4 45 06E
5 54 0.3z
G 63 011
¥ 72 0.0z
2 a1 0.0C
9 50 0.0C
10 99 0.0C
1 | 1] [ 3
Optimization starg®™ 7-Apr-2015 14:40:58 -
=
Estimation conveMagd, 17-Apr-2015 14:41:40
Estimated parameter values written to "EstimatedParams_1" i
| Save heration...| |Display Options...| |  Estimate |

Related Examples

The Generate MATLAB Code feature of the Parameter Estimator and Response Optimizer will
generate the MATLAB® code to configure the model for fast restart if the app is configured to use
fast restart.

To learn how to use Fast Restart at the command line see “Improving Optimization Performance
Using Fast Restart (Code)” on page 2-187.

Close the model.

bdclose('spe engine throttle')
See Also

Related Examples

. “Improving Optimization Performance Using Fast Restart (Code)” on page 2-187
. “Use Fast Restart Mode During Response Optimization” on page 3-189

. “Use Fast Restart Mode During Sensitivity Analysis” on page 4-109
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More About
. “Ways to Speed Up Design Optimization Tasks”
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Improving Optimization Performance Using Fast Restart (Code)

This example shows how to use the Fast Restart feature of Simulink® to speed up optimization of a
model. You use Fast Restart to estimate the parameters of an engine throttle model.

How Fast Restart Speeds up the Optimization

Simulation of Simulink models requires that the model be compiled before it is simulated. In this
context compilation of a model means analyzing and formatting the model so that it can be simulated.
The idea of Fast Restart is to perform the model compilation once and reuse the compiled information
for subsequent simulations, see "How Fast Restart Improves Iterative Simulations" in the Simulink
documentation for a description of Fast Restart.

During optimization the model is repeatedly simulated (often tens or hundreds of times) Fast Restart
means that the model is only compiled once for these simulation in comparison to non-fast restart
where the model is recompiled each time.

Models where compilation is a significant portion of overall simulation time benefit the most from
Fast Restart. Further once a model is compiled not all model parameters can be changed, specifically
only tunable parameters can be changed, see "Factors Affecting Fast Restart" in the Simulink
documentation for more information.

Open Model

Load the engine throttle model. The goal is to tune the parameters of the model to match measured
data. For details on the problem setup see the “Estimate Model Parameter Values (GUI)” on page 2-
143 example.

open_system('spe engine throttle')

Engine Throttle Model
13— T
Muotor
N[
Parameter Estimation Thrattle
with preloaded data Pasiticn
Click Estimate in the LI Throttle ’
to run an estimation. Puosition

Copyright (] 2002-2014 The MathWorks, inc.

Define the Estimation Problem Data

This examples focuses on the command line interface for using Fast Restart during estimation. For a
detailed description of the estimation command line interface see “Estimate Model Parameter Values
(Code)” on page 2-58.
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Specify the model parameter values to estimate and any parameter bounds.

p = sdo.getParameterFromModel('spe engine throttle',{'J','c', "input delay','k'});
p(1l).Minimum = 0;

p(2).Minimum = 0;

p(3).Minimum = 0;

p(3).Maximum = 0.1;

p(4) .Minimum = 0;

Define the estimation experiment. The measured experiment data is loaded from the
sdoFastRestart ExperimentData MATLAB file. The MATLAB file contains a Input SignalData
and Output SignalData variable specifying the experiment input and output signal data.

load spe engine throttle ExperimentData

Exp = sdo.Experiment('spe engine throttle');
Input = Simulink.SimulationData.Signal;
Input.Values Input SignalData;
Input.BlockPath 'spe_engine_throttle/Input’;
Input.PortType "inport’;

Input.PortIndex 1;
Input.Name ‘spe_engine_throttle/Input:1';
Exp.InputData = Input;

OQutput = Simulink.SimulationData.Signal;
Output.Values = Qutput_SignalData;
Output.BlockPath = 'spe engine throttle/Throttle';
Output.PortType = ‘'outport’;

Output.PortIndex = 1;
Output.Name = 'spe_engine throttle/Throttle:1';
Exp.OutputData = Output;

Create a model simulator from the experiment
Simulator = createSimulator(Exp);

Configure the Simulator for Fast Restart

The simulator controls whether the model is simulated using fast restart or not. The fastRestart
command is used to configure the simulator to use Fast Restart.

The spe_engine throttle model uses a variable-step solver, and may not output values at the
times in the measured experiment data. To output values at the times of the measured data, use the
set param command to specify the model logging output times as a workspace variable. In the
estimation objective function, the variable is then used to specify output times to be the same as the
measured experiment data. The model OutputTimes is set before configuring the simulator for fast
restart, as once the model is configured for fast restart, the model logging configuration can not
change.

set _param('spe_engine throttle', 'OutputOption', 'SpecifiedOutputTimes', 'OutputTimes', 'OutputTimes!
Simulator = fastRestart(Simulator, 'on');

The simulator can now be used during estimation, and the model will be simulated using fast restart.
Run the Estimation

Create an estimation objective function to evaluate how closely the simulation output, generated
using the estimated parameter values, matches the measured data. Use an anonymous function with
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one argument that calls the spe_engine throttle Objective function. The
spe_engine throttle Objective function includes the Simulator argument that has been
configured to use fast restart.

optimfcn = @(P) spe engine throttle Objective(P,Simulator,Exp);
Set the optimization options, and run the optimization.
Options = sdo.OptimizeOptions;

Options.Method = 'lsgnonlin';
[pOpt,Info] = sdo.optimize(optimfcn,p,Options);

Optimization started 25-Aug-2020 20:49:06

First-order

Iter F-count f(x) Step-size optimality
0 9 32.048 1
1 18 12.24 0.6495 18
2 27 3.5944 0.3919 8.65
3 36 1.11908 0.188 3.11
4 45 0.648736 0.1968 1.25
5 54 0.287517 1.093 1.12
6 63 0.150691 0.3233 0.414
7 72 0.0909367 0.5668 0.0794
8 81 0.0705989 0.5692 0.154
9 90 0.0705989 9.235 0.154
10 99 0.070166 2.256 0.252
11 108 0.0515291 0.3859 0.0676
12 117 0.0481688 0.5612 0.214
13 126 0.0378954 0.2593 0.0254
14 135 0.0366916 0.3957 0.195
15 144 0.028778 0.06182 0.0671
16 153 0.0244849 2.036 0.087
17 162 0.0210853 2.309 0.0435
18 171 0.0177636 4.618 0.114
19 180 0.0137155 4.973 0.114
20 189 0.0107631 3.471 0.0684
21 198 0.00861032 2.924 0.0603
22 207 0.00771667 1.815 0.0461

Local minimum possible.

lsgnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

Restore the Model

Restore the simulator fast restart settings. This clears the logging and other settings used for the
optimization problem.

Simulator = fastRestart(Simulator, 'off');
set_param('spe_engine_throttle', 'OutputOption', 'RefineQutputTimes', 'OutputTimes', '[]1');

Related Examples

You can also generate code to configure you model for fast restart in the Parameter Estimator and
the Response Optimizer. Configure the model for fast restart as described in “Improving
Optimization Performance Using Fast Restart (GUI)” on page 2-181. Then use the Generate MATLAB
Code feature of the app.
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Close the model.
bdclose('spe engine throttle')

See Also
fastRestart | sdo.SimulationTest

Related Examples

. “Improving Optimization Performance Using Fast Restart (GUI)” on page 2-181
. “Use Fast Restart Mode During Response Optimization” on page 3-189
. “Use Fast Restart Mode During Sensitivity Analysis” on page 4-109

More About
. “Ways to Speed Up Design Optimization Tasks”
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Deployed Application of Parameter Estimation

This example shows how to monitor the condition of an electric vehicle battery in the field, with a
deployed version of parameter estimation in Simulink® Design Optimization™, together with
Simulink Compiler™.

Battery Monitoring

Batteries in electric vehicles are expensive to replace and need to be monitored and maintained
carefully, to ensure they function well for their intended lifetime. In this example, an electric car is
driven to work and back on a daily commute. At home, the car is plugged in to a smart charger that
monitors both the current and the battery voltage. The charger analyzes the battery data to estimate
the battery parameters, using a deployed version of parameter estimation in Simulink Design
Optimization, together with Simulink Compiler. The charger relays these parameters to the car
manufacturer through an Internet of Things (IoT) connection, so that the manufacturer can monitor
the battery health over time.

Battery Model

This example estimates parameters of a simple, rechargeable battery model, sdoBattery. The input
to sdoBattery is the battery current, and the model output is the battery terminal voltage which is
computed from the battery state of charge.

The battery model is based on the equation:

E = (1 - Loss)V — KQmaX%

where:

* E is the battery terminal voltage in Volts.
» Vs the battery constant voltage in Volts.
* K is the battery polarization resistance in Ohms.

*  Qnax is the maximum battery capacity in Ampere-hours. Qg is the battery initial state of charge in
Ampere-hours.

* sis the battery charge state, with 1 being fully charged and 0 discharged. The battery state of
charge is computed from the integral of the battery current with a positive current indicating
discharge and a negative current indicating charging.

* Loss is the voltage drop when charging, expressed as a fraction of the battery constant voltage.
Use the following command to open the model.

open_system('sdoBattery')

Battery Characteristics

The following battery characteristics are known:

* Voltage,V = 400V
e Loss factor, Loss = 0.012
* Resistance, K = 0.32 Ohms.
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Qmax is known to be 250 Ampere-hours (100 kWh) when the battery is new. As the battery ages, Qnax
is expected to decrease, and this is monitored to track the health of the battery. The initial state of
charge Qg and the new battery capacity Qnax need to be estimated.

Steps for Deployed Parameter Estimation
There are two main steps to run parameter estimation in deployed mode:

1 Make a setup file, to set up parameter estimation objects for use in deployed mode

2 Make a run file, which is a MATLAB function for parameter estimation that can be compiled and
run in deployed mode

It is recommended to create the setup and run files by starting with MATLAB code generated from
the Parameter Estimator. Copy, split, and modify the generated code to make the setup and run
files as demonstrated in the following section.

Parameter Estimation in Non-Deployed Mode

First generate MATLAB code to estimate Qy and Qpax in non-deployed mode. Use the following
commands to load the pre-configured estimation session:

load sdoBattery spesession forDeployment
spetool(SD0SessionData)

This step loads and plots the experiment with measured voltage and current data and configures the
Parameter Estimator to estimate Qy and Qpay.

Navigate to the Estimate button in the toolstrip and from the dropdown list, select Generate
MATLAB Function (see “Generate MATLAB Code for Parameter Estimation Problems (GUI)” on
page 2-178). This step generates a MATLAB function which is added to the MATLAB editor, and a
MAT-file parameterEstimation sdoBattery Data.mat. The generated code is available for you
in file parameterEstimationSdoBattery.m. You can use the generated code to estimate
parameters in non-deployed mode.

It is recommended to start with this generated code and copy, split and modify the code to create the
setup and run files described in the following sections.

Setup-File for Deployed Parameter Estimation

To estimate parameters in deployed mode, the code for non-deployed parameter estimation can be
split into a setup file to use in non-deployed mode, and a run file to use in deployed mode. The setup
file is available as parameterEstimationSdoBattery setup.m and the main parts are:

1  Define parameters

2  Define experiments
3  Prepare for deployment and save

Define Parameters

Parameters are defined in parameterEstimationSdoBattery setup.min the same way as the
generated MATLAB code, parameterEstimationSdoBattery.m. Use the
sdo.getParameterFromModel command to create a parameter object, containing fields for
parameter value, minimum and maximum, and a field ("Free") indicating whether the parameter will
be tuned during estimation.
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In this example, parameter information is also stored in a database in which cars are identified by a
code akin to a pseudo vehicle identification number (VIN). The car manufacturer can use this to
monitor the health of the battery over time. The parameterEstimationSdoBattery setup.mfile
uses the VIN database to update battery parameter values. See the
parameterEstimationSdoBattery setup.m file for more details.

The initial database is loaded from the MATLAB file sdoBatteryVinDatabase.mat which has the
VIN database stored in variable vinDatabase. This is a containers.Map object, and the VIN key
4DEF is used to look up parameters for the battery in this example.

Run
vinDatabase("4DEF")

to display the following table:

K Lo=ss Omax Qo0 W
CurrentValue 0.32 0.012 250 150 400
PrevionsValne 0.32 0.012 250 150 400

Define Experiments

Experiments are defined in parameterEstimationSdoBattery setup.min the same way as the
generated MATLAB code, parameterEstimationSdoBattery.m. Experiments have measured data
and information about specific ports or signals in the model that are associated with the data.

Prepare for Deployment and Save

At the end of the parameterEstimationSdoBattery setup.m file, define a simulator which can
run the model and compare model output to measured data. Use the prepareToDeploy command to
configure the experiments and simulator so they can be used in deployed mode. Save these prepared
objects to a MATile.

24 2% Configure objects for deployment and save to a MATLABR file
g5 %

g8a — Exper = prepareTolDeploy (Exper) ;

a7 £

88 - Simunlator = createSimulator (Exper);

= Simulator = prepareToleploy (Simulator,p) s

a0 — save sdoBatteryObjectsToleploy Exper Simulator p vinDatabase

When running these steps on another model and preparing for deployment, you may be prompted to
save the model to continue after running the setup function. Save the model to preserve logging
settings that need to be in place for deployed mode.

The run file parameterEstimationSdoBattery run.m uses the objects saved in
sdoBatteryObjectsToDeploy.mat for parameter estimation in deployed mode.

Run-File for Deployed Parameter Estimation

The run file is available as parameterEstimationSdoBattery run.m and the main parts are:
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Load preconfigured deployment objects
Update experiments and parameters
Run optimization

A W N M

Update Parameter Database
Load Preconfigured Deployment Objects

The parameterEstimationSdoBattery run.mneeds a pragma so that the Simulink Compiler
includes the model in the compiled code as follows:

20 % Ensure model iz compiled

21 f¥function sdoBattery.slx

Load the preconfigured objects that were saved at the end of
parameterEstimationSdoBattery setup.m file as follows:

24 ¥% Load configured experiment and simmlator objects

25 — load sdoBatteryChjectsToleploy Exper Simmlator p vinDatabas

m

[aT]

Update Experiments and Parameters
The parameterEstimationSdoBattery run.m file takes two input arguments:

* dataFilename — a data file name for experiment data

* vin - avehicle identification number for parameter values

Read the data from the comma-separated-values (CSV) text file specified by dataFilename. Use the
updateIlOData command to update the deployed experiments with new input and output data (current
and voltage data for this model). Since the data is from a CSV file, you do not need the getData
function that is present in the generated MATLAB code, parameterEstimationSdoBattery.m.

31 = data = readtable (dataFilename) ;

32 (Update experiment with input current data

33 - current = timeseries(data.Current,data.Time) ;

34 - Exper = updatelIOData (Exper, 'sdoBattery/Current', current) ;

3s $Update experiment with output wvoltage data

36 — voltage = timeseries(data.Voltage,data.Time) ;

37 — Exper = updatelOData (Exper, "sdoBattery/50C -> Voltage',voltage):

Use the VIN as a key to look up this car's battery parameters in the parameter database. Use the
current value from the database to update the initial parameter values prior to running the new
estimation. See the parameterEstimationSdoBattery run.m file for more details.

Run Optimization

The next several steps in parameterEstimationSdoBattery run.m are very similar to the code in
parameterEstimationSdoBattery.m (for non-deployed estimation). Define a handle to the
estimation objective function, specify optimization options, and use the sdo.optimize function. This
step runs the model and compares model output to experiment data. Parameters are tuned to achieve
a close match between the model and data.
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The objective function is defined in the subfunction sdoBattery optFcn which is also like the
objective function in parameterEstimationSdoBattery.m. However, the name of the signal
logging variable needs to be specified since it cannot be queried from the model in deployed mode.

117 — SimLog = find(Simulator.LoggedData, 'logsout') !

To determine the name of the variable (‘logsout' in this case), query the model from MATLAB in
non-deployed mode:

get param('sdoBattery', 'SignallLoggingName")

Alternatively, in Simulink use the Modeling tab in the toolstrip and click Model Settings. In the
configuration dialog, select Data Import/Export and find the variable name in the Signal logging
box.

Update Parameter Database

After calling sdo.optimize in the main function of parameterEstimationSdoBattery run.m,
update the VIN database. For each parameter that is estimated, copy the CurrentValue to the
PreviousValue and then use the new parameter estimate to update the CurrentValue. See
parameterEstimationSdoBattery run.m for more details.

40 % Update Parameters for this Vehicle from the Database
41 — if nargin < 2

42 — vin = "4DEF";

43 — end

44 — carData = wvinDatabase(vin);

45 — for ct = l:width(carData)

6 — variableName = carData.Properties.VariableNames{ct}:
47 — bIdx = strcmp (variakleName, {p.Hame}) ;

il= p(bldx) .Value = carData{'CurrentValue',variableName} ;
43 — end

Running Parameter Estimation in Deployed Mode

Use the mcc command to compile the parameterEstimationSdoBattery run.m function from
either the MATLAB command window or the DOS or UNIX command prompt. You need to have
MATLAB Runtime installed to complete the following steps. For more information, see “Install and
Configure the MATLAB Runtime” (MATLAB Compiler).

4\ Command Window

»> moC - parameterEstimationSdoBattery run

###% Building the rapid accelerator target for model: sdoBattery

##% Successfully built the rapid accelerator target for model: sdoBattery

Run parameter estimation in deployed mode.
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BN Command Prompt —

tal.csv 4DEF

First-order
optimality

final ¢
its initial value is less than the wvs

In MATLAB, run

vinDatabase("4DEF")

to display the following result:

E Loss Cmax Qo W
CorrentValune 0.32 0.012 250.35 152.81 400
PrevionsValue 0.32 0.012 250 150 400

Tracking Battery Parameters over Time

The table below shows estimates of battery parameters Qp and Qpax Over time. The file

sdoBattery Datal.csv contains data for the battery when it was new, sdoBattery Data2.csv
contains data for the battery when it was 1 year old and sdoBattery Data3.csv contains data for
the battery when it was 2 years old.

Data File Qo Crraz Ratio
sdoBattery Datal.csv 152 81 250.35 61%
sdoBattery Data2.csv 101.560 199.01 51%
sdoBattery_Data3.csv 86.91 184 .45 47%

Observe that there is degradation in battery capacity over time. There is a high rate of degradation in
the first year after which the rate of degradation reduces. When the battery was new, the round-trip
commute left the battery state of charge at 61% while after 2 years, the commute left the battery
state of charge at 47%. If the state of charge falls below 40%, this condition reduces the number of
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times the battery can be recharged. By tracking battery parameters over time, the manufacturer can
monitor the battery health, and determine if the car needs a new battery.

See Also

prepareToDeploy(Experiment) | prepareToDeploy(SimulationTest) | sdo.Experiment |
sdo.SimulationTest | updateIOData(Experiment)
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Muscle Reflex Parameter Estimation

2-198

This example shows how to estimate parameters of a muscle reflex model.

Simulink® Model of the Muscle Reflex

The Simulink® model for the muscle reflex system, spe_muscle, is shown below.

Muscle Reflex Model

- Signal 1

¥Yrywy
T+
¥
h J

@ Theia]
qu numis)
oo denis) |

Spindle Dynamics

Click Estmate in the Ul
to run an estimation.

Copyright {c) 2002-2014 The MathWorks, Inc.

Muscle Reflex Model Description

For this example a simple knee reflex action of humans is modeled. When the patellar tendon is
excited, for example when a doctor strikes it with the nub of a small rubber hammer, the tendon
reacts with a small but quick reflex force. This in turn pulls the muscle and we observe that the leg
jerks forward slightly at the knee.

For this model we treat the tendon itself as a small torsional spring damper with inertia (J), stiffness
(K) and damping (B). When the tendon is excited a signal is sent through the nervous system to the
spinal cord reporting a structural change (i.e. tendon length). The nervous system then sends a signal
back to the tendon to produce a reflex. There are receptors on the muscle called spindles that have
their own dynamics, shown in the model as a transfer function in the feedback path. The spindles are
modeled as a spring (Kpe) and damper (Bpe) in parallel, and then with the pair in series with another
spring (Kse). The differential equation describing these dynamics is given by

T = (Kse/b) * [Bpe *2' + Kpe + x)] — [(Kse + Kpe)/b]« T

For this model we supply two brief pulses, one stronger than the other, as input. This is similar to
what one might experience in a doctor's office.
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Estimation Data

There is a project already associated with this model. You can access it by double-clicking the orange
block in the lower left corner of the model. This opens the Parameter Estimator configured with
measured experiment data ReflexResponse and parameters J, B, K, Td, beta, alpha, and tau
selected for estimation. The measured data in the ReflexResponse experiment is shown in the plot.
There is only one data set used for this example.

[ PARAMETER ESTIMATION VALIDATION EXPERIMENT PLOT B4 B850
ﬁ % @ E % E E‘ E'i Cost Function: Sum Squared Error + |>
Open Save New Select Select  Sensiiviy AddPlot PlotModel (5} More Options.. Estimate
Session * Session +  Experiment Experiments  Parameters  Analysis - - Response -
FILE EXFERIMENTS PARAMETERS PLOTS OFTIONS ESTIMATE
Data Browser ® | Experiment plot: ReflexResponse |
w Parameters ReflexResponse
B i spe_muscle/Integrator:1
J 0.14 T T T T T T T
K = Measured
Td T 0.12 | pl g
alpha I
Lot = | |
w Experiments 01 || | -
ReflexResponse | |
0.08 | || | 1
S 006 | | 1
2 |
w Results % 0.04 | | 4
< |
0.02 | ﬁ. | | g
/ |
\ .
oF Y VJIM \I""‘J‘J\-.*"VMJ'W‘-*WNMP‘I [ f\ \,kﬂwﬁwwrﬂﬂmﬁwwﬁww
|/
¥ Preview II II
0.02 | I'u!l E
.0.04 | | I | | I | | I
0 0.5 1 15 2 25 3 35 4 45 5
Time (seconds)

The experiment data can be imported from various sources including MATLAB® variables, MAT files,
Excel® files, or comma-separated-value files.

Estimated Parameters

The estimation parameters are selected by clicking on Select Parameters in the Parameter
Estimation tab. We have already loaded the parameters for this model. These parameters are the
inertia, J; damping coefficient, B; the return spring constant, K; the neural transmission delay, Td as
well as the spindle dynamics parameters beta, alpha, and tau. Since we know from our physical
insight that none of these parameters can be negative we set their lower limits to zero. Based on
known neural transmission times, we set the lower limit of Td to 10 microseconds.
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Parameters Tuned for all Experiments

B
- |3 v| b2 » Estimate

Minimum:|U-| v| B

Maximum:|1nf v| @;»

5ca|e:|3 v| @

]
b |1 ~| Hp % @ Estimate
K
b |75 ~| 7 X 0@ Estimate
Td
b 001 ~| §p ¢ [ Estimate
alpha
b 0.2 ~| Bp ¢ @@ Estimate
beta

04 »| B} % [ Estimate
tau
b |0.005 ~| B ¢ @ Estimate

E Select parameters

Parameters and Initial 5tates Tuned per Experiment

Experiment: |Ref|exRespnnse "|

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

There are no parameters defined for this experiment.

The experiment plot is also used to see how well the measured data matches the current model. Click
Plot Model Response to display simulated signal data on the experiment plots. The simulation
results show that the model does not match the measured data and that model parameters need to be
estimated.
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Estimation

With the parameters for estimation specified, we select experiments to use for estimation. Click
Select Experiments in the Parameter Estimation tab and select ReflexResponse for estimation.

We are now almost ready to start our estimation but first create another plot to monitor the
estimation progress. Click Add Plot and select Parameter Trajectory. This creates a plot that shows
how the parameter values change during estimation. Click the View tab to lay out the plots so that
the experiment plot and trajectory iteration plot are both visible.

Click the Estimate button in the Parameter Estimation tab to start the estimation. The estimation
will keep iterating the parameter values until the estimation converges and terminates. The plot
below shows the measured data overlaid with the simulated data. The simulated data comes from the

model with the estimated parameters. The results of the estimation appear satisfactory, the simulated
curve closely matches the measured results.
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We can also view residuals of the estimation. Residuals are the error between the measured response
and simulated response at each time step.

Click the Validation tab and click Select Experiments. Select the ReflexResponse experiment for
validation. In the Validation tab, select Plot Residuals and click Validate. The plot below shows
that the residuals do not exhibit a correlation pattern. They are one or two orders of magnitude
smaller than the measured data and are essentially the noise from the experimental data, so we are
again satisfied that parameters in the model were estimated well.
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The parameters of the model have been tuned to match the experimental results very well and our
estimation error is only the original noise in the results. We can conclude that the parameters in the
model have been successfully estimated.
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Close the model
See Also

More About

. “Specify Parameters for Estimation” on page 2-7
. “Validate Estimation Results” on page 2-25
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DC Servo Motor Parameter Estimation

This example shows how to estimate the parameters of a multi-domain DC servo motor model
constructed using various physical modeling products.

This example requires Simscape™ and Simscape™ Electrical™

Description of the DC Servo Motor System

A DC servo motor, with its electrical and mechanical components, provides a great example to
illustrate multi-domain modeling using first principles.

The DC servo motor is part of a larger system that contains the control electronics (H-Bridge) and a
disk attached to the motor shaft. The overall model, spe_servomotor, is shown below, where the
Input Signal (V) is the voltage signal applied to the H-bridge circuit, and the Output Signal (deg) is
the angular position of the motor shaft.

Open the DC motor system

K

T W= Output Signal (deqg)

(D)
Input Signal (V)
(Di rad to deg
]
—
_O\o——h-
—0
[Test 5.»|g|na|l:.§t mation |
== Al _...{\& D=k | parameter Estimation
= Validation - H-Bndge DC Servo Motor with preloaded data
Motor Test Signals Signal Selector
Capyright 2009-2017 The MathWarks, Inc. Click Estmate in the LI

to run an estimation.

We developed a first-principles model of the DC motor within the DC servo motor subsystem. We used
Simscape Electrical to model the electrical components and Simscape Driveline to model the
mechanical components of the motor. The figure below shows the content of the servo motor
subsystem.

Open the DC Servo Motor subsystem
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The DC motor model shows a relationship from current to torque (the green line on the left). The
torque causes the shaft of the motor to spin and we have a relationship between this spinning to the
Back EMF (electromotive force). The rest of the parameters include a shaft inertia, viscous friction
(damping), armature resistance, and armature inductance.

While manufacturers may provide values for some of these quantities, they are only approximate. We
want to estimate these parameters as precisely as possible for our model to ascertain whether it is an
accurate representation of the actual DC servo motor system.

When we apply a series of voltage pulses to the motor input, the motor shaft turns in response.
However, if the model parameters do not match those of the physical system, the model response will
not match that of the actual system, either. This is where Simulink® Design Optimization™ plays a
pivotal role in estimating parameter values. A parameter estimation process consists of a number of
well-defined steps:

* Collect test data from your system (experiment).

» Specify the parameters to estimate (including initial guesses, parameter bounds, etc.).
* Configure your estimation and run a suitable estimation algorithm.

» Validate the results against other test data sets and repeat above steps if necessary.

Simulink Design Optimization provides Parameter Estimator app which is a user interface to help
you perform parameter estimation, organize your estimation project, and save it for future work.

Double-click the orange block in the lower right corner of the servomotor model to launch the
Parameter Estimator, pre-loaded with data for this project. This is configured with measured
experiment data EstimationData. For other uses you can import experimental data sets from
various sources including MATLAB® variables, MAT files, Excel® files, or comma-separated-value
files. The Parameter Estimator is also pre-loaded with parameters for the servomotor subsystem
selected for estimation: B, J, Km, La, and Ra. It is also configured with validation data
ValidationData which we will use later, after estimation. The measured data in EstimationData
is shown in the experiment plot. There is only one data set used for estimation in this example.
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The experiment plot is also used to see how well the measured data matches the current model. Click
Plot Model Response in the Parameter Estimation tab to display simulated signal data on the

experiment plots. The simulation does not match the measured data, showing that the model
parameters need to be estimated.
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Selecting Parameters for Estimation

Simulink Design Optimization lets you estimate some or all of the parameters in your model in a
manner that best suits your application. The estimation parameters are selected by clicking Select
Parameters in the Parameter Estimation tab. For our DC motor example, we have already loaded
the five parameters of the motor model: B, J, Km, La, and Ra. Since we know from our physical insight
that none of these parameters can be negative we set their lower limits to zero.
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Experiment: |EstimationData =

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

Estimating Parameters of the DC Motor Model

With the parameters for estimation specified, we select experiments to use for estimation. Click
Select Experiments in the Parameter Estimation tab and select EstimationData for estimation.

We are now almost ready to start our estimation but first create another plot to monitor the
estimation progress. Click Add Plot and select Parameter Trajectory. This creates a plot that shows
how the parameter values change during estimation. Click the View tab to lay out the plots so that
the experiment plot and trajectory iteration plot are both visible.

Click the Estimate button in the Parameter Estimation tab to start the estimation. The estimation
will keep iterating the parameter values until the estimation converges and terminates. Parameter
Estimation provides various state-of-the-art estimation methods. The most common selections include
the nonlinear least-squares and Nelder-Mead optimization methods. More information on these
methods is available in the Optimization Toolbox™ documentation. You can also use the pattern
search method in the Global Optimization Toolbox for parameter estimation.

The plot below shows the measured data overlaid with the simulated data. The simulated data comes
from the model with the estimated parameters. Comparing the response of the system before and
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after the estimation process clearly shows that the estimation successfully identified the model
parameters and the simulated response accurately matches the experimental data.
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Validation

After completing the estimation, it is important to validate the results against other data sets. A
successful estimation should match not only the experimental data that we used for estimation, but
also the other data sets that we collected in our experiments.

We used our second data set in ValidationData for validating the estimation results. As the next
figure shows, the match between the model response and the data set is very good. In fact, the two
curves are almost identical for this example.
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Summary

Engineers and scientists across disciplines and industries are well acquainted with the benefits of
modeling dynamic systems. They may use either first-principles mathematics or test-data based
methods. First-principles models provide important insight into system behavior, but may lack
accuracy. Data-driven models provide accurate results, but tend to offer limited understanding of the
physics of the system. This article showed the use of Parameter Estimation to improve the accuracy of
a DC Servo Motor model by estimating the model parameters using experimental data.

Close the model
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Engine Speed Model Parameter Estimation

This example shows how to estimate the coefficients of a nonlinear (quadratic) function to
approximate the dynamic behavior of a system component.

Description of the Engine Speed Model

The Simulink® model for the engine system, spe_speed, is shown below. Take a few moments to
explore this model.

The throttle angle from the block labeled "Throttle" on the left side of the diagram drives the
simulation. The output of interest in the model is the engine speed, which can be monitored by
opening the Scope block labeled "Engine Speed (rpm)".

Open the engine speed model

Engine Speed Model

Copyright (c) 2005-2014 The MathWoerks, Inc.
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Modeling Air Charge Using a Nonlinear Function

Among other dynamic components in the model, the "Intake Manifold" subsystem is used to model
the dynamics of the air intake manifold in the engine.

Open the Intake Manifold subsystem
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In particular, the "Convert to mass charge" block above defines a quadratic multi-variable polynomial
to approximate the relationship between the Air Charge, the Manifold Pressure, and the Engine
Speed. This approximation has the following form:

AirCharge = p(l) = EngineSpeed + p(2) = Mani fold Pressure
Fp(3) = [JlfﬁH:'frjn’rff".r'r'ﬁﬁm'r'32 +pld) « EngineSpeed x Mani fold Pressure 4 p(5)
The Parameter Estimation Problem

When measured data for various signals in your model are available, you can use Simulink® Design
Optimization™ to compute the unknown parameters.

The parameter estimation problem in our case is to compute the coefficients
p(1),2(2), p(3), p(4), p(5)
using measured data.

You can launch a pre-configured parameter estimation task in the Parameter Estimator by first
opening the model and by double-clicking on the orange block in the lower corner of the model.

Close the model
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Clutch Friction Coefficient Estimation

This example shows how to use Simulink® Design Optimization™ to estimate parameters of a clutch
model created using Simscape™ Driveline™ library blocks.

Requires Simscape Driveline
Description of Clutch Model
The Simulink® model of the clutch system, simple clutch, is shown below.

This model consists of two inertias coupled by a clutch. Initially, the pressure applied to the clutch
plates is zero and Inertia 2 has zero velocity. A constant torque is also applied to Inertia 1. Once the
clutch pressure starts increasing, Inertia 2 starts rotating. However, the friction between the clutch
plates causes slippage so that the two inertias accelerate at different rates and have different
velocities.

The clutch system consists of two rotational inertias and a clutch. Pressure is applied to the clutch
plates, which then couples the two inertias. A Simscape Driveline block is used to model the clutch,
which has a speed-dependent friction coefficient linearly varying from C1 at 0 rad/s to C2 at 10 rad/s.

The coefficients of friction (C1, C2) in the Controllable Friction Clutch block are unknown and are
estimated using experimental data for the output velocities of Inertia 1 and Inertia 2.

Group 1 gigng| 1
Signal 2

—I—..-o\o——h-
Clutch Pressure -
E_
F
B

Simple Clutch Model

- v —(D)
P —
1 b Conn1 Velocities,
Controllabl
Torque u'? .r-::j =He alocity Crut em
Torque Actuator netan
Clutch
@ O
fix) =0 P —
Parameter Estimation R W
with preloaded data

Click Estimate in tha Ul

Welocity In

to run an estimation.
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Using Simulink® Design Optimization™

In the Apps tab, click Parameter Estimator under Control Systems to launch the Parameter
Estimator app.



Clutch Friction Coefficient Estimation

The launched Parameter Estimation UI consists of projects where we store our experimental data sets
and estimation results. These projects can be saved and reused later.

Alternatively, you can double-click the orange colored block at the lower left corner of the Simulink
diagram. This will reload a project that has already been saved.

In general, estimating model parameters consists of three main steps: importing experimental data
sets into the project, selecting the model parameters for estimation, and running an estimation and
analyzing the results.

Experimental Data for Estimation

We have two sets of output data on this clutch system. The first one, EstimationData, will be used
for parameter estimation and the other one, ValidationData, for validating the response of the
Simulink model with the estimated parameters.

In the first experiment the clutch pressure follows the profile of Signal 1 supplied by the Clutch
Pressure block in the Simulink model. This signal applies a ramp-up and a ramp-down pressure on
the clutch plates. Click Add Plot in the Parameter Estimation UI, and select EstimationData to view
the output velocities of the inertias in response to this input. Such data sets could also be imported
from various sources including MATLAB® variables, MAT files, Excel® files, or comma-separated-

value files.

[ PARAMETER ESTIMATION VALDATION EXPERIMENT PLOT BEdLELDeE0E
ﬁ % @ E % E E‘ E‘i Cost Function: Sum Sguared Error « D
Open Save New Select Select  Sensitivity  Add Plot PlotModel (5 More Options. . Estimate
Session + Session = Experiment Experiments  Paramesters  Analysis + - Response -
EXPERIMENTS PARAMETERS PLOTS OPTIONE ESTIMATE
Data Browser ® | Experiment plot: EstimationData |
w Parameters 'i' These is no simulation data for "EstimationData’, click "Plot Model Response’ or run the estimation to update the plot.

1
c2
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w Experiments

EstimationData

ValidationData

¥ Results
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w Preview
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Time (seconds)
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2 Parameter Estimation

The parameter values for the friction coefficients are not known accurately. Clicking Plot Model
Response provides a look at the response of this system, and shows that it does not match the
experimental data, hence the parameters need to be estimated for a better fit.

[ PARAMETER ESTIMATION VALIDATION EXPERIMENT PLOT HE LB Lae50] E
ﬁ % @' E % E‘ Eﬂl Gﬁ Cost Function: Sum Sgquared Error = |>
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Session *+ Session +  Experiment Experiments  Parameters Analysis - - Response -
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Measured output signal(s):
- simple_clutch/Gainl:1

w Results
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Setting up and Running the Estimation

We will use the experimental data set EstimationData to estimate friction parameters of the clutch
system.

The first step is to define the variables to be estimated. This establishes which parameters of the
simulation can be adjusted, and any rules governing their values. Click Select Parameters to specify
parameters to be estimated. Here we wish to estimate the friction coefficients C1 and C2 in the
Controllable Friction Clutch block of the Simulink model. In the pre-loaded parameter estimation
example, these parameters have already been specified for estimation. If there are known bounds on
the parameter values, they can be set in the minimum and maximum fields.
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Clutch Friction Coefficient Estimation

Edit: Estimated Pararnete,s
Parameters Tuned for all Experiments

*

i |
- |Es| ~| Hp ¢ @ Estmate
Minimum:lﬂ 1Ir| 2
Maximum:ll v| 2
Scale:lﬂ.S ‘r| @
2
b |05 ~| B 3¢ G Estimate

m

E Select parameters

Parameters and Initial S5tates Tuned per Experiment

Experiment: |E5timatinnData "’|

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

There are no parameters defined for this experiment.

Edit experiment

1 | 1] [ »

Next, click Select Experiments to specify which experiments are to be used for estimation. It is
possible to use one or more data sets at once in a given estimation. For our example, we will use the
data set called EstimationData.

You are now ready to run the estimation. Click Estimate to start the estimation process. We provide a
number of estimation methods, including nonlinear least-squares minimization, gradient descent,
pattern search, or simplex search. Running estimation will vary the model parameters in order to
reduce the error between the simulation outputs and the experimental data. During estimation, the
experiment plot showing measured data and simulation response will updated. As the parameter
values improve, the simulation curve should get closer to the experimental data curve. Also, a
trajectory plot will show the parameter values at each iteration. These curves should reach steady-
state as the parameter values get closer to their physical values.
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In addition, the table in the Estimation Progress Report will show data regarding the estimation
process such as the number of iterations, the number of simulations, and the cost function. The cost
function value represents the degree of fit between the simulation response and the estimation data.
This value would decrease at each iteration, indicating the amount of improvement in the fit.

Validation

Once we complete the estimation, it is important to validate the results against other data sets. A
successful estimation should be able to not only match the experimental data that we used for
estimation, but also the other data sets that we collected in our experiments.

In the second set of experimental data we have for the clutch system, the clutch pressure follows the
profile of Signal 2 supplied by the Clutch Pressure block in the Simulink model. This signal applies
a periodic pressure on the clutch plates. To use this, first double-click on the Manual Switch
block to change the input signal to the one used for validation data (Signal 2). Then in the
Parameter Estimation UI, click the Validation tab, click Select Experiments and select the
experiment ValidationData for validation. This contains output data corresponding to input from
Signal 2. Finally, click Validate to carry out the validation. An experiment plot will compare the
simulation response against experimental data. We see that the match is very good.
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Clutch Friction Coefficient Estimation

PARAMETER ESTIMATION VALIDATION EXPERIMENT PLOT VIEW
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In summary, we have carried out estimation by specifying an experiment with measured output data,
and designating certain parameters to be estimated. We then checked the parameter values by
validating with a different data set, giving confidence in the parameter values.

Close the model
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2 Parameter Estimation

Inverted Pendulum Parameter Estimation

This example shows how to use Simulink® Design Optimization™ to estimate multiple parameters of
a model by iterated estimations.

Requires Simscape™ Multibody™
Simscape Multibody Model of the Inverted Pendulum System

The Simulink® model for the inverted pendulum, spe mech invpend, is shown below.

Rotational Inverted Pendulum

Parameter Estimation
with prelcaded data .l C]
-
Click Estmate in the Ul
to run an estimation.
D e (1)
Ground w2 )
Env

Copyright 2002-2014 The MathWorks, Inc.

Inverted Pendulum Model Description

The pendulum system has an arm that swings in the horizontal plane, driven by a DC motor. The
purpose of the arm is to provide a balancing torque to a swinging pendulum, to keep the pendulum in
an upright position. The angle of both the arm and pendulum is monitored and used as feedback to
control the motion of the system. For this example we will only concentrate on estimating parameters
of the uncontrolled system shown below.
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Inverted Pendulum Parameter Estimation

ZB?

Jb

The system is modeled using Simscape Multibody. There are two bodies modeled in this system. The
machine consists of one body representing the rotational arm and the other representing the
pendulum. The bodies are connected by revolute joints that constrain the motion of the bodies
relative to each other. An input voltage is delivered to a DC motor that provides the torque to the
rotational arm.

The motor is modeled as a torque gain Kt. The arm of the pendulum has mass Ma, inertia Jb and
length r. The pendulum has length 1p and mass mp. For this example damping is modeled in the
revolute joints using gains Kda and Kdp. The outputs of the system are the angles of the arm and the
pendulum.

For this example we will run two estimations using different parameter sets for each estimation. This
allows us to customize our estimation and can result in a more efficient solution.

Estimation Data

Double-click the orange block in the upper left corner of the inverted pendulum model to launch the
Parameter Estimator, pre-loaded with data for this project. This is configured with measured
experiment data Estimation. For other uses you can import experimental data sets from various
sources including MATLAB® variables, MAT files, Excel® files, or comma-separated-value files. It is
also configured with validation data Validation which we will use later, after estimation. The
measured data in Estimation is shown in the experiment plot. There is only one data set used for
estimation in this example.
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The experiment plot is also used to see how well the measured data matches the current model. Click
Plot Model Response in the Parameter Estimation tab to display simulated signal data on the
experiment plots. The simulation does not match the measured data, showing that the model
parameters need to be estimated.
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Define Variables

The next step is to define the variables for the estimation. This establishes which parameters of the
simulation can be adjusted, and any rules governing their values. Click Select Parameters in the
Parameter Estimation tab. For our inverted pendulum example, we have already selected the
torque gain parameter, Kt, for estimation. Since we know from our physical insight that this
parameter can not be negative we set its lower limit to zero.
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Parameters Tuned for all Experiments

b
b |0.0019 ~| B3 ¢ T Estimate
Kda
b 007 ~| Hp % T Estimate
Kdp
b |0.0002 ~| B ¢ M Estimate
Kt
¥ 01342 ~| fp X @ Estimate

Minimum:|ﬂ v| @;

Maximum:|1nf '| @

Scale: |0.1342 ~| B

Ma
b |00t ~| B % [ Estimate
Ip
b 0192 »| B3 ¢ M Estimate
mp
b 004 ~| B ¢ M Estimate
r
b 0192 ~| B % [ Estimate

E Select parameters

Parameters and Initial States Tuned per Experiment

Experiment: |Estimation =

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

There are no parameters defined for this experiment.

First Estimation

With the parameters for estimation specified, we select experiments to use for estimation. Click
Select Experiments in the Parameter Estimation tab and select the experiment named
Estimation for estimation.

We are now ready to start our estimation. Click Estimate in the Parameter Estimation tab to start
the estimation. The estimation will keep iterating the parameter value until the estimation converges
and terminates.
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Inverted Pendulum Parameter Estimation

The plot below shows the experimental data overlaid with the simulated data. The simulated data

comes from the model with the estimated parameter Kt. The results of the estimation show that the
first output (the position of the arm) matches, however we can see that the second output (the
position of the pendulum) does not show very satisfactory results. It is clear that additional estimation
is needed to obtain better results.
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Running an Additional Estimation

This time we will leave the torque gain, Kt, constant and estimate the other parameters of the model.
Click Select Parameters in the Parameter Estimation tab. Uncheck Kt, and check the other
parameters as shown below.
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Parameters Tuned for all Experiments
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Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

There are no parameters defined for this experiment.

Edit experiment

Ba| Update Model &7 OK () Help

Click Estimate to start the new estimation. The results of the second estimation are shown below.
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This is clearly a better result. This shows that in order to complete an estimation task it is not
necessary to estimate all the parameters in the model at the same time. We can run multiple
estimations keeping some parameters constant while varying others.

Validation

It is important to validate the results against other data sets. A successful estimation will not only
match the experimental data that was used for estimation, but also the other data sets that were
collected in experiments. An experiment named Validation has already been created for this
project. Click Add Plot in the Parameter Estimation tab and select Validation to view the data.

Click Plot Model Response to see the simulation output overlaid on the data. The figure below
shows how the inverted pendulum system responds to the validation input data. The validation shows
that this model does handle the lower frequencies of the input validation data well and the model
parameters were successfully estimated.
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Conclusion

This example shows the flexibility of Parameter Estimation for segmenting an estimation task into
multiple estimations. This allows for estimations to be run on different parameter sets which can help

in the speed of estimating a given model.

Close the model
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Simplified Alternator Parameter Estimation

Simplified Alternator Parameter Estimation

This example shows how to use parameter bounds to improve estimation performance. This is
illustrated by estimating the power rating, P, of a synchronous machine.

Requires Simscape™ and Simscape™ Electrical™

Simulink® Model of the Simplified Alternator

The Simulink® model for the alternator system, spe_psbloadshed machine, is shown below.

Speed Regulation of a Simple Alternator
Copyright 2002-2017 The MathWaerks, Inc.

Input

is_abc

Riotor spaed (pu)

Blectrical power (pu)
—... Electric Tarque {pu)

currents {pu)
Ei {pu speed {pu)
{puj2 |— A,
Powar {pu) y =2
Step@0.2s S e A . |1»—||||
€D > T (pu) o q A
- ' *
Simpdlified Synchronous Machine ‘ ) Circuit Breaker? Charge?
2 MVA GO0 W . BOD KW
' Charge1
BOD KW
400 kvar

Click Estimate in the LI
to run an estimation.

Model Description

A three-phase, four-wire alternator rated 2000 kVA, 1600 kW, 0.8 power factor, 600 V, 1800 rpm is
connected to a 1600 kW, 400 kvar inductive load. The stator neutral point is grounded. The internal
impedance of the generator (Zg = 0.0036 + j*0.16 pu) represents the armature winding resistance Ra
and direct axis transient reactance X'd. The total inertia constant of the generator and prime mover is
H = 0.6 s, corresponding to ] = 67.5 kg.m"2.
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2 Parameter Estimation

A three-phase breaker is used to switch out a 800 kW resistive load. The breaker is initially closed
and it is opened at t = 0.2 s, resulting in a 50% load shedding.

The machine is excited with a constant voltage. The mechanical torque is modeled as a two-step
signal. The first step has a magnitude of 1.0 and a duration of 0.18s. The second step has a
magnitude of -0.5 for a duration of 0.2s.

Estimation Data

Double-click the orange block on the left side of the model to open the Parameter Estimator already
loaded with experimental data, NewData. The input and output data from this experiment are shown
in the plot. There is only one data set used for this example.
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Define Variables

Click Select Parameters in the Parameter Estimation tab to specify parameters for estimation.
Here, we have already loaded the parameters for this model. There is only one parameter in this
model that we are interested in estimating, the nominal power, P, of the Simplified Synchronous
Machine.

We know from the specs that this value should be around 2000kW but here we assume that we only
have an initial guess of 3000kW. We also set the minimum value of the nominal power to be 3000kW,
and the maximum value to be 4000kW.
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The Estimation Task

With the parameters for estimation specified, we select experiments to use for estimation. Click
Select Experiments in the Parameter Estimation tab and select NewData for estimation.

Click Estimate to start the estimation. The estimation will keep iterating the parameter value and
the experiment plot will continue to update, until the estimation converges and terminates.

The plot below shows the experimental data overlaid with the simulated data. The simulated data
comes from the model with the estimated parameters. As expected the estimation terminated quickly
and the results were not so good because of our initial guess and bounds of the parameter P.
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Running the Estimation with a Different Initial Guess

Since we are not satisfied with our results, we will choose a different initial guess. This is quite
simple to do with the Simulink® Design Optimization™ Parameter Estimator. Click Select
Parameters in the Parameter Estimation tab and change the value to 1000 kV and the Minimum
and Maximum bounds to 0 kV and 3000 kV respectively.
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Parameters Tuned for all Experiments

P

- |1e+06 ~| Hp % [ Estimate
Minimum: |U v| Ea
Maximum: |3e+UE '| Ej»
Scale: |3e+UE "'| E@L

E Select parameters

Parameters and Initial States Tuned per Experiment

Experiment: |NewData =

Select experiment initial states for estimation.

There are no initial states defined for this experiment.

Select experiment parameters for estimation.

There are no parameters defined for this experiment.
Edit experiment
Ea| update Model &7 OK () Help

Click Estimate to run another estimation. Once the estimation is complete we can verify that our
results are more accurate by looking once again at the measured vs. simulated response.
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[ PARAMETER ESTIMATION WALIDATION EXPERIMENT PLOT WIEW

E E ﬁ . E E E‘ E Cost Function: Sum Squared Error -
Open Save

Data Browser ® | Experiment plot: NewData 0 | EstimatedParams % |

w Parameters | NewData

P spe_psbloadshed_machine/Gain2:1
‘l‘l T T T T T T T

Measured
— Simulated

w Experiments
Newdata 09

@
T 0.8
=
a spe_psbloadshed_machine/Input:1
w Results -cEf 1 T T T - T T L T T T
EstimatedParams
0.5 7
w Preview | o
Measured cutput signal(s):
- 1 1 1 Il 1 Il 1

[ ]

spe_pabloadshed machine/Gain2:1 [= 05
0.05 01 0.15 02 0.25 0.3 0.35 0.4 0.45 0.5

Time (seconds)

Measured input signal (s): i

Conclusion

Placing inappropriate bounds on your parameters can lead to inaccurate results and most often the
estimation will not converge successfully. However, with the parameter estimation GUI, it is simple to
change these bounds to run another estimation without creating a new estimation project.

Close the model
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How the Optimization Algorithm Formulates Minimization Problems

How the Optimization Algorithm Formulates Minimization
Problems

When you optimize parameters of a Simulink model to meet design requirements, Simulink Design
Optimization software automatically converts the requirements into a constrained optimization
problem and then solves the problem using optimization techniques. The constrained optimization
problem iteratively simulates the Simulink model, compares the results of the simulations with the
constraint objectives, and uses optimization methods to adjust tuned parameters to better meet the
objectives.

This topic describes how the software formulates the constrained optimization problem used by the
optimization algorithms. For each optimization algorithm, the software formulates one of the
following types of minimization problems:

* Feasibility on page 3-3

* Tracking on page 3-5

» Mixed feasibility and tracking

For more information on how each optimization algorithm formulates these problems, see:

* “Gradient Descent Method Problem Formulations” on page 3-6
+ “Simplex Search Method Problem Formulations” on page 3-7

* “Pattern Search Method Problem Formulations” on page 3-7

* “Gradient Computations” on page 3-8

Feasibility Problem and Constraint Formulation

Feasibility means that the optimization algorithm finds parameter values that satisfy all constraints to
within specified tolerances but does not minimize any objective or cost function in doing so.

In the following figure, x;, X3, and x, represent a combination of parameter values P, and P, and are
feasible solutions because they do not violate the lower bound constraint.

ol
L ] L ]
2 - y
= -
Violation Lower
Bound

Py

In a Simulink model, you constrain a signal by specifying lower and upper bounds in a Check block
(Check Step Response Characteristics, ...) or a requirement object
(sdo.requirements.StepResponseEnvelope, ...), as shown in the following figure.
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These constraints are piecewise linear bounds. A piecewise linear bound y;,; with n edges can be
represented as:

V() th st =th4q

The software computes the signed distance between the simulated response and the edge. The signed
distance for lower bounds is:

maxX  Vpnd — Vsim
t<tsty

c=| MaX VYbnd = Ysim
lh=t=t3

max  Vpnd — Vsim
th<t<tpn+1
where yq;, is the simulated response and is a function of the parameters being optimized.

The signed distance for upper bounds is:

max  Vsim — Ybnd
t<tsty

c= max  Vsim — Ybnd
tysts<ts

max  Ysim — Vbnd
th<t<th41

At the command line, opt_fcn supplies ¢ directly from the Cleq field of vals.

If all the constraints are met (¢ = 0) for some combination of parameter values, then that solution is
said to be feasible. In the following figure, x; and x5 are feasible solutions.
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LY

Violation
e *n

When your model has multiple requirements or vector signals feeding a requirement, the constraint
vector is extended with the constraint violations for each signal and bound:

e

Py

C =[cy; 09 ;5 0nl.

Tracking Problem

In addition to lower and upper bounds, you can specify a reference signal in a Check Against
Reference block or sdo. requirements.SignalTracking object, which the Simulink model output
can track. The tracking objective is a sum-squared-error tracking objective.

You specify the reference signal as a sequence of time-amplitude pairs:
Yref(tref), tref € {Trefo, Tref1,  TrefN} -

The software computes the simulated response as a sequence of time-amplitude pairs:
Vsim(tsim), tsim € {Tsimo, Tsim1, = Tsimn},

where some values of ¢y, may match the values of t,..

A new time base, t,,, is formed from the union of the elements of t,.r and t,. Elements that are not
within the minimum-maximum range of both t..rand ¢, are omitted:

thew = {titsim U tref}

Using linear interpolation, the software computes the values of y,; and y;, at the time points in t,,,,
and then computes the scaled error:

(.Vsim(tnew) - .Vref(tnew)) .

max|yref|
new

e(thew) =

Finally, the software computes the weighted, integral square error:

f= f w(t)e(t)dt .

Note The weight w(t) is 1 by default. You can specify a different value of weight only at the command
line.

When your model has requirements or vector signals feeding a requirement, the tracking objective
equals the sum of the individual tracking integral errors for each signal:
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F=>fi.

Gradient Descent Method Problem Formulations

The Gradient Descent method uses the function fmincon to optimize model parameters to meet
design requirements.

Problem Type Problem Formulation

Feasibility Problem The software formulates the constraint C(x) as described in “Feasibility
Problem and Constraint Formulation” on page 3-3.

* Ifyou select the maximally feasible solution option (i.e., the optimization
continues after an initial feasible solution is found), the software uses the
following problem formulation:

min y
[x. v]

s.t. Cx)=svy

<
X <X
0

A IA

X
4
y is a slack variable that permits a feasible solution with C(x) < y rather
than C(x) = 0.

» Ifyou do not select the maximally feasible solution option (i.e., the
optimization terminates as soon as a feasible solution is found), the
software uses the following problem formulation:

min 0
X

s.t. C(x)
X

=X

I\

0
<X

Tracking Problem The software formulates the tracking objective F(x) as described in “Tracking
Problem” on page 3-5 and minimizes the tracking objective:

min F(x)
X

s.t. xsx=sx

Mixed Feasibility and The software minimizes following problem formulation:
Tracking Problem
min F(x)
X
s.t. Cx)=0
XSX<X

Note When tracking a reference signal, the software ignores the maximally
feasible solution option.
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Simplex Search Method Problem Formulations

The Simplex Search method uses the function fminsearch and fminbnd to optimize model
parameters to meet design requirements. fminbnd is used if one scalar parameter is being
optimized, otherwise fminsearch is used. You cannot use parameter bounds x < x < X with

fminsearch.
Problem Type Problem Formulation
Feasibility Problem The software formulates the constraint C(x) as described in “Feasibility
Problem and Constraint Formulation” on page 3-3 and then minimizes the
maximum constraint violation:
min max(C(x))
X
Tracking Problem The software formulates the tracking objective F(x) as described in “Tracking
Problem” on page 3-5 and then minimizes the tracking objective:
min F(x)
X
Mixed Feasibility and The software formulates the problem in two steps:

Tracking Problem
1 Finds a feasible solution.

min max(C(x))

2 Minimizes the tracking objective. The software uses the results from step
1 as initial guesses and maintains feasibility by introducing a
discontinuous barrier in the optimization objective.

min I'(x)
X
where
[ ifmax(C(x)) >0
I = {F(x) otherwise.

Pattern Search Method Problem Formulations

The Pattern Search method uses the function patternsearch to optimize model parameters to meet
design requirements.

Problem Type Problem Formulation

Feasibility Problem The software formulates the constraint C(x) as described in “Feasibility
Problem and Constraint Formulation” on page 3-3 and then minimizes the
maximum constraint violation:

min max(C(x))

s.t. xsxsx
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Problem Type

Problem Formulation

Tracking Problem

The software formulates the tracking objective F(x) as described in “Tracking
Problem” on page 3-5 and then minimizes the tracking objective:

min F(x)
X

s.t. xsx=sx

Mixed Feasibility and
Tracking Problem

The software formulates the problem in two steps:
1 Finds a feasible solution.

min max(C(x))
X
s.t. xsx=sx
2 Minimizes the tracking objective. The software uses the results from step
1 as initial guesses and maintains feasibility by introducing a
discontinuous barrier in the optimization objective.

o ifmax(C(x)) >0
F(x) otherwise.

Gradient Computations

For the Gradient descent (fmincon) optimization solver, the gradients are computed using
numerical perturbation:

1
dx = 3/eps X max(‘x ‘ , mxtypical)

dL = max(x — dX, Xpin)

dR = min(x + dX, Xmax)

Fr = opt _fcn(dL)
Fr = opt_fcn(dR)

dF _ (FL —FR)

dx = [dL=dR)

* xis a scalar design variable.

*  Xpin is the lower bound of x.

* X 1S the upper bound of x.

*  Xyypicar 18 the scaled value of x.

* opt fcn is the objective function.

dx is relatively large to accommodate simulation solver tolerances.
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If you want to compute the gradients in any other way, you can do so in the cost function you write for
performing design optimization programmatically. See sdo.optimize and GradFcn of
sdo.OptimizeOptions for more information.
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Specify Signals to Log

Design requirements require logged model signals. During optimization, the model is simulated using
the current value of the design variables and the logged signal is used to evaluate the design
requirements.

1 Inthe Response Optimizer, select Signal in the New drop-down list. A window opens where
you select a signal to log.

2 In the Simulink model window, click the signal to which you want to add a requirement.

b‘
Signal set: Siql

Signal

Mo signals have currently been selected.
Please go back to the model and dick on oo |m)
a signal to select it,

| ok || Cancel || Help |

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

. to add it to the signal set.
4 In Signal set field, enter a name for the selected signal set.

Select the signal and click

Click OK. A new variable, with the specified name, appears in the Data area of the Response
Optimizer.

See Also

* “Design Optimization to Track Reference Signal (GUI)”
* sdo.SimulationTest
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Specify Custom Requirements in the App

This topic shows how to specify custom requirements in the Response Optimizer.

You can specify custom requirements, such as minimizing system energy. To specify custom
requirements:

1

In the Response Optimizer, in New drop-down menu, select Custom Requirement. The
Create Requirement dialog box opens where you specify the custom requirement.

Specify a requirement name in Name.
Specify the requirement type in the Type drop-down menu.

Specify the name of the function that contains the custom requirement in Function. The field
must be specified as a function handle using @. The function must be on the MATLAB path. Click

li, to review or edit the function.

If the function does not exist, clicking - opens a template MATLAB file. Use this file to
implement the custom requirement. The default function name is myCustomRequirement.

(Optional) To prevent the solver from considering specific parameter combinations, select Error
if constraint is violated. Use this option for parameter-only constraints.

During an optimization iteration, the solver first evaluates requirements with this option
selected.

+ Ifthe constraint is violated, the solver skips evaluating any remaining requirements and
proceeds to the next iteration.

+ Ifthe constraint is not violated, the solver evaluates the remaining requirements for the
current iteration. If any of the remaining requirements bound signals or systems, then the
solver simulates the model.

For more information, see “Skip Model Simulation Based on Parameter Constraint Violation
(GUI)” on page 3-163.

Note If you select this check box, then do not specify signals or systems to bound. If you do
specify signals or systems, then this check box is ignored.

(Optional) Specify the signal or system, or both, to be bound.

You can apply this requirement to model signals, or a linearization of your Simulink model
(requires Simulink Control Design ), or both.

Click Select Signals and Systems to Bound (Optional) to view the signal and linearization I/O
selection area.

* To apply this requirement to a model signal:
In the Signal area, select a logged signal to which you will apply the requirement.

If you have already selected a signal to log, as described in “Specify Signals to Log” on page
3-10, it appears in the list. Select the corresponding check box.

If you have not selected a signal to log:
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Click . A Create Signal Set dialog box opens where you specify the logged signal.
b In the Simulink model window, click the signal to which you want to add a requirement.

Create 5ignal%et .
Signal set: |Sig|

Signal

Mo signals have currently been selected.
Please go back to the model and dick on [~ 0}
a signal to select it

| ok || Cancel || Help |

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.
Click OK. A new variable, with the specified name, appears in the Data area of the
Response Optimizer.
» To apply this requirement to a linear system:
a  Specify the simulation time at which the model is linearized in Snapshot Times. For
multiple simulation snapshot times, specify a vector.
b  Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select
the corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box. For more information on using this dialog box, see
“Create Linearization I/O Sets” on page 3-64.

For more information on linearization, see “What Is Linearization?” (Simulink Control
Design).

7 Click OK.

A new variable, with the specified name, appears in the Data area of the Response Optimizer.
A graphical display of the requirement also appears in the Response Optimizer app window.

See Also

Related Examples
. “Design Optimization to Meet a Custom Objective (GUI)” on page 3-103
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“Design Optimization to Meet Custom Signal Requirements (GUI)” on page 3-125
“Specify Time-Domain Design Requirements in the App” on page 3-16
“Specify Frequency-Domain Design Requirements in the App” on page 3-43
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Move Constraints

Constraint-bound edges define time-domain constraints you would like to place on a particular signal
in your model. You can position these edges, which appear as a yellow shaded region bordered by a
black line, graphically on page 3-14 or exactly on page 3-15.

Move Constraints Graphically

Use the mouse to click and drag edges in the amplitude versus time plot, as shown in the following
figure.

sooRectifierFull-Wave Rectifier:1

Amplitude

T T
Time (seconds)
* To move a constraint edge boundary or to change the slope of a constraint edge, position the
pointer over a constraint edge endpoint, and press and hold down the left mouse button. The
pointer should change to a hand symbol. While still holding the button down, drag the pointer to

the target location, and release the mouse button. Note that the edges on either side of the
boundary might not maintain their slopes.

* To move an entire constraint edge up, down, left, or right, position the mouse pointer over the
edge and press and hold down the left mouse button. The pointer should change to a four-way
arrow. While still holding the button down, drag the pointer to the target location, and release the
mouse button. Note that the edges on either side of the boundary might not maintain their slopes.

To move a constraint edge to a perfectly horizontal or vertical position, hold down the Shift key while
clicking and dragging the constraint edge. This causes the constraint edge to snap to a horizontal or
vertical position.

When moving constraint bound edges, it is sometimes helpful to display gridlines on the axes for
careful alignment of the constraint bound edges. To turn the gridlines on or off, right-click within the
axes and select Grid.

Note You can move a lower bound constraint edge above an upper bound constraint edge, or vice
versa, but this produces an error when you attempt to run the optimization.
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Position Constraints Exactly
To position a constraint edge exactly:

1 Position the pointer over the edge you want to move and right-click. Select Edit to open the Edit
Design Requirement dialog box.

« J: Edit Design Requirement i [m] [ET
Design reguiremment: ILu:uwer tirne response bound from 0to 10 sec LI
~Design requirement parameters
Segments:
Skart End
Time amplitude Time: amplitude Slope Weight
1] -0.01 1 -0.01 ] 1=
0.9 3 0.9
3 0,99 10 0,99

2 Specify the position of each constraint edge in the Time and Amplitude columns.

See Also

More About
. “Specify Time-Domain Design Requirements in the App” on page 3-16
. “Specify Frequency-Domain Design Requirements in the App” on page 3-43
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Specify Time-Domain Design Requirements in the App

3-16

In the Response Optimizer, you can specify the following time-domain requirements:

Signal Bound — “Specify Piecewise-Linear Lower and Upper Bounds” on page 3-16

Signal Property — “Specify Signal Property Requirements” on page 3-17

Step Response Envelope — “Specify Step Response Characteristics” on page 3-19

Signal Tracking — “Track Reference Signals” on page 3-21

Ellipse Region Constraint — “Impose Elliptic Bound on Phase Plane Trajectory of Two Signals”
on page 3-22

Custom Requirement — “Specify Custom Requirements” on page 3-24

After you specify the constraints, you can see if the requirements are satisfied by optimizing the
design variables. For more information, see “Specify Optimization Options” on page 3-62.

Specify Piecewise-Linear Lower and Upper Bounds

To specify upper and lower bounds on a signal:

1

In the Response Optimizer, select Signal Bound in the New drop-down list. A window opens
where you specify upper or lower bounds on a signal.

Specify a requirement name in the Name box.
Select the requirement type using the Type list.

Specify the edge start and end times and corresponding amplitude in the Time (s) and
Amplitude columns.

Click |L| to specify additional bound edges.

Select a row and click |L| to delete a bound edge.
In the Select Signals to Bound area, select a logged signal to apply the requirement to.

If you have already selected signals, as described in “Specify Signals to Log” on page 3-10, they
appear in the list. Select the corresponding check-box.

If you have not selected a signal to log:

Click |L| A Create Signal Set dialog box opens where you specify the logged signal.
b In the Simulink model window, click the signal to which you want to add a requirement.
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b

Signal set: S.iq|

Mo signals have currently been selected.
Please go back to the model and dids on O

a signal to select it.

Signal

| ok || Cancel || Help |

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

d In Signal set field, enter a name for the selected signal set.

Select the signal and click

| to add it to the signal set.

Click OK. A new variable, with the specified name, appears in the Data area of the

Response Optimizer.
7 Click OK.

A variable with the specified requirement name appears in the Data area of the app. A graphical
display of the requirement also appears in the Response Optimizer app window.

8 (Optional) In the graphical display, you can:

* “Move Constraints Graphically” on page 3-14

* “Position Constraints Exactly” on page 3-15

Alternatively, you can add a Check Custom Bounds block to your model to specify piecewise-linear

bounds.

Specify Signal Property Requirements

To specify signal property requirements:

1 In the Response Optimizer, select Signal Property in the New drop-down list. A Create
Requirement window opens where you specify signal property requirements.

In the Name box, specify a requirement name.

3 In the Specify Property area, specify a signal property requirement using the Property and

Type lists and the Bound box.

Property List

Property Description Time weighting
available

Signal minimum Minimum of the signal No

Signal maximum Maximum of the signal No
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3-18

Property Description Time weighting
available
Signal final value Last signal value No
Signal mean Average of signal value Yes
Signal median Middle value of signal Yes
Signal variance Variance of signal Yes
Signal interquartile |Difference between the 75th and 25th |No
range percentiles of signal values
Signal sum IN Yes
> S(i), where S(tp), ..., S(ty) is the
i=tp
signal to constrain.
Signal sum square IN . Yes
> S()
i=tp
Signal sum absolute IN Yes
> 1)
i=tp

For signal properties where the Time-Weighted option is available, you can select it to weight
the property computation by the time intervals between samples.

Custom Signal Property

You can add a custom signal property to the Property list by editing the function
sdo.requirements.signalPropertyFcns.

a At the MATLAB command prompt, enter edit
sdo.requirements.signalPropertyFcns.

b  Add your signal property function to the FcnData cell array.

Your signal property function must be on the path.
In the Select Signals to Bound area, select the logged signal to which you want to apply the
requirement.

The signal selected must have numeric type data (either floating-point or integer). Also, if the
property selected is Signal median, Signal variance, or Signal interquartile range,
then the signal data must be floating-point (either double or single).

If you have already selected a signal, as described in “Specify Signals to Log” on page 3-10, the
signal appears in the list. Select the corresponding check box for that signal.

If you have not selected a signal to log:

Click |L| A Create Signal Set dialog box opens where you specify the logged signal.
b In the Simulink model window, click the signal to which you want to add a requirement.
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b
Signal set: S.iq|

Signal

Mo signals have currently been selected.
Please go back to the model and dids on O imj
a signal to select it.

| ok || Cancel || Help |

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Data area of the
Response Optimizer.

Click OK.

A variable with the specified requirement name appears in the Data area of the app. An iteration
plot depicting the signal property for each iteration also appears in the Response Optimizer
app window.

Specify Step Response Characteristics

To apply a step response requirement to a signal in your model, specify the step response
characteristics as follows:

1

Select a step response requirement from the Response Optimizer.

In the New drop-down menu of the app, in the New Time Domain Requirement section, select
Step Response Envelope.

A Create Requirement dialog box opens where you specify the step response requirements on a
signal.

Specify a requirement name in the Name field of the dialog box.

Specify the step response characteristics:

» Initial value — Input level before the step occurs
* Step time — Time at which the step takes place
* Final value — Input level after the step occurs

+ Rise time — The time taken for the response signal to reach a specified percentage of the
step range. The step range is the difference between the final and initial values.

* % Rise — The percentage of the step range used with Rise time to define the overall rise
time characteristics.
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* Settling time — Time taken until the response signal settles within a specified region around
the final value. This settling region is defined as the final step value plus or minus the
specified percentage of the final value.

* % Settling — The percentage of the final value that defines the settling range of settling time
characteristic specified in Settling time.

* % Overshoot — The amount by which the response signal can exceed the final value. This
amount is specified as a percentage of the step range. The step range is the difference
between the final and initial values.

* % Undershoot — The amount by which the response signal can undershoot the initial value.
This amount is specified as a percentage of the step range. The step range is the difference
between the final and initial values.

4  Specify the signal to be bound.

To apply this requirement to a model signal, in the Select Signals to Bound area, select a
logged signal to which you will apply the requirement.

If you have already selected a signal to log, as described in “Specify Signals to Log” on page 3-
10, it appears in the list. Select the corresponding check-box.

If you have not selected a signal to log:

a
Click . The Create Signal Set dialog box opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a requirement.

Create 5ignal 5et

Signal set: S.iq|

Signal

Mo signals have currently been selected.
Please go back to the model and didk on O imj
a signal to selectit,

| ok || cancel || Help |

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

Select the signal and click | to add it to the signal set.
d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Data area of the
Response Optimizer.

Alternatively, you can use the Check Step Response Characteristics block to specify step response
bounds for a signal.

See Also

“Design Optimization to Meet Step Response Requirements (GUI)”
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Track Reference Signals

Use reference tracking to force a model signal to match a desired signal. To track a reference signal:
1 In the Response Optimizer, select Signal Tracking in the New drop-down list. A window
opens where you specify the reference signal to track.
Specify a requirement name in the Name box.
Define the reference signal by entering vectors, or variables from the workspace, in the Time
vector and Amplitude fields.
Click Update reference signal data to use the new amplitude and time vector as the reference
signal.
4  Specify how the optimization solver minimizes the error between the reference and model signals
using the Tracking Method list:
* SSE — Reduces the sum of squared errors
* SAE — Reduces the sum of absolute errors
5 In the Specify Signal to Track Reference Signal area, select a logged signal to apply the
requirement to.

If you already selected a signal to log, as described in “Specify Signals to Log” on page 3-10, they
appear in the list. Select the corresponding check-box.

If you have not selected a signal to log:

Click . A Create Signal Set dialog box opens where you specify the logged signal.
b In the Simulink model window, click the signal to which you want to add a requirement.

b
Signal set: | Sig|

Signal

Mo signals have currently been selected.
Please go back to the model and didk on O i}
a signal to selectit,

| ok || cancel || Help |

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

Select the signal and click J to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Data area of the
Response Optimizer.

e Select the check-box corresponding to the signal and click OK.
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A variable with the specified requirement name appears in the Data area of the app. A graphical
display of the signal bound also appears in the Response Optimizer app window.

Note When tracking a reference signal, the software ignores the maximally feasible solution option.
For more information on this option, in the Response Optimization tab, click Options >
Optimization Options, and click Help.

Alternatively, you can use the Check Against Reference block to specify a reference signal to track.
See Also

“Design Optimization to Track Reference Signal (GUI)”

Impose Elliptic Bound on Phase Plane Trajectory of Two Signals

You can impose an elliptic bound on the phase plane trajectory of two signals in your Simulink model.
The phase plane trajectory is a plot of the two signals against each other. You specify the radii, center,
and rotation of the bounding ellipse. You also specify whether you require the trajectory of the two
signals to lie inside or outside the ellipse.

The following image shows the bounding ellipse and an example of the phase plane trajectory of two
signals.

Bounding Ellipse Phase Plane Trajectory
~ 1 o~
© ©
c C - - - -
L= =y e P
w - D ,';: r'_‘{’/, tn :
yl:l............. .......................,'vl'-'.':'.......... e S — .,f J' tn_-1 7
N - .7
\ 2 "% -
| X0 Signal 1 Signal 1
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The XY plane is the phase plane defined by the two signals. r, and r, are the radii of the bounding
ellipse along the x and y axes, and 65 is the rotation of the ellipse about the center. The ellipse center
is at (xg,yp). In the image, the phase plane trajectory of the signals lies within the bounding ellipse for
all time points t; to t,.

To specify the elliptical bound requirement:

1 In the Response Optimizer, in New drop-down list, select Ellipse Region Constraint.
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In the Create Requirement dialog box, specify the requirement.

Ellipse Region Constraint

Constrain a pair of signals to an elliptical regicn in signal phase plane,

AP hasePlancEllipse]

w Specify ellipse bound
Signal Semi-axis length  Center

Click to select signal. 1 0
Chicktoselectsignal. |05 0

Angle (rad): |0

Type: :Signal <= bound x|

2 Specify a requirement name in Name.

1  Specify the two signals that you want to impose the requirement on. The signals define the XY
plane of the bounding ellipse. To specify the signals, click the corresponding Select buttons.

w Specify ellipse bound

Signal Semi-axis length  Center

Select S Controller/Dervative with LPE 1 rx 0 ¥o

Select sdoShipSteering/ Controller/Speed 0.5 ry 0 Yo

Angle (rad}: 0

When you click Select, the Create Signal Set dialog box opens.
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b
Signal set: Siql

Signal

Mo signals have currently been selected.
Flease go back to the model and didk on (=5 o
a signal to select it

| ok || Cancel || Help |

In the Simulink model window, click the signal to which you want to add the requirement. The
Create Signal Set dialog box updates with the name of the block and the port number where the

selected signal is located. Select the signal, and click | to add it to the signal set.

Once you have specified the logged signal in the Create Signal Set dialog box, the signal appears
in the Create Requirement dialog box.

Specify the radii of the bounding ellipse as real positive finite values in Semi-axis length. You
specify r, and ry, that are the x-axis and y-axis radii before any rotation about the ellipse center.

Specify the location of the center of the bounding ellipse in Center. You specify x, and y,, the x
and y coordinates of the center, as real finite values.

Specify the angle of rotation of the ellipse about its center as a real finite scalar in Angle (rad).
Specify the bound Type as one of the following:

<=' — Ellipse is an upper bound. The phase plane trajectory of the two signals should lie
inside or on the ellipse.

>=' — Ellipse is a lower bound. The phase plane trajectory of the two signals should lie
outside or on the ellipse.

(Optional) To create an iteration plot that shows the evaluated requirement value for each
optimization iteration, select Create Plot. The plot is populated when you perform optimization.
During optimization, the software computes the signed minimum distance of each point in the
phase plane trajectory to the bounding ellipse. The maximum of these signed distances is
returned and plotted at each iteration. A positive value indicates that the requirement has been
violated and at least one of the trajectory points lies outside the bounding region.

Click OK.

A new variable, with the specified requirement name, appears in the Data area of the Response
Optimizer. A graphical display of the requirement also appears in the Response Optimizer app
window.

Specify Custom Requirements

You can specify custom requirements, such as minimizing system energy. To specify custom
requirements:

In the Response Optimizer, in New drop-down menu, select Custom Requirement. The
Create Requirement dialog box opens where you specify the custom requirement.
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Specify a requirement name in Name.
Specify the requirement type in the Type drop-down menu.

Specify the name of the function that contains the custom requirement in Function. The field
must be specified as a function handle using @. The function must be on the MATLAB path. Click

Ii, to review or edit the function.

If the function does not exist, clicking i opens a template MATLAB file. Use this file to
implement the custom requirement. The default function name is myCustomRequirement.

(Optional) To prevent the solver from considering specific parameter combinations, select Error
if constraint is violated. Use this option for parameter-only constraints.

During an optimization iteration, the solver first evaluates requirements with this option
selected.

+ Ifthe constraint is violated, the solver skips evaluating any remaining requirements and
proceeds to the next iteration.

+ Ifthe constraint is not violated, the solver evaluates the remaining requirements for the
current iteration. If any of the remaining requirements bound signals or systems, then the
solver simulates the model.

For more information, see “Skip Model Simulation Based on Parameter Constraint Violation
(GUI)” on page 3-163.

Note If you select this check box, then do not specify signals or systems to bound. If you do
specify signals or systems, then this check box is ignored.

(Optional) Specify the signal or system, or both, to be bound.

You can apply this requirement to model signals, or a linearization of your Simulink model
(requires Simulink Control Design ), or both.

Click Select Signals and Systems to Bound (Optional) to view the signal and linearization I/O
selection area.

* To apply this requirement to a model signal:
In the Signal area, select a logged signal to which you will apply the requirement.

If you have already selected a signal to log, as described in “Specify Signals to Log” on page
3-10, it appears in the list. Select the corresponding check box.

If you have not selected a signal to log:

Click |L| A Create Signal Set dialog box opens where you specify the logged signal.
b In the Simulink model window, click the signal to which you want to add a requirement.
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Create 5ignal et
Signal set: Siq|

Signal

Mo signals have currently been selected.
Flease go back to the model and dick on (= iy
a signal to select it.

| ok || cancel |[ Help |

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

Select the signal and click to add it to the signal set.

d In Signal set field, enter a name for the selected signal set.
Click OK. A new variable, with the specified name, appears in the Data area of the
Response Optimizer.
» To apply this requirement to a linear system:
a  Specify the simulation time at which the model is linearized in Snapshot Times. For
multiple simulation snapshot times, specify a vector.
b  Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select
the corresponding check box.

If you have not created a linearization input/output set, click to open the Create
linearization I/O set dialog box. For more information on using this dialog box, see
“Create Linearization I/O Sets” on page 3-64.

For more information on linearization, see “What Is Linearization?” (Simulink Control
Design).

7 Click OK.

A new variable, with the specified name, appears in the Data area of the Response Optimizer.
A graphical display of the requirement also appears in the Response Optimizer app window.

See Also

* “Design Optimization to Meet a Custom Objective (GUI)” on page 3-103
* “Design Optimization to Meet a Custom Objective (Code)” on page 3-118
Edit Design Requirements

The Edit Design Requirement dialog box allows you to exactly position constraint segments and to
edit other properties of these constraints. The dialog box has two main components:
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* An upper panel to specify the constraint you are editing

* Alower panel to edit the constraint parameters

The upper panel of the Edit Design Requirement dialog box resembles the image in the following

figure.

Design reguirement; |Upper time response bound from 01o 10 sec :I

In the Control System Designer app in Control System Toolbox™, you can edit design requirements
from the analysis plots. The Design requirement drop-down list will contain all the requirements on

that plot.

Edit Design Requirement Dialog Box Parameters

The particular parameters shown within the lower panel of the Edit Design Requirement dialog box
depend on the type of constraint/requirement. In some cases, the lower panel contains a grid with
one row for each segment and one column for each constraint parameter. The following table
summarizes the various constraint parameters.

Edit Design Requirement Dialog Box Parameters

Parameter Found in Description

Time Upper and lower time response |Defines the time range of a segment within
bounds on step and impulse a constraint/requirement.
response plots

Amplitude Upper and lower time response |Defines the beginning and ending amplitude

bounds on step and impulse
response plots

of a constraint segment.

Slope (1/s)

Upper and lower time response
bounds

Defines the slope, in 1/s, of a constraint
segment. It is an alternative method of
specifying the magnitude values. Entering a
new Slope value changes any previously
defined magnitude values.

Final value

Step response bounds

Defines the input level after the step occurs.

Rise time Step response bounds Defines a constraint segment for a
particular rise time.
% Rise Step response bounds The percentage of the step's range used to

describe the rise time.

Settling time

Step response bounds

Defines a constraint segment for a
particular settling time.

% Settling

Step response bounds

The percentage of the final value that
defines the settling region used to describe
the settling time.

% Overshoot

Step response bounds

The percentage amount by which the signal
can exceed the final value before settling.

% Undershoot

Step response bounds

Defines the constraint segments for a
particular percent undershoot.
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See Also

Related Examples

. “Specify Design Variables” on page 3-56

. “Specify Variable Requirements in the App” on page 3-31

. “Specify Frequency-Domain Design Requirements in the App” on page 3-43
. “Specify Optimization Options” on page 3-62

. “Design Optimization Using Lookup Table Requirements for Gain Scheduling (GUI)” on page 6-
59
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Edit Design Requirements

The Edit Design Requirement dialog box allows you to exactly position constraint segments and to
edit other properties of these constraints. The dialog box has two main components:

* An upper panel to specify the constraint you are editing
* Alower panel to edit the constraint parameters

The upper panel of the Edit Design Requirement dialog box resembles the image in the following
figure.

Design reguirement; |Upper time response bound from 01o 10 sec :I

In the context of the Control System Designer app in Control System Toolbox, Design
requirement is associated with both the analysis plot or editor that contains the requirement and
the particular requirement itself. To edit other constraints within the app, select another design
requirement from the drop-down menu.

Edit Design Requirement Dialog Box Parameters

The particular parameters shown within the lower panel of the Edit Design Requirement dialog box
depend on the type of constraint/requirement. In some cases, the lower panel contains a grid with
one row for each segment and one column for each constraint parameter. The following table
summarizes the various constraint parameters.
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Edit Design Requirement Dialog Box Parameters

Parameter Found in Description

Time Upper and lower time response |Defines the time range of a segment within
bounds on step and impulse a constraint/requirement.
response plots

Amplitude Upper and lower time response |Defines the beginning and ending amplitude

bounds on step and impulse
response plots

of a constraint segment.

Slope (1/s)

Upper and lower time response
bounds

Defines the slope, in 1/s, of a constraint
segment. It is an alternative method of
specifying the magnitude values. Entering a
new Slope value changes any previously
defined magnitude values.

Final value

Step response bounds

Defines the input level after the step occurs.

Rise time Step response bounds Defines a constraint segment for a
particular rise time.
% Rise Step response bounds The percentage of the step's range used to

describe the rise time.

Settling time

Step response bounds

Defines a constraint segment for a
particular settling time.

% Settling

Step response bounds

The percentage of the final value that
defines the settling region used to describe
the settling time.

% Overshoot

Step response bounds

The percentage amount by which the signal
can exceed the final value before settling.

% Undershoot

Step response bounds

Defines the constraint segments for a
particular percent undershoot.
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Specify Variable Requirements in the App

In the Response Optimizer, you can specify the following constraints on Simulink model parameters
that are specified as variables:

* Monotonic Variable — “Impose Monotonic Constraint Requirement on Variable” on page 3-31

* Smoothness Constraint — “Impose Upper Bound on Gradient Magnitude of Variable” on page 3-
33

* Function Matching — “Specify Linear or Quadratic Function Matching Constraint” on page 3-
36

* Vector Property — “Specify Requirement on a Vector Property” on page 3-39

* Relational Constraint — “Impose Relational Constraint Between Two Variables” on page 3-41
For information about how to specify a model parameter as a variable, see “Add Model Parameters as
Variables for Optimization” on page 3-56. After you specify the constraints, you can see if the

requirements are satisfied by optimizing the design variables. For more information, see “Specify
Optimization Options” on page 3-62.

Impose Monotonic Constraint Requirement on Variable

You can impose a monotonic constraint requirement on a design variable in your Simulink model. For
example, constrain a variable to be monotonically increasing. The variable can be a vector, matrix, or
multidimensional array that is a parameter in your model, such as the breakpoints of a lookup table.

To specify the requirement:

1 Inthe Response Optimizer, in New drop-down menu, select Monotonic Variable.
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In the Create Requirement dialog box, specify the requirement.

Create Req
Monotonic Variable

Specify a requiremnent that a vector, matrix or array be monotonic.

W ElEIM onotonicVariablg

w Specify Monotonic Constraint

Variable Type or Select - Show in Model
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Specify a requirement name in Name.

3 Specify the name of the variable in Variable. The variable must be a vector, matrix, or
multidimensional array of data type double or single.

You can type the name of a nonscalar variable, or select the variable from the drop-down list. The
list is prepopulated with all the nonscalar variables in your model. To choose a subset of an array

or matrix variable V, type an expression. For example, specify Variable as V(1, :) to use the first
row of the variable. To use a numeric nonscalar field x of a structure S, type S. x. You cannot use

mathematical expressions such asa + b.

Sometimes, models have parameters that are not explicitly defined in the model itself. For
example, a gain k could be defined in the MATLAB workspace as kK = a + b, where a and b are
not defined in the model but k is used. To add these independent parameters as variables in the
Response Optimizer, see “Add Model Parameters as Variables for Optimization” on page 3-56.

1  Specify the monotonicity for each dimension of the variable.

After you select the variable, the dialog updates to show Dimension 1 to Dimension n,
corresponding to the n dimensions of the variable. For example, for a 2-dimensional variable K of
size 3-by-5, the dialog updates as shown.

Smoothness Constraint

Specify a smoothness requirement on a vector, matrix or array.

Mame: SmoothnessReq

w Specify Smoothness Constraint

Gradient maximum magnitude: |1

Dependent Yariable: E - Show in Model

Independent Variable

Dimension 11 | Type or Select w | =3 element vector, or scalar» Show in Model

Dimension 21 | Type or Select w | =5 element vector, or scalar» Show in Model

Specify the monotonicity for the first dimension in Dimension 1 and for the n**-dimension in
Dimension n as one of the following options:

* Strictly increasing — Each element of the variable is greater than the previous element
in that dimension.

* Increasing — Each element of the variable is greater than or equal to the previous element
in that dimension.

* Decreasing — Each element of the variable is less than or equal to the previous element in
that dimension.

* Strictly decreasing — Each element of the variable is less than the previous element in
that dimension.
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* Not constrained — No constraint exists between the elements of the variable in that
dimension.

1 (Optional) To create an iteration plot that shows the evaluated requirement value for each
optimization iteration, select Create Plot. The plot is populated when you perform optimization.
The plot shows the evaluated requirement value corresponding to each dimension of the variable.
A positive value indicates that the requirement has been violated.

2 C(Click OK.

A new variable, with the specified requirement name, appears in the Data area of the Response
Optimizer app.

Impose Upper Bound on Gradient Magnitude of Variable

You can impose an upper bound on the gradient magnitude of a variable in your Simulink model. The
variable can be a vector, matrix, or multidimensional array that is a parameter in your model, such as
the data of a lookup table. For example, consider a car engine controller whose gain changes under
different operating conditions determined by the car speed. You can use a gradient bound constraint
to limit the rate at which the controller gain changes per unit change in vehicle speed.

For an N-dimensional variable F that is a function of independent variables Xy,..., Xy, the gradient
magnitude is defined as:

_ |(aF\%  (oF 2 aF |2
IVF"\/(W) 5] + -+

To compute the gradient magnitude, the software computes the partial derivative in each dimension
by computing the difference between successive F data in that dimension and dividing by the spacing
between the data in that dimension. You specify F and the spacing between the data. The software
checks whether the gradient magnitude of the variable data is less than or equal to a specified bound.
If the gradient magnitude of the data is greater than the required bound, the variable data is not
smooth.

To specify the requirement:

1 In the Response Optimizer, in New drop-down list, select Smoothness Constraint.

v "
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In the Create Requirement dialog box, specify the requirement.
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Smoothness Constraint

Specify a smoothness requirement on a vector, matrix or array.

Name:

w Specify Smoothness Constraint

Gradient maximum magnitude: |1

Dependent Variable: | Type or Select - Show in Model

Specify a requirement name in Name.

Specify the gradient magnitude bound as a nonnegative finite real scalar in Gradient maximum
magnitude.

Specify the variable F that you want to impose the requirement on in Dependent Variable. The
variable must be a vector, matrix, or multidimensional array of data type double or single. The
variable must be a parameter in your model or a constant that you enter.

You can type the name of a nonscalar variable or constant, or select the variable from the drop-
down list. The list is prepopulated with all the nonscalar variables in your model. To choose a
subset of an array or matrix variable V, type an expression. For example, specify Variable as
V(1, :) to use the first row of the variable. To use a numeric nonscalar field x of a structure S,
type S.x. You cannot use mathematical expressions such asa + b.

Sometimes, models have parameters that are not explicitly defined in the model itself. For
example, a gain k could be defined in the MATLAB workspace as kK = a + b, where a and b are
not defined in the model but k is used. To add these independent parameters as variables in the
Response Optimizer, see “Add Model Parameters as Variables for Optimization” on page 3-56.

Specify the spacing between points of Dependent Variable data in each dimension in
Independent Variable.

After you select the Dependent Variable, the dialog updates to show Dimension 1 to
Dimension n, corresponding to the n dimensions of the dependent variable. For example, for a
1-dimensional variable K, the dialog updates as shown.
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redie REQUITEmEn|

Smoothness Constraint

Specify a smoothness requirement on a vector, matrix or array.

Mame! | SmoothnessReq

w Specify Smoothness Constraint

Gradient maximum magnitude: |1

Dependent Yariable: E - Show in Model

Independent Variable

Dimension 1: | Type or Select * | <4 element vector, or scalar> Show in Model

The first dimension specifies the spacing going down the dependent variable data rows, and the
second specifies spacing across the columns. The Nth dimension specifies the spacing along

the Nth dimension of dependent variable data. You can specify the independent variables in each
dimension as scalars or vectors.

* Scalars — Specify the spacing between dependent variable data F in the corresponding
dimension as a nonzero scalar. For example, suppose that Dependent Variable is two-
dimensional, and the spacing between data in the first dimension is 5 and in the second
dimension is 2. In the Independent Variable section, specify Dimension 1 as 5 and
Dimension 2 as 2.

* Vectors — Specify the coordinates of F data in the corresponding dimension as real, numeric,
monotonic vectors. The software uses the coordinates to compute the spacing between the
dependent variable data points in the corresponding dimension. The length of the vector must
match the length of F in the corresponding dimension. You do not have to specify coordinates
with uniform spacing. For example, suppose that F is two-dimensional, and the length of the
data in the first and second dimension is 3 and 5, respectively. The coordinates of the data in
the first dimension are [1 2 3]. In the second dimension, the spacing is not uniform and the
coordinates of the dataare [1 2 10 20 30]. In the Independent Variable section,
specify Dimension 1 as [1 2 3] and Dimension 2as [1 2 10 20 30].

You can also specify the independent variables by typing the name of a variable, or selecting a
variable from the drop-down list. The list is prepopulated with all the variables in your model that
have the appropriate size. To choose a subset of an array or matrix variable V, type an
expression. For example, specify as V(1, : ) to use the first row of the variable. To use a numeric
field x of a structure S, type S.x. You cannot use mathematical expressions such asa + b.

(Optional) To create an iteration plot that shows the evaluated requirement value for each
optimization iteration, select Create Plot. The plot is populated when you perform optimization.
A positive value indicates that the requirement has been violated.

Click OK.

A new variable, with the specified requirement name, appears in the Data area of the Response
Optimizer.
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Specify Linear or Quadratic Function Matching Constraint

In the app, you can constrain a variable's values to match a linear or quadratic function. The variable
can be a vector, matrix, or a multidimensional array that is a parameter in your model, such as the
data of a lookup table in your model. To specify the requirement:

1 In Response Optimizer, from the New drop-down list, select Function Matching.
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In the Create Requirement dialog box, specify the requirement. A new requirement with the
name specified in Name appears in the Requirements area of the app.
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Create Requirement X

Function Matching

Specify that values must match a designated function.

Mame! | FunctionMatching

w Specify Function Matching Constraint

Functional Relation: | Linear w

Dependent Variable: K ~ Show in Model
Independent Variable

Dimension 1:  bpk ~ | <4 element vector= Show in Model

Center and scale independent variables

w Center and 5cale Settings

{®) Use automatic centers and scales

i) Use custom centers and scales
Independent Varable Center Scale

Dimension 1 12 7 509

Create Plot OK Cancel Hel
p

Specify the function to be matched. To do so, set Functional Relation to one of the following
values:

* Linear — Data from variable V are fit to a linear function. For example, for a two-dimensional
variable with independent variables, X; and X,, the linear function has the form:

V=qy+ a1 X1 +aX

The software calculates the fit coefficients ag, a;, and a, and then calculates the sum of
squares of the error between the data and the linear function.

* Quadratic with no cross-terms — Data are fit to a quadratic function with no cross-
terms. For a two-dimensional variable, the pure quadratic function has the form:

V=agy+aX;+ GZX% + az3Xy + G4X%

* Quadratic with all cross-terms — Variable data are fit to a quadratic function that
includes cross-terms. For a two-dimensional variable, the quadratic function has the form:
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V=qgy+aX;+ GZX% + azXy + a4X% + a5X1 Xy

If the variable is one-dimensional, there are no cross-terms and so the computation is the
same as when Functional relation is Quadratic with no cross-terms.

Specify the variable V to which you want to apply the requirement in Dependent Variable. The
variable must be a vector, matrix, or multidimensional array of data type double or single that
is a parameter in your model.

Type the name of a nonscalar variable, or select a variable from the drop-down list. The list is
prepopulated with all the nonscalar variables in your model. To see where the selected variable is
used on your model, click Show in Model. To choose a subset of an array or matrix variable A,
type an expression. For example, specify A(1, : ) to use the first row of the variable. To use a
numeric nonscalar field x of a structure S, type S. x. You cannot use mathematical expressions
suchasa + b.

Sometimes models have parameters that are not explicitly defined in the model itself. For
example, a gain k could be defined in the MATLAB workspace as K = a + b, where a and b are
not defined in the model but k is used. To add these independent parameters as design variables
in the app, see “Add Model Parameters as Variables for Optimization” on page 3-56.

Specify the independent variable vectors used for computing the function in Independent
Variable. The independent variables are specified as real, numeric, monotonic vectors.

The number of independent variables must equal the number of dimensions of the dependent
variable V. For example, you specify two independent variables when V is a matrix, and use three
independent variables when V is three-dimensional. The first independent variable vector
specifies coordinates going down the rows of V, and the second independent variable vector
specifies coordinates going across the columns of V. The n" independent variable vector specifies
coordinates along the n* dimension of V. The number of elements in each independent variable
vector must match the size of V in the corresponding dimension. The independent variable
vectors must be monotonically increasing or decreasing.

You can also specify the independent variables by typing the name of a variable, or selecting a
variable from the drop-down list. The list is prepopulated with all the variables in your model that
have the appropriate size. To choose a subset of an array or matrix variable A, type an
expression. For example, specify A(1, : ) to use the first row of the variable. To use a numeric
field x of a structure S, type S.Xx. You cannot use mathematical expressions such asa + b. To
use an equally spaced vector, select [1 2 ...N] from the drop-down menu.

Specify whether you want to center and scale the independent variables. When you select the
Center and scale independent variables option, the independent variable vectors you specify
are divided by a scale value after subtracting a center value. Centering can improve numerical
conditioning when one or more independent variable vectors have a mean that differs from 0 by
several orders of magnitude. Scaling can improve numerical conditioning when independent
variable vectors differ from each other by several orders of magnitude.

To specify the center and scale values for each independent variable, expand the Center and
Scale Settings section, and select one of the following:

* Use automatic centers and scales - The center and scale values are the mean and standard
deviation for each independent variable. Using the mean and standard deviation values to
center and scale the independent variables is the default option.
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* Use custom centers and scales - Specify the Center and Scale values for each
independent variable. The independent variable vectors are divided by the corresponding
Scale value after subtracting the value you specify in Center.

6 (Optional) Select the Create Plot option to create an iteration plot that shows the evaluated
requirement value for each optimization iteration. The software computes an error signal that is
the difference between the dependent variable data and the specified function of the independent
variables. The sum of squares of this error is plotted when you perform optimization. A positive
value indicates that the requirement has been violated, and 0 value indicates that the
requirement is satisfied. The closer the value is to 0, the better the match between the function
and dependent variable data.

7  Close the Create Requirement dialog box.

The requirement created in the Requirements area of the app is updated with the specified
characteristics.

Specify Requirement on a Vector Property

You can specify a requirement on a vector property, such as the mean value of the vector. The vector
must be a parameter in your model. To specify the requirement:

1 In the Response Optimizer, in New drop-down list, select Vector Property.

e

4 Response Optimization® - sdeShipSteering EIIEI

— Ty R - 5o
'I'_j % @ Design Variables Set: None  _ E‘ Data to Plot: "~ E @ t}

Trem SEE e Evaluate L = Sensitivity Modata.. = AddPiot PlotModel Options Optimize
Session * Session E Select  Requirements  Uncertain Variables Set None ~ | = Analysis = - Response -

FILE — VARIABLES PLOTS OPTIONS | OPTIMIZE -~
? T

In the Create Requirement dialog box, specify the requirement.

Create Require
Vector Property

Specify a requirement on a vector property such as the mean value.

Name:

w Specify Vector Property
Property: :Vector rnean v:
Type: :Constrain property to be <= the bound v:
Bound: |0

Variable: | Type or Select - Show in Model
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Specify a requirement name in Name.

Specify the vector property in Property. For a vector V with N elements, you can specify one of
the following properties:

« Vector mean — mean(V)
 Vector median — median(V)
« Vector variance — variance(V)

* Vector inter-quartile range — Difference between the 75th and 25th percentiles of
the vector values.

N
Vector sum— > V(i)

i=1
. N

Vector sum of squares — > V(i)
i=1

N
Vector sum of absolute values — E [V (i)
i=1

e Vector minimum — min(V)
« Vector maximum — max(V)

Specify the type of requirement you want to impose on the vector property in Type. You can set
an upper or lower bound on the vector property, or require the property to equal a particular
value. You can also choose to maximize or minimize the vector property. For example, to
maximize the mean value of your vector, specify Property as Vector mean and Type as
Maximize the property.

Specify the value of the bound imposed on the vector property in Bound. Specify the bound as a
finite real scalar value. For example, if for a vector variable V you require mean (V) = 5, specify
Property as Vector mean, Type as Constrain property to be == the bound, and
Bound as 5.

Specify the name of the variable in Variable. The variable must be a vector, matrix, or
multidimensional array of data type double or single.

You can type the name of a nonscalar variable, or select the variable from the drop-down list. The
list is prepopulated with all the nonscalar variables in your model. To choose a subset of an array

or matrix variable V, type an expression. For example, specify Variable as V(1, : ) to use the first
row of the variable. To use a numeric nonscalar field x of a structure S, type S. x. You cannot use

mathematical expressions such asa + b.

Sometimes, models have parameters that are not explicitly defined in the model itself. For
example, a gain k could be defined in the MATLAB workspace as k = a + b, where a and b are
not defined in the model but k is used. To add these independent parameters as variables in the
Response Optimizer, see “Add Model Parameters as Variables for Optimization” on page 3-56.

(Optional) To create an iteration plot that shows the evaluated requirement value for each
optimization iteration, select Create Plot. The plot is populated when you perform optimization.
A positive value indicates that the requirement has been violated.

Click OK.

A new variable, with the specified requirement name, appears in the Data area of the Response
Optimizer app.
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Impose Relational Constraint Between Two Variables

You can impose a relational constraint requirement on a pair of variables in your Simulink model. For
example, require that variable a is always greater than variable b. To specify the requirement:

1 In the Response Optimizer, in New drop-down list, select Relational Constraint.

4\ Response Optimization™ - sdoShipSteering EI@
[ RESPONSE OPTIMIZATION ENS RN S = =9
L ) % M @ Design Variables Set: None « _ E‘ Data to Plot: "~ E‘i @ [)
le  Evaluate Sensitivity No data... = - —
Open Save : . = Add Piot  Piot Model  Options ~ Optimize
e Ve . [ seket Requirements Uncertain Variables Set [\ None =~ rojis « e Pt e

FILE SRS VARIABLES FLOTS OFTIONS | OFTIMIZE =
# e —

In the Create Requirement dialog box, specify the requirement.

Relational Constraint

Specify a requirement that two variables obey a relational
constraint.

WETG TR elationalReg

w Specify Relational Constraint
Variable Relationship | Variable

Type or Select || = * | || Type or Select -

Show in Model Show in Model

Specify a requirement name in Name.

Specify the name of the two variables in Variable. The variables can be vectors or arrays but
must be the same size.

Type the names of two variables, or select the variables from the drop-down lists. The lists are
prepopulated with all the variables in your model. To see where a selected variable is used on
your model, click Show in Model. To choose a subset of an array or matrix variable V, type an
expression. For example, specify Variable as V(1, : ) to use the first row of the variable. To use a
numeric field x of a structure S, type S. X. You cannot use mathematical expressions such

asa + b.

Sometimes, models have parameters that are not explicitly defined in the model itself. For
example, a gain k could be defined in the MATLAB workspace as kK = a + b, where a and b are
not defined in the model but k is used. To add these independent parameters as variables in the
Response Optimizer, see “Add Model Parameters as Variables for Optimization” on page 3-56.

1  Specify the relation between the elements of the two variables as one of the following in
Relationship:

3-41



3 Response Optimization

<' — Each data element in the first variable is less than the corresponding element in the
second variable.

<=' — Each data element in the first variable is less than or equal to the corresponding
element in the second variable.

* '>' — Fach data element in the first variable is greater than the corresponding element in
the second variable.

* '>=' — Each data element in the first variable is greater than or equal to the corresponding
element in the second variable.

==' — Each data element in the first variable is equal to the corresponding element in the
second variable.

* '~=' — Each data element in the first variable is not equal to the corresponding element in
the second variable.

1 (Optional) To create an iteration plot that shows the evaluated requirement value for each
optimization iteration, select Create Plot. The plot is populated when you perform optimization.
The plot shows the evaluated requirement value corresponding to each element of the variables.
The interpretation of the evaluated requirement value depends on the requirement Type.

3-42

Type Evaluated Requirement Value
Requirement is Satisfied | Requirement is Violated
'>'or '<' Negative number Positive number, or 0 if the
elements are equal
'>=' or '<=' Negative number, or 0 if the |Positive number
elements are equal
‘== 0 Non-zero number
f~='! 0 1
2 Click OK.
A new variable, with the specified requirement name, appears in the Data area of the Response
Optimizer app.
See Also

Related Examples

“Specify Design Variables” on page 3-56

“Specify Time-Domain Design Requirements in the App” on page 3-16

“Specify Frequency-Domain Design Requirements in the App” on page 3-43

“Specify Optimization Options” on page 3-62

“Design Optimization Using Lookup Table Requirements for Gain Scheduling (GUI)” on page 6-

59
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Specify Frequency-Domain Design Requirements in the App

Specify Lower Bounds on Gain and Phase Margin

To specify lower bounds on the gain and phase margin of a linear system:

1

In the Response Optimizer, select Gain and Phase Margin in the New list. A window opens
where you specify lower bounds on the gain and phase margin of your linear system.

Specify a requirement name in Name.
Specify bounds on the gain margin or phase margin, or both.
Bode Diagram

Gm = 9.54 dB (at 2.24 radiz) , Pm =234 deg (at 1.23 radiz)
100 T T T

Al

.......................................... 1 g Gain Margin

Magnitude (dB)
=
T

=0 -

100 ] T T
-a0

135 -

=180 -

Phase (deqg)

-225

7ok L L i L PR i =
10 10 10" 10 10
Freguency (radis)

* Gain margin — Amount of gain increase or decrease required to make the loop gain unity at
the frequency where the phase angle is -180°.

+ Phase margin — Amount of phase increase or decrease required to make the phase angle -
180° when the loop gain is 1.0

To specify a lower bound on the gain margin or phase margin, or both, select the corresponding
check box and enter the lower bound value.

In the Select Systems to Bound section, select the linear systems to which this requirement
applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a  Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b  Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.
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6

If you have not created a linearization input/output set, click |L| to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.
For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
Click OK.

A variable with the specified requirement name appears in the Data area of the app. A graphical
display of the requirement also appears in the Response Optimizer app window.

(Optional) In the graphical display, you can:

* “Move Constraints Graphically” on page 3-14
» “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Gain and Phase Margins block to specify bounds on the gain and
phase margin. (Requires Simulink Control Design.)

Specify Piecewise-Linear Lower and Upper Bounds on Frequency
Response

To specify upper or lower bounds on the magnitude of a system response:

1

In the Response Optimizer, select Bode Magnitude in the New list. A window opens where
you specify the lower or upper bounds on the magnitude of the system response.

Specify a requirement name in the Name box.
Specify the requirement type using the Type list.

Specify the edge start and end frequencies and corresponding magnitude in the Frequency and
Magnitude columns.

Insert or delete bound edges.

Click |L| to specify additional bound edges.

Select a row and click |L| to delete a bound edge.
In the Select Systems to Bound section, select the linear systems to which this requirement
applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a  Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b  Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.
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If you have not created a linearization input/output set, click |L| to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
7 Click OK.

A new variable with the specified name appears in the Data area of the Response Optimizer
app window. A graphical display of the requirement also appears in the Response Optimizer
app window.
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8 (Optional) In the graphical display, you can:
* “Move Constraints Graphically” on page 3-14
* “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Bode Characteristics block to specify bounds on the magnitude
of the system response. (Requires Simulink Control Design.)

Specify Bound on Closed-Loop Peak Gain

To specify an upper bound on the closed-loop peak response of a system:

1 In the Response Optimizer, select Closed-Loop Peak Gain in the New list. A window opens
where you specify an upper bound on the closed-loop peak gain of the system.
Specify a requirement name in the Name box.
Specify the upper bound on the closed-loop peak gain in the Closed-Loop peak gain box.

In the Select Systems to Bound section, select the linear systems to which this requirement
applies.
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Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a  Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.
b  Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click |L| to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
5 Click OK.

A new variable with the specified name appears in the Data area of the Response Optimizer

app window. A graphical display of the requirement also appears in the Response Optimizer
app window.

pictune_demofSum:d [in], pidtune_demoPlant:1 [out, Open Loogp]
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6 (Optional) In the graphical display, you can:

* “Move Constraints Graphically” on page 3-14
» “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Nichols Characteristics block to specify bounds on the
magnitude of the system response. (Requires Simulink Control Design.)
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Specify Lower Bound on Damping Ratio

To specify a lower bound on the damping ratio of the system:

1

In the Response Optimizer, select Damping Ratio in the New list. A window opens where you
specify a lower bound on the damping ratio of the system.

Specify a requirement name in the Name box.

Specify the lower bound on the damping ratio in the Damping ratio box.

In the Select Systems to Bound section, select the linear systems to which this requirement
applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a  Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.

b  Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click |L| to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
Click OK.

A new variable with the specified name appears in the Data area of the Response Optimizer
app. A graphical display of the requirement also appears in the Response Optimizer app
window.
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6 (Optional) In the graphical display, you can:

* “Move Constraints Graphically” on page 3-14
* “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Pole-Zero Characteristics block to specify a bound on the
damping ratio. (Requires Simulink Control Design.)

Specify Upper and Lower Bounds on Natural Frequency

To specify a bound on the natural frequency of the system:

1 In the Response Optimizer, select Natural Frequency in the New list. A window opens where
you specify a bound on the natural frequency of the system.
Specify a requirement name in the Name box.
Specify a lower or upper bound on the natural frequency in the Natural frequency box.
In the Select Systems to Bound section, select the linear systems to which this requirement
applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a  Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.
b  Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.
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If you have not created a linearization input/output set, click B
linearization I/O set dialog box.

to open the Create

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
5 Click OK.

A new variable with the specified name appears in the Data area of the Response Optimizer
app. A graphical display of the requirement also appears in the Response Optimizer app

window.
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6 (Optional) In the graphical display, you can:

* “Move Constraints Graphically” on page 3-14
» “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Pole-Zero Characteristics block to specify a bound on the natural
frequency. (Requires Simulink Control Design.)

Specify Upper Bound on Approximate Settling Time

To specify an upper bound on the approximate settling time of the system:

1 In the Response Optimizer, select Settling Time in the New list. A window opens where you
specify an upper bound on the approximate settling time of the system.

2 Specify a requirement name in the Name box.
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Specify the upper bound on the approximate settling time in the Settling time box.
4 In the Select Systems to Bound section, select the linear systems to which this requirement

applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a  Specify the simulation time at which the model is linearized using the Snapshot Times box.

For multiple simulation snapshot times, specify a vector.

b  Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the

corresponding check box.

If you have not created a linearization input/output set, click |L| to open the Create

linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-

64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).

5 Click OK.

A new variable with the specified name appears in the Data area of the Response Optimizer
app. A graphical display of the requirement also appears in the Response Optimizer app

window.
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6 (Optional) In the graphical display, you can:
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* “Move Constraints Graphically” on page 3-14

* “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Pole-Zero Characteristics block to specify the approximate
settling time. (Requires Simulink Control Design.)

Specify Piecewise-Linear Upper and Lower Bounds on Singular Values

To specify piecewise-linear upper and lower bounds on the singular values of a system:

1

In the Response Optimizer, select Singular Values in the New list. A window opens where you
specify the lower or upper bounds on the singular values of the system.

Specify a requirement name in the Name box.
Specify the requirement type using the Type list.

Specify the edge start and end frequencies and corresponding magnitude in the Frequency and
Magnitude columns, respectively.

Insert or delete bound edges.

Click |L|to specify additional bound edges.

Select a row and click |L| to delete a bound edge.
In the Select Systems to Bound section, select the linear systems to which this requirement
applies.

Linear systems are defined by snapshot times at which the model is linearized and sets of
linearization I/O points defining the system inputs and outputs.

a  Specify the simulation time at which the model is linearized using the Snapshot Times box.
For multiple simulation snapshot times, specify a vector.
b  Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click |L| to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).
Click OK.

A new variable with the specified name appears in the Data area of the Response Optimizer
app. A graphical display of the requirement also appears in the Response Optimizer app
window.
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8 (Optional) In the graphical display, you can:
* “Move Constraints Graphically” on page 3-14
* “Position Constraints Exactly” on page 3-15

Alternatively, you can use the Check Singular Value Characteristics block to specify bounds on the
singular value. (Requires Simulink Control Design).

Specify Step Response Characteristics

To apply a step response requirement to a linearization of your model (requires Simulink Control
Design), specify the step response characteristics as follows:

1  Select a step response requirement from the Response Optimizer.

In the New drop-down menu of the app, in the New Frequency Domain Requirement section,
select Step Response Envelope.

A Create Requirement dialog box opens where you specify the step response requirements.
Specify a requirement name in the Name field of the dialog box.

Specify the step response characteristics:

* Initial value — Input level before the step occurs
* Step time — Time at which the step takes place
* Final value — Input level after the step occurs

* Rise time — The time taken for the response signal to reach a specified percentage of the
step range. The step range is the difference between the final and initial values.
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% Rise — The percentage of the step range used with Rise time to define the overall rise
time characteristics.

Settling time — Time taken until the response signal settles within a specified region around
the final value. This settling region is defined as the final step value plus or minus the
specified percentage of the final value.

% Settling — The percentage of the final value that defines the settling range of settling time
characteristic specified in Settling time.

% Overshoot — The amount by which the response signal can exceed the final value. This
amount is specified as a percentage of the step range. The step range is the difference
between the final and initial values.

% Undershoot — The amount by which the response signal can undershoot the initial value.
This amount is specified as a percentage of the step range. The step range is the difference
between the final and initial values.

Specify the systems to be bound.

To apply this requirement to a linearization of your Simulink model:

In the Select Systems to Bound area, specify the simulation time at which the model is
linearized in Snapshot Times. For multiple simulation snapshot times, specify a vector.

Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select the
corresponding check box.

If you have not created a linearization input/output set, click |L| to open the Create
linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization I/O Sets” on page 3-
64.

For more information on linearization, see “What Is Linearization?” (Simulink Control Design).

Alternatively, you can use the Check Step Response Characteristics block to specify step response
bounds for a signal.

Specify Custom Requirements

You can specify custom requirements, such as minimizing system energy. To specify custom
requirements:

1

In the Response Optimizer, in New drop-down menu, select Custom Requirement. The
Create Requirement dialog box opens where you specify the custom requirement.

Specify a requirement name in Name.

Specify the requirement type in the Type drop-down menu.

Specify the name of the function that contains the custom requirement in Function. The field
must be specified as a function handle using @. The function must be on the MATLAB path. Click

Ii, to review or edit the function.
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If the function does not exist, clicking opens a template MATLAB file. Use this file to
implement the custom requirement. The default function name is myCustomRequirement.

(Optional) To prevent the solver from considering specific parameter combinations, select Error
if constraint is violated. Use this option for parameter-only constraints.

During an optimization iteration, the solver first evaluates requirements with this option
selected.

+ Ifthe constraint is violated, the solver skips evaluating any remaining requirements and
proceeds to the next iteration.

+ Ifthe constraint is not violated, the solver evaluates the remaining requirements for the
current iteration. If any of the remaining requirements bound signals or systems, then the
solver simulates the model.

For more information, see “Skip Model Simulation Based on Parameter Constraint Violation
(GUI)” on page 3-163.

Note If you select this check box, then do not specify signals or systems to bound. If you do
specify signals or systems, then this check box is ignored.

(Optional) Specify the signal or system, or both, to be bound.

You can apply this requirement to model signals, or a linearization of your Simulink model
(requires Simulink Control Design ), or both.

Click Select Signals and Systems to Bound (Optional) to view the signal and linearization I/O
selection area.

* To apply this requirement to a model signal:
In the Signal area, select a logged signal to which you will apply the requirement.

If you have already selected a signal to log, as described in “Specify Signals to Log” on page
3-10, it appears in the list. Select the corresponding check box.

If you have not selected a signal to log:

a
Click . A Create Signal Set dialog box opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to add a requirement.

Create 5ignal et~
Signal set: |Sig|

Signal

Mo signals have currently been selected.
Flease go back to the model and dick on [~ T
a signal to select it.

| ok || cancel |[ Help |




Specify Frequency-Domain Design Requirements in the App

The Create Signal Set dialog box updates and displays the name of the block and the port
number where the selected signal is located.

Select the signal and click to add it to the signal set.

In Signal set field, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Data area of the
Response Optimizer.

» To apply this requirement to a linear system:

Specify the simulation time at which the model is linearized in Snapshot Times. For
multiple simulation snapshot times, specify a vector.

Select the linearization input/output set from the Linearization I/O area.

If you have already created a linearization input/output set, it appears in the list. Select
the corresponding check box.

If you have not created a linearization input/output set, click |L| to open the Create
linearization I/O set dialog box. For more information on using this dialog box, see
“Create Linearization I/O Sets” on page 3-64.

For more information on linearization, see “What Is Linearization?” (Simulink Control

Design).
7  Click OK.
A new variable, with the specified name, appears in the Data area of the Response Optimizer.
A graphical display of the requirement also appears in the Response Optimizer app window.
See Also
* “Design Optimization to Meet a Custom Objective (GUI)” on page 3-103
* “Design Optimization to Meet a Custom Objective (Code)” on page 3-118
See Also

Related Examples
“Specify Design Variables” on page 3-56

“Specify Time-Domain Design Requirements in the App” on page 3-16

“Specify Variable Requirements in the App” on page 3-31

“Specify Optimization Options” on page 3-62
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This topic shows how to specify design variables for optimization.

Before running the optimization, you must specify the model parameters to optimize. These
parameters form the design variables set for optimization. By tuning these parameters, Simulink
Design Optimization software attempts to make the signals meet the requirements. Simulink Design
Optimization software optimizes the response signals of the model by varying the tuned parameters
so that the response signals lie within the constraint bound segments or closely match a specified
reference signal. The design variables can be scalar, vector, matrix, or an expression that evaluates to
one of these values.

You can also use sensitivity analysis for finding the parameters that most influence the optimization
problem and use these as design variables. To open the Sensitivity Analyzer, in the Response

Optimization tab, click E‘Sensitivity Analysis. In the Sensitivity Analyzer app, you can explore
the response optimization design space by altering the design variables, identify the parameters that
most influence the optimization problem, and compute initial values.

Add Model Parameters as Variables for Optimization

The software can only optimize variables that are in use by the Simulink model. Create variables for
optimization in the MATLAB or model workspace, and specify your model or block parameters using
these variables.

In this figure, the Proportional (P) and Integral (I) gain parameters of a PID Controller block are
specified as numerical values.

-

"L Function Block Parameters: PID Controller @
PID Controller
This block implements continuous- and discrete-time PID control algorithms and includes advanced features such as

anti-windup, external reset, and signal tracking. You can tune the PID gains automatically using the Tune..." button
(requires Simulink Control Design).

Controller: [PI '] Form: [Parallel -

Time domain:
@ Continuous-time

() Discrete-time

Main | PID Advanced | Data Types | State Attributes
Controller parameters

Source: [internal | [E Compensator formula

Proportional (F): 1.599340

Integral (I): 0.079967 P+I-

To optimize the gain parameters, specify them as variables Kp and Ki:



Specify Design Variables

1 Create the variables Kp and Ki in one of the following ways:

* Add the variables to the model workspace, and specify initial values.

Madel Explorer
File Edit “iew Tools Add Help

Bd 3 H bl >~ 00|+ &5
Search: | by Mame x| Hame: | G, Searg
Model Hierarchy & = = Contents of: Model Workspace (and below)

=+ P Simulink Roat

FH Base Warkspace Column View:  |Data Cbjects | sho
= myModel
EE tadel Warkspace |Name |\p'a|ue |DataType |Min |Max

oy Configuration (Ackive) H ki 1
Code For myiodel E Kn 1
|=%| simulink Design Yerifier resulks

| =

* Write initialization code in the PreloadFcn callback of the model. For more information, see

“Model Callbacks”.
Kp = 1;
Ki = 1;

2 Specify the gain parameters as the variables Kp and Ki in the PID Controller block dialog box.

//ﬂcrerrnmr\

Main | PID Advanced | Data Types
Controller parameters

State Attributes

Source: [internal = | E Compensator formula

Proportional (F): Kp

1
Integral (I): Ki P+f;

You can now select Kp and Ki for optimization. See, “Specify Design Variables” on page 3-58.
Specify Independent Parameters for Optimization

You can also specify independent parameters that do not appear explicitly in the model as variables
for optimization. However, you cannot use this workflow with Simulink fast restart.

Suppose that a model parameter Kint is related to independent parameters x and y such that Kint
= X+Y. To optimize x and y instead of Kint:

* Create the independent variables x and y by adding them to the model workspace an